1
|
Vega JDL, Alejo-Armijo A, Pineda LM, López-Pérez JL, Ng MG, Larqué H, Hernandez M, Spadafora C, Olmo ED. Antiparasitic activity of Eryngium bourgatii Gouan: Fractionation and isolation of constituents from roots and aerial parts. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119840. [PMID: 40258307 DOI: 10.1016/j.jep.2025.119840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are rich in bioactive compounds with diverse properties that can preserve human health. Eryngium bourgatii is used in traditional medicine to purify the blood. Species of this genus have been used for their antibacterial, antitumor, antifungal or antiparasitic properties among others. AIM OF THE STUDY In this work, the antiparasitic properties against Leishmania donovani, Trypanosoma cruzi, and Plasmodium falciparum were evaluated. MATERIALS AND METHODS Methyl tert-butyl ether (MTBE), dichloromethane (DCM), and ethyl acetate (EtOAc) extracts of the roots and the non-flowering aerial parts were obtained by maceration at room temperature. Some of them were partitioned with solvents of increasing polarity, specifically n-hexane (n-Hex), dichloromethane (DCM), and ethyl acetate (EA) to isolate different fractions. Growth inhibition assays were performed against the three protozoa (L. donovani, T. cruzi, and P. falciparum). The active fractions were subsequently separated by chromatography to determine the secondary metabolites responsible for the activity. In addition, GC-MS studies were performed to further analyse the composition of the extracts and fractions. RESULTS Regarding the roots, the MTBE extract was the most potent leishmanicidal (77.7 % inhibition at 10 μg/mL). The activity increased in its n-Hex fraction (95.3 % inhibition), and in the DCM fraction, both leishmanicidal (93.6 %) and anti-Chagas activity (92.2 %) improved. Furanone 12, a new natural compound, was the main component of the extract and the most potent leishmanicide (96.7 %), sixteen times less than the reference drug, Amphotericin B. 11-Acetoxyfalcarindiol (19) was the most potent anti-Chagas (89.1 % inhibition). Regarding the aerial parts, the DCM extract was the most potent leishmanicide (83.3 %), which improved in its DCM fraction (95.7 %), mainly attributed to compound 12. The DCM fraction of the MTBE extract produced the best antichagasic result (93.3 % inhibition), attributed to falcarindiol (17). Practically, the same compounds were identified in the roots as in the aerial parts, but in different proportions. Nine pure compounds were isolated; 34 were identified in roots and 37 in the aerial parts by GC-MS, with alkyne compounds leading, followed by sesquiterpenes and fatty acids.
Collapse
Affiliation(s)
- Jennifer de la Vega
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain
| | - Alfonso Alejo-Armijo
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain
| | - Laura M Pineda
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP). City of Knowledge, Clayton, Apartado, 0816-02852, Panama City, Panama
| | - José Luis López-Pérez
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain; Facultad de Medicina, Universidad de Panamá, Panamá, R. de Panamá, Panama
| | - Michelle G Ng
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP). City of Knowledge, Clayton, Apartado, 0816-02852, Panama City, Panama
| | - Horacio Larqué
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain; Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. de los Rectores s/n, Cd. Universitaria, Nuevo León, 66450, San Nicolás de los Garza, Mexico
| | - Miriam Hernandez
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP). City of Knowledge, Clayton, Apartado, 0816-02852, Panama City, Panama
| | - Esther Del Olmo
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, CIETUS, IBSAL, 37007, Salamanca, Spain.
