1
|
Han CS, Won SY, Park SH, Kim YC. Identification of the Highly Polymorphic Prion Protein Gene ( PRNP) in Frogs (Rana dybowskii). Animals (Basel) 2025; 15:220. [PMID: 39858220 PMCID: PMC11758322 DOI: 10.3390/ani15020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPScs, encoded by the endogenous prion protein gene (PRNP). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the PRNP gene have not been investigated. In this study, genetic polymorphisms in the PRNP gene were investigated in 194 Dybowski's frogs using polymerase chain reaction (PCR) and amplicon sequencing. We carried out in silico analyses to predict functional alterations according to non-synonymous single nucleotide polymorphisms (SNPs) using PolyPhen-2, PANTHER, SIFT, and MutPred2. We used ClustalW2 and MEGA X to compare frog PRNP and PrP sequences with those of prion-related animals. To evaluate the impact of the SNPs on protein aggregation propensity and 3D structure, we utilized AMYCO and ColabFold. We identified 34 novel genetic polymorphisms including 6 non-synonymous SNPs in the frog PRNP gene. The hydrogen bond length varied at codons 143 and 207 according to non-synonymous SNPs, even if the electrostatic potential was not changed. In silico analysis predicted S143N to increase the aggregation propensity, and W6L, C8Y, R211W, and L241F had damaging effects on frog PrPs. The PRNP and PrP sequences of frogs showed low homology with those of prion-related mammals. To the best of our knowledge, this study was the first to discover genetic polymorphisms in the PRNP gene in amphibians.
Collapse
Affiliation(s)
| | | | | | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea; (C.-S.H.); (S.-Y.W.); (S.-H.P.)
| |
Collapse
|
2
|
Lestari TD, Khairullah AR, Utama S, Mulyati S, Hernawati T, Damayanti R, Rimayanti R, Wardhani BWK, Fauzia KA, Moses IB, Ahmad RZ, Wibowo S, Fauziah I, Kurniasih DAA, Baihaqi ZA, Wasito W, Kusala MKJ, Lisnanti1 EF. Bovine spongiform encephalopathy: A review of current knowledge and challenges. Open Vet J 2025; 15:54-68. [PMID: 40092198 PMCID: PMC11910271 DOI: 10.5455/ovj.2024.v15.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Bovine spongiform encephalopathy (BSE), also referred to as mad cow disease, is a chronic degenerative disease that affects the central nervous system. BSE is caused by a misfolded isoform of the prion protein, a widely expressed glycoprotein. The illness is referred to as Variant Creutzfeldt-Jakob disease (vCJD) in humans. In the United Kingdom (UK), BSE in cattle was first discovered in 1986. Based on epidemiological data, it appears that animal feed containing tainted meat and bone meal (MBM) as a source of meat protein is the common cause of the BSE outbreak in the UK. Clinical indicators in cows include irregular body posture, incoordination, difficulty in standing, weight loss, and temperamental changes, including agitation and hostility. Feeding livestock MBM obtained from BSE-infected livestock contaminated with BSE prions is the only known risk factor for BSE development. Strong evidence linking BSE to human transmission and a variant type of CJD has brought the disease to the attention of many countries. Screening living animals for BSE is challenging. In most cases, suspected animals are usually killed. Typically, the central nervous system is examined for prions to diagnose this illness. There is currently no robust treatment for BSE. The prevention of BSE can be achieved by avoiding the feeding of susceptible animals with ruminant tissues that might carry prions.
Collapse
Affiliation(s)
- Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ertika Fitri Lisnanti1
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Lestari TD, Khairullah AR, Utama S, Mulyati S, Hernawati T, Damayanti R, Rimayanti R, Wardhani BWK, Fauzia KA, Moses IB, Ahmad RZ, Wibowo S, Fauziah I, Kurniasih DAA, Baihaqi ZA, Wasito W, Kusala MKJ, Lisnanti1 EF. Bovine spongiform encephalopathy: A review of current knowledge and challenges. Open Vet J 2025; 15:54-68. [PMID: 40092198 PMCID: PMC11910271 DOI: 10.5455/ovj.2025.v15.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 04/11/2025] Open
Abstract
Bovine spongiform encephalopathy (BSE), also referred to as mad cow disease, is a chronic degenerative disease that affects the central nervous system. BSE is caused by a misfolded isoform of the prion protein, a widely expressed glycoprotein. The illness is referred to as Variant Creutzfeldt-Jakob disease (vCJD) in humans. In the United Kingdom (UK), BSE in cattle was first discovered in 1986. Based on epidemiological data, it appears that animal feed containing tainted meat and bone meal (MBM) as a source of meat protein is the common cause of the BSE outbreak in the UK. Clinical indicators in cows include irregular body posture, incoordination, difficulty in standing, weight loss, and temperamental changes, including agitation and hostility. Feeding livestock MBM obtained from BSE-infected livestock contaminated with BSE prions is the only known risk factor for BSE development. Strong evidence linking BSE to human transmission and a variant type of CJD has brought the disease to the attention of many countries. Screening living animals for BSE is challenging. In most cases, suspected animals are usually killed. Typically, the central nervous system is examined for prions to diagnose this illness. There is currently no robust treatment for BSE. The prevention of BSE can be achieved by avoiding the feeding of susceptible animals with ruminant tissues that might carry prions.
