1
|
Jabbari P, Yazdanpanah O, Benjamin DJ, Rezazadeh Kalebasty A. The Role of Ayurveda in Prostate Cancer Management. Integr Cancer Ther 2025; 24:15347354251330906. [PMID: 40156363 PMCID: PMC11954515 DOI: 10.1177/15347354251330906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
Ayurveda is commonly utilized in the treatment of medical ailments but has yet to gain traction in incorporation into allopathic medicine. Prostate cancer is the most common cancer among men and presents a significant public health burden across the globe. Despite advancements in the management of advanced prostate cancer including androgen deprivation therapy and novel hormonal therapies, men may eventually develop resistance to hormonal therapy. As such, there is an urgent need for novel therapeutic options in treating this malignancy. This review examines the pre-clinical evidence for Ayurveda medicinal plants such as Withania somnifera, Glycyrrhiza spp, Momordica spp, Boswellia, and Bacopa monnieri and their potential application in managing prostate cancer. Several in-vitro and pre-clinical studies suggest potentials for these plants or their derivatives in preventing or treating prostate cancers. Despite strong evidence of efficacy of these plants to potentially improve the outcome of prostate cancer, clinical trials are required to evaluate which plants may be most efficacious and to determine effective dosing strategies, as well as the use of ayurvedic plants as standalone therapies or in combination with conventional prostate cancer treatments.
Collapse
|
2
|
Ding M, Han R, Xie Y, Wei Z, Xue S, Zhang F, Cao Z. Plumbagin, a novel TRPV2 inhibitor, ameliorates microglia activation and brain injury in a middle cerebral artery occlusion/reperfusion mouse model. Br J Pharmacol 2024. [PMID: 39363399 DOI: 10.1111/bph.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable non-selective cation channel. Despite the significant roles of TRPV2 in immunological response, cancer progression and cardiac development, pharmacological probes of TRPV2 remain to be identified. We aimed to discover TRPV2 inhibitors and to elucidate their molecular mechanism of action. EXPERIMENTAL APPROACH Fluorescence-based Ca2+ assay in HEK-293 cells expressing murine TRPV2 was used to identify plumbagin as a novel TRPV2 inhibitor. Patch-clamp, in silico docking and site-directed mutagenesis were applied to investigate the molecular mechanisms critical for plumbagin interaction. ELISA and qPCR were used to assess nitric oxide release and mRNA levels of inflammatory mediators, respectively. si-RNA interference was used to knock down TRPV2 expression, which was validated by western blotting. Neurological and histological analyses were used to examine brain injury of mice following middle cerebral artery occlusion/reperfusion (MCAO/R). KEY RESULTS Plumbagin is a potent TRPV2 negative allosteric modulator with an IC50 value of 0.85 μM, exhibiting >14-fold selectivity over TRPV1, TRPV3 and TRPV4. Plumbagin suppresses TRPV2 activity by decreasing the channel open probability without affecting the unitary conductance. Moreover, plumbagin binds to an extracellular pocket formed by the pore helix and flexible loop between transmembrane helices S5 and S6 of TRPV2. Plumbagin effectively suppresses LPS-induced inflammation of BV-2 microglia and ameliorates brain injury of MCAO/R mice. CONCLUSION AND IMPLICATIONS Plumbagin is a novel pharmacological probe to study TRPV2 pathophysiology. TRPV2 is a novel molecular target for the treatment of neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Han
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Xie
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziyi Wei
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Petrocelli G, Marrazzo P, Bonsi L, Facchin F, Alviano F, Canaider S. Plumbagin, a Natural Compound with Several Biological Effects and Anti-Inflammatory Properties. Life (Basel) 2023; 13:1303. [PMID: 37374085 DOI: 10.3390/life13061303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches. Among this class of compounds, Plumbagin, a plant-derived product, has shown interesting counteracting effects in many inflammation models. However, scientific knowledge about the beneficial effect of Plumbagin should be comprehensively reported before candidating this natural molecule into a future drug against specific human diseases. In this review, the most relevant mechanisms in which Plumbagin plays a role in the process of inflammation were summarized. Other relevant bioactive effects were reviewed to provide a complete and compact scenario of Plumbagin's potential therapeutic significance.