| |
Collapse
|
2
|
Spyrou A, Batista MGF, Corazza ML, Papadaki M, Antonopoulou M. Extraction of High Value Products from Zingiber officinale Roscoe (Ginger) and Utilization of Residual Biomass. Molecules 2024; 29:871. [PMID: 38398623 PMCID: PMC10893072 DOI: 10.3390/molecules29040871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Zingiber officinale Roscoe (ginger) is a plant from the Zingiberaceae family, and its extracts have been found to contain several compounds with beneficial bioactivities. Nowadays, the use of environmentally friendly and sustainable extraction methods has attracted considerable interest. The main objective of this study was to evaluate subcritical propane (scPropane), supercritical CO2 (scCO2), and supercritical CO2 with ethanol (scCO2 + EtOH) as co-solvent methods for the extraction of high value products from ginger. In addition, the reuse/recycling of the secondary biomass in a second extraction as a part of the circular economy was evaluated. Both the primary and the secondary biomass led to high yield percentages, ranging from 1.23% to 6.42%. The highest yield was observed in the scCO2 + EtOH, with biomass prior used to scCO2 extraction. All extracts presented with high similarities as far as their total phenolic contents, antioxidant capacity, and chemical composition. The most abundant compounds, identified by the two different gas chromatography-mass spectrometry (GC-MS) systems present, were a-zingiberene, β- sesquiphellandrene, a-farnesene, β-bisabolene, zingerone, gingerol, a-curcumene, and γ-muurolene. Interestingly, the reuse/recycling of the secondary biomass was found to be promising, as the extracts showed high antioxidant capacity and consisted of significant amounts of compounds with beneficial properties.
Collapse
Affiliation(s)
- Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, Seferi 2, GR30131 Agrinio, Greece;
| | - Marcelle G. F. Batista
- Department of Chemical Engineering, Federal University of Parana, Curitiba CEP 81531-990, PR, Brazil; (M.G.F.B.); (M.L.C.)
| | - Marcos L. Corazza
- Department of Chemical Engineering, Federal University of Parana, Curitiba CEP 81531-990, PR, Brazil; (M.G.F.B.); (M.L.C.)
| | - Maria Papadaki
- Department of Agriculture, Nea Ktiria, University of Patras, GR30200 Messolonghi, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, Seferi 2, GR30131 Agrinio, Greece;
| |
Collapse
|
3
|
Shaukat MN, Nazir A, Fallico B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants (Basel) 2023; 12:2015. [PMID: 38001868 PMCID: PMC10669910 DOI: 10.3390/antiox12112015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Ginger is an herbaceous and flowering plant renowned for its rhizome, which is widely employed as both a spice and an herb. Since ancient times, ginger has been consumed in folk medicine and traditional cuisines for its favorable health effects. Different in vitro and in vivo studies have disclosed the advantageous physiological aspects of ginger, primarily due to its antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic properties. These health-promoting features are linked to the variety of bioactive compounds that are present in ginger. Following the advancement in consumer awareness and the industrial demand for organic antioxidants and functional ingredients, the application of ginger and its derivatives has been broadly investigated in a wide range of food products. The prominent features transmitted by ginger into different food areas are antioxidant and nutraceutical values (bakery); flavor, acceptability, and techno-functional characteristics (dairy); hedonic and antimicrobial properties (beverages); oxidative stability, tenderization, and sensorial attributes (meat); and shelf life and sensorial properties (film, coating, and packaging). This review is focused on providing a comprehensive overview of the tendencies in the application of ginger and its derivatives in the food industry and concurrently briefly discusses the beneficial aspects and processing of ginger.
Collapse
Affiliation(s)
- Muhammad Nouman Shaukat
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Biagio Fallico
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| |
Collapse
|
4
|
He J, Hadidi M, Yang S, Khan MR, Zhang W, Cong X. Natural food preservation with ginger essential oil: Biological properties and delivery systems. Food Res Int 2023; 173:113221. [PMID: 37803539 DOI: 10.1016/j.foodres.2023.113221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Recently, the increasing demand from consumers for preservative-free or naturally preserved foods has forced the food industry to turn to natural herbal and plant-derived preservatives rather than synthetic preservatives to produce safe foods. Essential oils derived from ginger (Zingiber officinale Roscoe) are widely known for their putative health-promoting bioactivities, and this paper covers their extraction methods, chemical composition, and antibacterial and antioxidant activities. Especially, the paper reviews their potential applications in food preservation, including nanoemulsions, emulsions, solid particle encapsulation, and biodegradable food packaging films/coatings. The conclusion drawn is that ginger essential oil can be used not only for direct food preservation but also encapsulated using various delivery forms such as nanoemulsions, Pickering emulsions, and solid particle encapsulation to improve its release control ability. The film of encapsulated ginger essential oil has been proven to be superior to traditional methods in preserving foods such as bread, meat, fish, and fruit.
