1
|
Baukova A, Bogun A, Sushkova S, Minkina T, Mandzhieva S, Alliluev I, Jatav HS, Kalinitchenko V, Rajput VD, Delegan Y. New Insights into Pseudomonas spp.-Produced Antibiotics: Genetic Regulation of Biosynthesis and Implementation in Biotechnology. Antibiotics (Basel) 2024; 13:597. [PMID: 39061279 PMCID: PMC11273644 DOI: 10.3390/antibiotics13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas bacteria are renowned for their remarkable capacity to synthesize antibiotics, namely mupirocin, gluconic acid, pyrrolnitrin, and 2,4-diacetylphloroglucinol (DAPG). While these substances are extensively employed in agricultural biotechnology to safeguard plants against harmful bacteria and fungi, their potential for human medicine and healthcare remains highly promising for common science. However, the challenge of obtaining stable producers that yield higher quantities of these antibiotics continues to be a pertinent concern in modern biotechnology. Although the interest in antibiotics of Pseudomonas bacteria has persisted over the past century, many uncertainties still surround the regulation of the biosynthetic pathways of these compounds. Thus, the present review comprehensively studies the genetic organization and regulation of the biosynthesis of these antibiotics and provides a comprehensive summary of the genetic organization of antibiotic biosynthesis pathways in pseudomonas strains, appealing to both molecular biologists and biotechnologists. In addition, attention is also paid to the application of antibiotics in plant protection.
Collapse
Affiliation(s)
- Alexandra Baukova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Ilya Alliluev
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Hanuman Singh Jatav
- Soil Science & Agricultural Chemistry, S.K.N. Agriculture University-Jobner, Jaipur 303329, Rajasthan, India;
| | - Valery Kalinitchenko
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Rostov Region, Russia;
- All-Russian Research Institute for Phytopathology of the Russian Academy of Sciences, Institute St., 5, 143050 Big Vyazyomy, Moscow Region, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| |
Collapse
|
2
|
Yue SJ, Huang P, Li S, Cai YY, Wang W, Zhang XH, Nikel PI, Hu HB. Developing a CRISPR-assisted base-editing system for genome engineering of Pseudomonas chlororaphis. Microb Biotechnol 2022; 15:2324-2336. [PMID: 35575623 PMCID: PMC9437888 DOI: 10.1111/1751-7915.14075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas chlororaphis is a non‐pathogenic, plant growth‐promoting rhizobacterium that secretes phenazine compounds with broad‐spectrum antibiotic activity. Currently available genome‐editing methods for P. chlororaphis are based on homologous recombination (HR)‐dependent allelic exchange, which requires both exogenous DNA repair proteins (e.g. λ‐Red–like systems) and endogenous functions (e.g. RecA) for HR and/or providing donor DNA templates. In general, these procedures are time‐consuming, laborious and inefficient. Here, we established a CRISPR‐assisted base‐editing (CBE) system based on the fusion of a rat cytidine deaminase (rAPOBEC1), enhanced‐specificity Cas9 nickase (eSpCas9ppD10A) and uracil DNA glycosylase inhibitor (UGI). This CBE system converts C:G into T:A without DNA strands breaks or any donor DNA template. By engineering a premature STOP codon in target spacers, the hmgA and phzO genes of P. chlororaphis were successfully interrupted at high efficiency. The phzO‐inactivated strain obtained by base editing exhibited identical phenotypic features as compared with a mutant obtained by HR‐based allelic exchange. The use of this CBE system was extended to other P. chlororaphis strains (subspecies LX24 and HT66) and also to P. fluorescens 10586, with an equally high editing efficiency. The wide applicability of this CBE method will accelerate bacterial physiology research and metabolic engineering of non‐traditional bacterial hosts.
Collapse
Affiliation(s)
- Sheng-Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Song Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Yuan Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Chen L, Wang Y, Miao J, Wang Q, Liu Z, Xie W, Liu X, Feng Z, Cheng S, Chi X, Ge Y. LysR-type transcriptional regulator FinR is required for phenazine and pyrrolnitrin biosynthesis in biocontrol Pseudomonas chlororaphis strain G05. Appl Microbiol Biotechnol 2021; 105:7825-7839. [PMID: 34562115 DOI: 10.1007/s00253-021-11600-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Phenazine-1-carboxylic acid and pyrrolnitrin, the two secondary metabolites produced by Pseudomonas chlororaphis G05, serve as biocontrol agents that mainly contribute to the growth repression of several fungal phytopathogens. Although some regulators of phenazine-1-carboxylic acid biosynthesis have been identified, the regulatory pathway involving phenazine-1-carboxylic acid synthesis is not fully understood. We isolated a white conjugant G05W03 on X-Gal-containing LB agar during our screening of novel regulator candidates using transposon mutagenesis with a fusion mutant G05Δphz::lacZ as a recipient. By cloning of DNA adjacent to the site of the transposon insertion, we revealed that a LysR-type transcriptional regulator (LTTR) gene, finR, was disrupted in the conjugant G05W03. To confirm the regulatory function of FinR, we constructed the finR-knockout mutant G05ΔfinR, G05Δphz::lacZΔfinR, and G05Δprn::lacZΔfinR, using the wild-type strain G05 and its fusion mutant derivatives as recipient strains, respectively. We found that the expressions of phz and prn operons were dramatically reduced in the finR-deleted mutant. With quantification of the production of antifungal metabolites biosynthesized by the finR-negative strain G05ΔfinR, it was shown that FinR deficiency also led to decreased yield of phenazine-1-carboxylic acid and pyrrolnitrin. In addition, the pathogen inhibition assay confirmed that the production of phenazine-1-carboxylic acid was severely reduced in the absence of FinR. Transcriptional fusions and qRT-PCR verified that FinR could positively govern the transcription of the phz and prn operons. Taken together, FinR is required for antifungal metabolite biosynthesis and crop protection against some fungal pathogens.Key points• A novel regulator FinR was identified by transposon mutagenesis.• FinR regulates antifungal metabolite production.• FinR regulates the phz and prn expression by binding to their promoter regions.