Collapse
Affiliation(s)
- Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ertika Fitri Lisnanti1
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Danchin A. Artificial intelligence-based prediction of pathogen emergence and evolution in the world of synthetic biology. Microb Biotechnol 2024; 17:e70014. [PMID: 39364593 PMCID: PMC11450380 DOI: 10.1111/1751-7915.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024] Open
Abstract
The emergence of new techniques in both microbial biotechnology and artificial intelligence (AI) is opening up a completely new field for monitoring and sometimes even controlling the evolution of pathogens. However, the now famous generative AI extracts and reorganizes prior knowledge from large datasets, making it poorly suited to making predictions in an unreliable future. In contrast, an unfamiliar perspective can help us identify key issues related to the emergence of new technologies, such as those arising from synthetic biology, whilst revisiting old views of AI or including generative AI as a generator of abduction as a resource. This could enable us to identify dangerous situations that are bound to emerge in the not-too-distant future, and prepare ourselves to anticipate when and where they will occur. Here, we emphasize the fact that amongst the many causes of pathogen outbreaks, often driven by the explosion of the human population, laboratory accidents are a major cause of epidemics. This review, limited to animal pathogens, concludes with a discussion of potential epidemic origins based on unusual organisms or associations of organisms that have rarely been highlighted or studied.
Collapse
Affiliation(s)
- Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of MedicineHong Kong UniversityPokfulamSAR Hong KongChina
| |
Collapse
|
5
|
Mohamed F, Aboulqassim A, Sharif M, Belgasem S, Omar A, Saeed N. Immunohistochemical study of scrapie in naturally affected sheep in the east of Libya. Open Vet J 2024; 14:1843-1849. [PMID: 39308714 PMCID: PMC11415906 DOI: 10.5455/ovj.2024.v14.i8.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 09/25/2024] Open
Abstract
Background The most common natural prion disease that primarily affects sheep and goats is scrapie. It belongs to a group of disorders known as transmissible spongiform encephalopathies, which impact both humans and animals. Aim The research is aimed to examine and confirm the presence of scrapie in Libya using immunohistochemistry (IHC) techniques. Methods Brain samples were collected from thirty-three sheep older than two years of age showing clinical signs resembling to scrapie during the period between 2018 and 2023, regardless of race or gender. Three animals, six months old, healthy, and without any symptoms, were used as negative controls. Different parts of the brain, including the obex and cerebellum, were taken from each case. The IHC technique used in this study involved staining with monoclonal antibody L42 and DAB (3,3'-diaminobenzidine) as a chromogenic substrate. Results The IHC examination showed the expression of prion proteins in brain tissue in twenty-three samples. The staining intensity was markedly observed in the neuronal cell bodies and around blood vessels. Conclusion The findings of this study provide evidence that scrapie exists in Libya.
Collapse
Affiliation(s)
- Fawzia Mohamed
- Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Ayiman Aboulqassim
- Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Monier Sharif
- Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | | | | | - Nagi Saeed
- Agricultural Research Center, Al-Bayda, Libya
| |
Collapse
|
6
|
Wright EA, Reddock MB, Roberts EK, Legesse YW, Perry G, Bradley RD. Genetic characterization of the prion protein gene in camels ( Camelus) with comments on the evolutionary history of prion disease in Cetartiodactyla. PeerJ 2024; 12:e17552. [PMID: 38948234 PMCID: PMC11214740 DOI: 10.7717/peerj.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a fatal neurogenerative disease that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and several others as well as the recently described camel prion disease (CPD). CPD originally was documented in 3.1% of camels examined during an antemortem slaughterhouse inspection in the Ouargla region of Algeria. Of three individuals confirmed for CPD, two were sequenced for the exon 3 of the prion protein gene (PRNP) and were identical to sequences previously reported for Camelus dromedarius. Given that other TSEs, such as BSE, are known to be capable of cross-species transmission and that there is household consumption of meat and milk from Camelus, regulations to ensure camel and human health should be a One Health priority in exporting countries. Although the interspecies transmissibility of CPD currently is unknown, genotypic characterization of Camelus PRNP may be used for predictability of predisposition and potential susceptibility to CPD. Herein, eight breeds of dromedary camels from a previous genetic (mitochondrial DNA and microsatellites) and morphological study were genotyped for PRNP and compared to genotypes from CPD-positive Algerian camels. Sequence data from PRNP indicated that Ethiopian camels possessed 100% sequence identity to CPD-positive camels from Algeria. In addition, the camel PRNP genotype is unique compared to other members of the Orders Cetartiodactyla and Perissodactyla and provides an in-depth phylogenetic analysis of families within Cetartiodactyla and Perissodactyla that was used to infer the evolutionary history of the PRNP gene.