Collapse
Affiliation(s)
- Jinman He
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; School of Life Sciences, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Siyuan Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
5
|
Huong LT, The Son N, Sam LN, Minh PN, Luyen ND, Hung NH, Dai DN. Essential oils of the ginger plants Meistera caudata and Conamomum vietnamense: chemical compositions, antimicrobial, and mosquito larvicidal activities. Z NATURFORSCH C 2023; 78:337-344. [PMID: 37167216 DOI: 10.1515/znc-2022-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
The current study describes the chemical identification, antimicrobial, and mosquito larvicidal activities of essential oils from Meistera caudata and Conamomum vietnamense, growing in Vietnam. Essential oils were extracted from the leaves and rhizomes, and characterized by the GC-FID/MS (gas chromatography-flame ionization detection/mass spectrometry) analysis. Monoterpenes (33.1-89.2 %) were the main chemical class found in these oils. β-Pinene (30.8 %) and α-pinene (23.8 %) were two major compounds in M. caudata leaf oil. C. vietnamense leaf and rhizome essential oils were dominated by 1,8-cineole (47.9-62.0 %) and limonene (10.3-16.2 %). With the same MIC (minimum inhibitory concentration) value of 25 μg/mL, C. vietnamense leaf and rhizome essential oils strongly inhibited the growth of Gram-positive bacteria Staphylococcus aureus ATCC 29213 and Bacillus subtilis ATCC 6501, respectively. For 24 and 48-h treatments, C. vietnamense leaf essential oil strongly controlled the growth of mosquito Aedes aegypti with the respective LC50 values of 7.67 and 6.73 μg/mL, and the respective LC90 values of 13.37 and 10.83 μg/mL. In the same manner, C. vietnamense rhizome essential oil also showed strong mosquito larvicidal activity against Aedes albopictus with the LC50 values of 12.37 and 12.00 μg/mL, and the LC90 values of 20.56 and 18.58 μg/mL, respectively. C. vietnamense essential essential oils containing a high amount of 1,8-cineole are generally better than M. caudata essential essential oils in both two biological assays.
Collapse
Affiliation(s)
- Le Thi Huong
- Faculty of Biology, College of Education, Vinh University, 182 Le Duan, Vinh City, Nghệ An Province 4300, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Ly Ngoc Sam
- Institute of Tropical Biology, VAST, 85 Tran Quoc Toan, District 3, Ho Chi Minh City, Vietnam
| | - Phan Nhat Minh
- Natural Product Laboratory, Institute of Chemical Technology, VAST, 01A Thạnh Loc, 29 Thạnh Loc, District 12, Ho Chi Minh City, Vietnam
| | - Nguyen Dinh Luyen
- Institute of Natural Product Chemistry, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Nguyen Huy Hung
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Danang, Vietnam
| | - Do Ngoc Dai
- Faculty of Agriculture, Forestry and Fishery, Nghe An University of Economics, 51 Ly Tu Trong, Vinh, Nghean, Vietnam
| |
Collapse
|
6
|
Ansari MA. Nanotechnology in Food and Plant Science: Challenges and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2565. [PMID: 37447126 DOI: 10.3390/plants12132565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Globally, food safety and security are receiving a lot of attention to ensure a steady supply of nutrient-rich and safe food. Nanotechnology is used in a wide range of technical processes, including the development of new materials and the enhancement of food safety and security. Nanomaterials are used to improve the protective effects of food and help detect microbial contamination, hazardous chemicals, and pesticides. Nanosensors are used to detect pathogens and allergens in food. Food processing is enhanced further by nanocapsulation, which allows for the delivery of bioactive compounds, increases food bioavailability, and extends food shelf life. Various forms of nanomaterials have been developed to improve food safety and enhance agricultural productivity, including nanometals, nanorods, nanofilms, nanotubes, nanofibers, nanolayers, and nanosheets. Such materials are used for developing nanofertilizers, nanopesticides, and nanomaterials to induce plant growth, genome modification, and transgene expression in plants. Nanomaterials have antimicrobial properties, promote plants' innate immunity, and act as delivery agents for active ingredients. Nanocomposites offer good acid-resistance capabilities, effective recyclability, significant thermostability, and enhanced storage stability. Nanomaterials have been extensively used for the targeted delivery and release of genes and proteins into plant cells. In this review article, we discuss the role of nanotechnology in food safety and security. Furthermore, we include a partial literature survey on the use of nanotechnology in food packaging, food safety, food preservation using smart nanocarriers, the detection of food-borne pathogens and allergens using nanosensors, and crop growth and yield improvement; however, extensive research on nanotechnology is warranted.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