Collapse
Affiliation(s)
- Lijuan Chen
- Affiliated Hospital of Ludong University, Yantai, 264025, China.,The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Yanhua Wang
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Jing Miao
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Qijun Wang
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Zili Liu
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Wenqi Xie
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Xinsheng Liu
- Affiliated Hospital of Ludong University, Yantai, 264025, China.,The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Zhibin Feng
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China.,Biological Fermentation and Separation Engineering Laboratory, School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Shiwei Cheng
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China.,Biological Fermentation and Separation Engineering Laboratory, School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Xiaoyan Chi
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China.
| | - Yihe Ge
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China. .,Biological Fermentation and Separation Engineering Laboratory, School of Life Sciences, Ludong University, Yantai, 264025, China.
| |
Collapse
|
4
|
Zhang Q, Xing C, Kong X, Wang C, Chen X. ChIP-seq Analysis of the Global Regulator Vfr Reveals Novel Insights Into the Biocontrol Agent Pseudomonas protegens FD6. Front Microbiol 2021; 12:667637. [PMID: 34054776 PMCID: PMC8160232 DOI: 10.3389/fmicb.2021.667637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many Pseudomonas protegens strains produce the antibiotics pyoluteorin (PLT) and 2,4-diacetylphloroglucinol (2,4-DAPG), both of which have antimicrobial properties. The biosynthesis of these metabolites is typically controlled by multiple regulatory factors. Virulence factor regulator (Vfr) is a multifunctional DNA-binding regulator that modulates 2,4-DAPG biosynthesis in P. protegens FD6. However, the mechanism by which Vfr regulates this process remains unclear. In the present study, chromatin immunoprecipitation of FLAG-tagged Vfr and nucleotide sequencing analysis were used to identify 847 putative Vfr binding sites in P. protegens FD6. The consensus P. protegens Vfr binding site predicted from nucleotide sequence alignment is TCACA. The qPCR data showed that Vfr positively regulates the expression of phlF and phlG, and the expression of these genes was characterized in detail. The purified recombinant Vfr bound to an approximately 240-bp fragment within the phlF and phlG upstream regions that harbor putative Vfr consensus sequences. Using electrophoretic mobility shift assays, we localized Vfr binding to a 25-bp fragment that contains part of the Vfr binding region. Vfr binding was eliminated by mutating the TACG and CACA sequences in phlF and phlG, respectively. Taken together, our results show that Vfr directly regulates the expression of the 2,4-DAPG operon by binding to the upstream regions of both the phlF and phlG genes. However, unlike other Vfr-targeted genes, Vfr binding to P. protegens FD6 does not require an intact binding consensus motif. Furthermore, we demonstrated that vfr expression is autoregulated in this bacterium. These results provide novel insights into the regulatory role of Vfr in the biocontrol agent P. protegens.
Collapse
Affiliation(s)
- Qingxia Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chenglin Xing
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiangwei Kong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Cheng Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xijun Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Ogura K, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Taguchi F, Ichinose Y. Vfr targets promoter of genes encoding methyl-accepting chemotaxis protein in Pseudomonas syringae pv. tabaci 6605. Biochem Biophys Rep 2021; 26:100944. [PMID: 33659714 PMCID: PMC7890371 DOI: 10.1016/j.bbrep.2021.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/22/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Virulence factor regulator (Vfr) is an indispensable transcription factor in the expression of virulence in the phytopathogenic bacteria Pseudomonassyringae. However, the function of Vfr is not known so far. The deletion of vfr resulted in the loss of surface swarming motility and reduced the virulence in P. syringae pv. tabaci (Pta) 6605. In order to identify the target genes of Vfr, we screened the sequences that bind to Vfr by chromatin immune precipitation (ChIP) and sequencing methods using the closely related bacterium P. syringae pv. syringae (Pss) B728a. For this purpose we first generated a strain that possesses the recombinant gene vfr::FLAG in Pss B728a, and performed ChIP using an anti-FLAG antibody. Immunoprecipitated DNA was purified and sequenced with Illumina HiSeq. The Vfr::FLAG-specific peaks were further subjected to an electrophoresis mobility-shift assay, and the promoter regions of locus tag for Psyr_0578 , Psyr_1776, and Psyr_2237 were identified as putative target genes of Vfr. These genes encode plant pathogen–specific methyl-accepting chemotaxis proteins (Mcp). These mcp genes seem to be involved in the Vfr-regulated expression of virulence. Identification of target gene of Vfr in Pseudomonas syringae by ChIP-seq and EMSA. Vfr targets 3 methyl-accepting chemotaxis proteins (mcp) genes. Existence of putative Vfr binding sequences in the promoter of 3 mcp genes.
Collapse
Affiliation(s)
- Keisuke Ogura
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Fumiko Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan.,Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|