Collapse
Affiliation(s)
- Emily A. Wright
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, United States of America
| | - Madison B. Reddock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
- Climate Center, Texas Tech University, Lubbock, TX, United States of America
| | - Yoseph W. Legesse
- School of Animal and Range Sciences, Haramaya University, Dire Dawa, Ethiopia
- Institute of Pastoral and Agropastoral Development Studies, Jigjiga University, Jigjiga, Ethiopia
| | - Gad Perry
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, United States of America
| | - Robert D. Bradley
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, United States of America
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| |
Collapse
|
7
|
Memon S, Wang Z, Zou WQ, Kim YC, Jeong BH. First Report of Single Nucleotide Polymorphisms (SNPs) of the Leporine Shadow of Prion Protein Gene ( SPRN) and Absence of Nonsynonymous SNPs in the Open Reading Frame (ORF) in Rabbits. Animals (Basel) 2024; 14:1807. [PMID: 38929426 PMCID: PMC11200826 DOI: 10.3390/ani14121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Prion disorders are fatal infectious diseases that are caused by a buildup of pathogenic prion protein (PrPSc) in susceptible mammals. According to new findings, the shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) is associated with prion protein (PrP), promoting the progression of prion diseases. Although genetic polymorphisms in SPRN are associated with susceptibility to several prion diseases, genetic polymorphisms in the rabbit SPRN gene have not been investigated in depth. We discovered two novel single nucleotide polymorphisms (SNPs) in the leporine SPRN gene on chromosome 18 and found strong linkage disequilibrium (LD) between them. Additionally, strong LD was not found between the polymorphisms of PRNP and SPRN genes in rabbits. Furthermore, nonsynonymous SNPs that alter the amino acid sequences within the open reading frame (ORF) of SPRN have been observed in prion disease-susceptible animals, but this is the first report in rabbits. As far as we are aware, this study represents the first examination of the genetic features of the rabbit SPRN gene.
Collapse
Affiliation(s)
- Sameeullah Memon
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Z.W.); (W.-Q.Z.)
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Z.W.); (W.-Q.Z.)
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Z.W.); (W.-Q.Z.)
| |
Collapse
|
8
|
Orrú CD, Groveman BR, Hughson AG, Barrio T, Isiofia K, Race B, Ferreira NC, Gambetti P, Schneider DA, Masujin K, Miyazawa K, Ghetti B, Zanusso G, Caughey B. Sensitive detection of pathological seeds of α-synuclein, tau and prion protein on solid surfaces. PLoS Pathog 2024; 20:e1012175. [PMID: 38640117 PMCID: PMC11062561 DOI: 10.1371/journal.ppat.1012175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/01/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024] Open
Abstract
Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.