7
|
Al Asoom L, Alassaf MA, AlSulaiman NS, Boumarah DN, Almubireek AM, Alkaltham GK, Alhawaj HA, Alkhamis T, Rafique N, Alsunni A, Latif R, Alsaif S, Almohazey D, AbdulAzeez S, Borgio JF. The Effectiveness of Nigella sativa and Ginger as Appetite Suppressants: An Experimental Study on Healthy Wistar Rats. Vasc Health Risk Manag 2023; 19:1-11. [PMID: 36647392 PMCID: PMC9840438 DOI: 10.2147/vhrm.s396295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Background Obesity is a global pandemic that is associated with high morbidity and mortality. Natural herbs are commonly used for weight reduction and appetite suppression. Therefore, we aim to investigate the role and mechanism of Nigella sativa (NS) and ginger on weight reduction and appetite regulation. Methods This experimental study was performed at Imam Abdulrahman Bin Faisal University. Twenty-five female rats were distributed into 5 groups: NS (oral 1000mg/kg), Ginger (500 mg/kg), NS-ginger (both interventions), a positive control (intraperitoneal 50 μg/kg Liraglutide), and a negative control. Each intervention was given for 9 weeks. Food intake and body weight were assessed weekly. Serum lipid profile and peptides involved in appetite control (cholecystokinin (CCK), glucagon-like peptide 1(GLP-1), gastric inhibitory polypeptide (GIP), ghrelin, peptide YY, and orexin) were assayed at the end of the experiment. Results None of the interventions showed a statistically significant difference regarding food consumption or weight gain (p > 0.05). However, the three interventions significantly reduced total cholesterol (TC), NS and NS-ginger significantly increased HDL, NS increased ghrelin and ginger increased orexin. Conclusion The present dose and duration of NS, ginger, or in combination did not demonstrate a significant change in body weight or food consumption in comparison to the negative or positive controls. However, NS or ginger has improved the lipid profile by reducing TC and increasing HDL. In addition, NS or ginger can influence some of the peptides involved in appetite regulation such as the increase in ghrelin induced by NS and the reduction of orexin induced by ginger. We believe that these latter effects are novel and might indicate a promising effect of these natural products on appetite regulation.
Collapse
Affiliation(s)
- Lubna Al Asoom
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maha A Alassaf
- King Fahd hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najd S AlSulaiman
- Department of Internal Medicine, King Fahd Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dhuha N Boumarah
- Department of Surgery, King Fahd Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aldana M Almubireek
- King Fahd hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Gaeda K Alkaltham
- King Fahd hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hussain A Alhawaj
- Animal House, Environmental Health Department, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Taleb Alkhamis
- Animal House, Environmental Health Department, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nazish Rafique
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed Alsunni
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rabia Latif
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Seham Alsaif
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Lopes-Caitar VS, Nomura RBG, Hishinuma-Silva SM, de Carvalho MCDCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players. PLANTS (BASEL, SWITZERLAND) 2022; 11:2983. [PMID: 36365436 PMCID: PMC9655969 DOI: 10.3390/plants11212983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pratylenchus brachyurus causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) Glycine max genotypes. Differential expression analysis revealed two stages of response to RLN infection and a set of differentially expressed genes (DEGs) in the first stage suggested a pattern-triggered immunity (PTI) in both genotypes. The divergent time-point of DEGs between genotypes was observed four days post-infection, which included the activation of mitogen-activated protein kinase (MAPK) and plant-pathogen interaction genes in the BRS, suggesting the occurrence of an effector-triggered immunity response (ETI) in BRS. The co-expression analyses combined with single nucleotide polymorphism (SNP) uncovered a key element, a transcription factor phytochrome-interacting factor (PIF7) that is a potential regulator of moderate resistance to RLN infection. Two genes for resistance-related leucine-rich repeat (LRR) proteins were found as BRS-specific expressed genes. In addition, alternative splicing analysis revealed an intron retention in a myo-inositol oxygenase (MIOX) transcript, a gene related to susceptibility, may cause a loss of function in BRS.