Collapse
Affiliation(s)
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, BO, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| |
Collapse
|
4
|
Interleukin-35 inhibits angiogenesis through T helper17/ Interleukin-17 related signaling pathways in IL-1β-stimulated SW1353 cells. Mol Immunol 2022; 147:71-80. [DOI: 10.1016/j.molimm.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
|
5
|
Yue L, Jiang N, Wu A, Qiu W, Shen X, Qin D, Li H, Lin J, Liang S, Wu J. Plumbagin can potently enhance the activity of xanthine oxidase: in vitro, in vivo and in silico studies. BMC Pharmacol Toxicol 2021; 22:45. [PMID: 34274011 PMCID: PMC8286619 DOI: 10.1186/s40360-021-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Abnormally elevated xanthine oxidase (XO) activity has been verified to cause various pathological processes, such as gout, oxidative stress injury and metabolic syndrome. Thus, XO activators may exhibit above potential toxicological properties. Plumbagin (PLB) is an important active compound in traditional Chinese medicine (TCM), while its obvious toxic effects have been reported, including diarrhea, skin rashes and hepatic toxicity. However, the potential toxicity associated with enhancement of XO activity has not been fully illuminated so far. METHODS The present study investigated the effect of PLB on XO activity by culturing mouse liver S9 (MLS9), human liver S9 (HLS9), XO monoenzyme system with PLB and xanthine. Then, the molecular docking and biolayer interferometry analysis were adopted to study the binding properties between PLB and XO. Finally, the in vivo acceleration effect also investigated by injected intraperitoneally PLB to KM mice for 3 days. RESULTS PLB could obviously accelerate xanthine oxidation in the above three incubation systems. Both the Vmax values and intrinsic clearance values (CLint, Vmax/Km) of XO in the three incubation systems increased along with elevated PLB concentration. In addition, the molecular docking study and label-free biolayer interferometry assay displayed that PLB was well bound to XO. In addition, the in vivo results showed that PLB (2 and 10 mg/kg) significantly increased serum uric acid levels and enhanced serum XO activity in mice. CONCLUSION In summary, this study outlines a potential source of toxicity for PLB due to the powerful enhancement of XO activity, which may provide the crucial reminding for the PLB-containing preparation development and clinical application.
Collapse
Affiliation(s)
- Liang Yue
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, 646000, Sichuan, China
| | - Wenqiao Qiu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Shen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, 646000, Sichuan, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Sicheng Liang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Wang E, Liu J, Zhao C, Xu Z, Murugan K, Wang L. Reproductive toxicity of quantum dots on gonads of the fresh water crab Sinopotamon henanense. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108968. [PMID: 33418082 DOI: 10.1016/j.cbpc.2020.108968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Since nano-quantum dots (QDs) are increasingly used as fluorescent dyes in biomedical sciences, the possibility of QDs contaminating aquatic environments is generally increasing. There is concern about potential toxicity of QDs. However, their risks in the aquatic environment are not entirely understood. In this study, the freshwater crab Sinopotamon henanense was exposed to cadmium telluride (CdTe) QDs by intraperitoneal injection to detect the reproductive toxicity of QDs (1/32, 1/16 and 1/4 LD50; Crab was exposed for 1, 3, 5, and 7 days). After CdTe QD exposure, no significant effect was detected on the body weight and gonadosomatic index. Additionally, morphological observations showed tissue vacuolation in the testis, and inflammatory cell infiltration in the ovary. The submicroscopic structure showed that exposure to CdTe QDs damaged the organelles and cell structures of the gonads of S. henanense. Among the adverse effects, pathological changes in the nuclear membrane, mitochondria and lysosomes were particularly significant. Antioxidant enzymes responded differently to different doses of QDs. The 0.5-mg/kg dose induced superoxide dismutase activity in the testes. And in the 1-mg/kg and 4-mg/kg dose QD exposure test, the testis responded by activating glutathione peroxidase and inducing reduced glutathione and overconsuming glutathione peroxidase. Respectively, the ovaries responded by overconsuming superoxide dismutase and glutathione peroxidase and reduced glutathione. Thus, we conclude that the gonads of S. henanense were injured by CdTe QD, and male are better indicators of the toxicity of QDs than female crabs according to greater alterations in tissue structure and antioxidant enzyme in the analyses.
Collapse
Affiliation(s)
- Ermeng Wang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jing Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Chenyun Zhao
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zihan Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Kadarkarai Murugan
- Department of Zoology, School of Life Sciences, Bharathiar University, India
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
7
|
Siriyong T, Phungtammasan S, Jansorn S, Chonsongkram N, Chanwanitsakul S, Subhadhirasakul S, Voravuthikunchai SP. Traditional Thai herbal medicine as an alternative treatment for refractory chronic eczema. Explore (NY) 2020; 16:242-249. [DOI: 10.1016/j.explore.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
|
8
|
Gupta AC, Mohanty S, Saxena A, Maurya AK, Bawankule DU. Plumbagin, a vitamin K3 analogue ameliorate malaria pathogenesis by inhibiting oxidative stress and inflammation. Inflammopharmacology 2018; 26:983-991. [PMID: 29569058 DOI: 10.1007/s10787-018-0465-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.