Collapse
Affiliation(s)
- Christina D. Orrú
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bradley R. Groveman
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tomás Barrio
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, France
| | - Kachi Isiofia
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Natalia C. Ferreira
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David A. Schneider
- Animal Disease Research Unit, USDA-ARS, Pullman, Washington, United States of America
| | - Kentaro Masujin
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kohtaro Miyazawa
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
9
|
Hopp P, Rolandsen CM, Korpenfelt SL, Våge J, Sörén K, Solberg EJ, Averhed G, Pusenius J, Rosendal T, Ericsson G, Bakka HC, Mysterud A, Gavier-Widén D, Hautaniemi M, Ågren E, Isomursu M, Madslien K, Benestad SL, Nöremark M. Sporadic cases of chronic wasting disease in old moose - an epidemiological study. J Gen Virol 2024; 105. [PMID: 38265285 DOI: 10.1099/jgv.0.001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases comprise diseases with different levels of contagiousness under natural conditions. The hypothesis has been raised that the chronic wasting disease (CWD) cases detected in Nordic moose (Alces alces) may be less contagious, or not contagious between live animals under field conditions. This study aims to investigate the epidemiology of CWD cases detected in moose in Norway, Sweden and Finland using surveillance data from 2016 to 2022.In total, 18 CWD cases were detected in Nordic moose. All moose were positive for prion (PrPres) detection in the brain, but negative in lymph nodes, all were old (mean 16 years; range 12-20) and all except one, were female. Age appeared to be a strong risk factor, and the sex difference may be explained by few males reaching high age due to hunting targeting calves, yearlings and males.The cases were geographically scattered, distributed over 15 municipalities. However, three cases were detected in each of two areas, Selbu in Norway and Arjeplog-Arvidsjaur in Sweden. A Monte Carlo simulation approach was applied to investigate the likelihood of such clustering occurring by chance, given the assumption of a non-contagious disease. The empirical P-value for obtaining three cases in one Norwegian municipality was less than 0.05, indicating clustering. However, the moose in Selbu were affected by different CWD strains, and over a 6 year period with intensive surveillance, the apparent prevalence decreased, which would not be expected for an ongoing outbreak of CWD. Likewise, the three cases in Arjeplog-Arvidsjaur could also indicate clustering, but management practices promotes a larger proportion of old females and the detection of the first CWD case contributed to increased awareness and sampling.The results of our study show that the CWD cases detected so far in Nordic moose have a different epidemiology compared to CWD cases reported from North America and in Norwegian reindeer (Rangifer tarandus tarandus). The results support the hypothesis that these cases are less contagious or not contagious between live animals under field conditions. To enable differentiation from other types of CWD, we support the use of sporadic CWD (sCWD) among the names already in use.
Collapse
Affiliation(s)
- Petter Hopp
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway
| | - Christer Moe Rolandsen
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway
| | | | - Jørn Våge
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway
| | - Kaisa Sörén
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erling Johan Solberg
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway
| | | | - Jyrki Pusenius
- Natural Resources Institute Finland (LUKE), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | | | - Göran Ericsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Haakon Christopher Bakka
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway
- Present address: Kontali, Fred Olsens gate 1, NO-0152 Oslo, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | | | | | - Erik Ågren
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Knut Madslien
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway
| | | | | |
Collapse
|
10
|
Zhouravleva GA, Bondarev SA, Trubitsina NP. How Big Is the Yeast Prion Universe? Int J Mol Sci 2023; 24:11651. [PMID: 37511408 PMCID: PMC10380529 DOI: 10.3390/ijms241411651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The number of yeast prions and prion-like proteins described since 1994 has grown from two to nearly twenty. If in the early years most scientists working with the classic mammalian prion, PrPSc, were skeptical about the possibility of using the term prion to refer to yeast cytoplasmic elements with unusual properties, it is now clear that prion-like phenomena are widespread and that yeast can serve as a convenient model for studying them. Here we give a brief overview of the yeast prions discovered so far and focus our attention to the various approaches used to identify them. The prospects for the discovery of new yeast prions are also discussed.
Collapse
Affiliation(s)
- Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nina P Trubitsina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
11
|
Santaniello A, Perruolo G, Cristiano S, Agognon AL, Cabaro S, Amato A, Dipineto L, Borrelli L, Formisano P, Fioretti A, Oriente F. SARS-CoV-2 Affects Both Humans and Animals: What Is the Potential Transmission Risk? A Literature Review. Microorganisms 2023; 11:microorganisms11020514. [PMID: 36838479 PMCID: PMC9959838 DOI: 10.3390/microorganisms11020514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In March 2020, the World Health Organization Department declared the coronavirus (COVID-19) outbreak a global pandemic, as a consequence of its rapid spread on all continents. The COVID-19 pandemic has been not only a health emergency but also a serious general problem as fear of contagion and severe restrictions put economic and social activity on hold in many countries. Considering the close link between human and animal health, COVID-19 might infect wild and companion animals, and spawn dangerous viral mutants that could jump back and pose an ulterior threat to us. The purpose of this review is to provide an overview of the pandemic, with a particular focus on the clinical manifestations in humans and animals, the different diagnosis methods, the potential transmission risks, and their potential direct impact on the human-animal relationship.
Collapse
Affiliation(s)
- Antonio Santaniello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cristiano
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Ayewa Lawoe Agognon
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessia Amato
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Francesco Oriente
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
12
|
Heumüller SE, Hornberger AC, Hebestreit AS, Hossinger A, Vorberg IM. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062909. [PMID: 35328330 PMCID: PMC8949484 DOI: 10.3390/ijms23062909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.
Collapse
Affiliation(s)
- Stefanie-Elisabeth Heumüller
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Annika C. Hornberger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Alina S. Hebestreit
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - André Hossinger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Ina M. Vorberg
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|