Collapse
Affiliation(s)
- Valéria Stefania Lopes-Caitar
- Department of Biological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | - Rafael Bruno Guayato Nomura
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Suellen Mika Hishinuma-Silva
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | | | | | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | | |
Collapse
|
9
|
|
10
|
Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Sci Rep 2021; 11:20851. [PMID: 34675286 PMCID: PMC8531315 DOI: 10.1038/s41598-021-00409-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
Collapse
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia.
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia.
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Habeebat Adekilekun Oyewusi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| |
Collapse
|
11
|
Kutawa AB, Ahmad K, Ali A, Hussein MZ, Abdul Wahab MA, Adamu A, Ismaila AA, Gunasena MT, Rahman MZ, Hossain MI. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. BIOLOGY 2021; 10:881. [PMID: 34571758 PMCID: PMC8465907 DOI: 10.3390/biology10090881] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022]
Abstract
Approximately 15-18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70-80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications.
Collapse
Affiliation(s)
- Abdulaziz Bashir Kutawa
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Biological Sciences, Faculty of Life Science, Federal University Dutsin-Ma, Dutsin-ma P.M.B 5001, Nigeria
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Sustainable Agronomy and Crop Protection, Institute of Plantation Studies (IKP), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Mohd Zobir Hussein
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Aswad Abdul Wahab
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
| | - Abdullahi Adamu
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Biological Sciences, Faculty of Science, Sokoto State University, Birnin Kebbi Road, Sokoto P.M.B 2134, Nigeria
| | - Abubakar A. Ismaila
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Integrated Science, School of Secondary Education (Science), Federal College of Education (Technical), Bichi P.M.B 3473, Nigeria
| | - Mahesh Tiran Gunasena
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Grain Legume and Oil Crop Research and Development Centre, Angunakolapelessa 82220, Sri Lanka
| | - Muhammad Ziaur Rahman
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Plant Pathology Division, Regional Agricultural Research Station (RARS), Bangladesh Agricultural Research Institute (BARI), Barishal 8211, Bangladesh
| | - Md Imam Hossain
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
| |
Collapse
|
12
|
Ji W, Ji X. Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species-A Potentially Abundant Renewable Resource. Molecules 2021; 26:molecules26175244. [PMID: 34500678 PMCID: PMC8433728 DOI: 10.3390/molecules26175244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Pinaceae plants are widely distributed in the world, and the resources of pine leaves are abundant. In the extensive literature concerning Pinus species, there is much data on the composition and the content of essential oil of leaves. Still, a detailed comparative analysis of volatile terpenes and terpenoids between different species is missing. In this paper, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry was used to determine the volatile terpenes and terpenoids of typical Pinus species in China. A total of 46 volatile terpenes and terpenoids were identified, and 12 common compounds were found, which exhibited a great diversity in the leaves of Pinus species. According to the structures and properties of the compounds, all those compounds can be classified into four categories, namely monoterpenes, oxygenated terpenes, terpene esters, and sesquiterpenes. The results of principal component analysis and cluster analysis showed that the leaves of the six Pinus species could be divided into two groups. The species and contents of volatile terpenes and terpenoids in the leaves were quite different. The results not only provide a reference for the utilization of pine leaves resource, but also bring a broader vision on the biodiversity.
Collapse
Affiliation(s)
- Wensu Ji
- Ordnance Non-Commissioned Officers School, Army Engineering University of PLA, Wuhan 430075, China;
| | - Xiaoyue Ji
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| |
Collapse
|