Collapse
Affiliation(s)
- Amit Chand Gupta
- In-Vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Shilpa Mohanty
- In-Vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Archana Saxena
- In-Vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Anil Kumar Maurya
- In-Vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Dnyaneshwar U Bawankule
- In-Vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India.
| |
Collapse
|
9
|
Hepatoprotective Effect of Microemulsion-Based System of Prunus Cerasus Kernel Extract on CCL4-induced Liver Damage in Mice. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.14282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Sumsakul W, Plengsuriyakarn T, Na-Bangchang K. Pharmacokinetics, toxicity, and cytochrome P450 modulatory activity of plumbagin. BMC Pharmacol Toxicol 2016; 17:50. [PMID: 27839515 PMCID: PMC5108082 DOI: 10.1186/s40360-016-0094-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background The antimalarial activity of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a naturally occurring naphthoquinone widely distributed in the Plumbaginaceae family has previously been demonstrated in vitro (good activity) and in vivo (weak activity). The aim of the study was to investigate the pharmacokinetic profile following a single oral dosing to explain inconsistency of results of the in vitro and in vivo antimalarial activities. In addition, toxicity profiles and potential of modulation of cytochrome P450 enzymes (CYP1A2 and CYP3A11) were also investigated. Methods The pharmacokinetics and toxicity of plumbagin were investigated in rats. The propensity of plumbagin to modulate the mRNA expression and activities of the two inducible forms of hepatic drug metabolizing enzyme cytochrome P450 (CYP450), i.e., CYP1A2 and CYP3A11, was investigated using microsomes prepared from mouse livers. Results Acute and subacute toxicity tests indicate low toxicity of plumbagin with maximum tolerated doses of 150 (single oral dose) and 25 (daily doses for 28 days) mg/kg body weight, respectively. The pharmacokinetic profile of plumbagin following a single oral dose of 100 mg/kg body weight suggests that delayed absorption and short residence time (median values of time to maximal concentration and elimination half-life = 9.63 and 5.0 h, respectively) in plasma. Plumbagin did not modulate mRNA expression and activities of CYP1A2 and CYP3A11. Conclusions Plumbagin was well tolerated following oral dose administration in rats. Pharmacokinetic property of this compound may be a limiting factor that explains the weak antimalarial activity of plumbagin observed in animal models. Potential metabolic interaction with co-administered drugs that are metabolized by CYP1A2 or CYP3A11 are unlikely.
Collapse
Affiliation(s)
- Wiriyaporn Sumsakul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand. .,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand.
| |
Collapse
|
11
|
Identification of CETP as a molecular target for estrogen positive breast cancer cell death by cholesterol depleting agents. Genes Cancer 2016; 7:309-322. [PMID: 28050232 PMCID: PMC5115172 DOI: 10.18632/genesandcancer.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cholesterol and its metabolites act as steroid hormone precursors, which promote estrogen receptor positive (ER+) breast cancer (BC) progression. Development of cholesterol targeting anticancer drugs has been hindered due to the lack of knowledge of viable molecular targets. Till now, Cholesteryl ester transfer protein (CETP) has been envisaged as a feasible molecular target in atherosclerosis, but for the first time, we show that CETP contributes to BC cell survival when challenged with cholesterol depleting agents. We show that MCF-7 CETP knockout BC cells pose less resistance towards cytotoxic compounds (Tamoxifen and Acetyl Plumbagin (AP)), and were more susceptible to intrinsic apoptosis. Analysis of differentially expressed genes using Ingenuity Pathway Analysis (IPA), in vivo tumor inhibition, and in vitro phenotypic responses to AP revealed a unique CETP-centric cholesterol pathway involved in sensitizing ER+ BC cells to intrinsic mitochondrial apoptosis. Furthermore, analysis of cell line, tissue and patient data available in publicly available databases linked elevated CETP expression to cancer, cancer relapse and overall poor survival. Overall, our findings highlight CETP as a pharmacologically relevant and unexploited cellular target in BC. The work also highlights AP as a promising chemical entity for preclinical investigations as a cholesterol depleting anticancer therapeutic agent.
Collapse
|
12
|
Pei T, Zheng C, Huang C, Chen X, Guo Z, Fu Y, Liu J, Wang Y. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:272-287. [PMID: 27265513 DOI: 10.1016/j.jep.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vitiligo is a depigmentation disorder, which results in substantial cosmetic disfigurement and poses a detriment to patients' physical as well as mental. Now the molecular pathogenesis of vitiligo still remains unclear, which leads to a daunting challenge for vitiligo therapy in modern medicine. Herbal medicines, characterized by multi-compound and multi-target, have long been shown effective in treating vitiligo, but their molecular mechanisms of action also remain ambiguous. MATERIALS AND METHODS Here we proposed a systems pharmacology approach using a clinically effective herb formula as a tool to detect the molecular pathogenesis of vitiligo. This study provided an integrative analysis of active chemicals, drug targets and interacting pathways of the Uygur medicine Qubaibabuqi formula for curing Vitiligo. RESULTS The results show that 56 active ingredients of Qubaibabuqi interacting with 83 therapeutic proteins were identified. And Qubaibabuqi probably participate in immunomodulation, neuromodulation and keratinocytes apoptosis inhibition in treatment of vitiligo by a synergistic/cooperative way. CONCLUSIONS The drug-target network-based analysis and pathway-based analysis can provide a new approach for understanding the pathogenesis of vitiligo and uncovering the molecular mechanisms of Qubaibabuqi, which will also facilitate the application of traditional Chinese herbs in modern medicine.
Collapse
Affiliation(s)
- Tianli Pei
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, China
| | - Chunli Zheng
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chao Huang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xuetong Chen
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zihu Guo
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yingxue Fu
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, China
| | - Yonghua Wang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|