1
|
Yong ZL, Chen YT, Chan C, Lee GC. Enzymatic Production of Trehalose and Trehalulose by Immobilized Thermostable Trehalose Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39364532 DOI: 10.1021/acs.jafc.4c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Trehalose, a versatile disaccharide renowned for its unique physical and chemical properties, finds extensive application in the food, pharmaceutical, and cosmetic industries. While conventional extraction methods face challenges, enzymatic conversion offers a promising avenue for the industrial production of trehalose. This study delves into a novel synthetic approach utilizing a recombinant enzyme, merging the thermostable trehalose synthase domain from Thermus thermophiles with a cellulose binding domain. Immobilization of this enzyme on cellulose matrices enhances stability and facilitates product purification, opening avenues for efficient enzymatic synthesis. Notably, the engineered enzyme demonstrates additional activity, converting sucrose into trehalulose. This dual functionality, combined with immobilization strategies, holds immense potential for scalable and cost-effective production of trehalose and trehalulose, offering promising prospects in various industrial and biomedical applications.
Collapse
Affiliation(s)
- Zi-Ling Yong
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Ting Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Ching Chan
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guan-Chiun Lee
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
- College of Industry Academia Innovation, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
2
|
Chen A, Tapia H, Goddard JM, Gibney PA. Trehalose and its applications in the food industry. Compr Rev Food Sci Food Saf 2022; 21:5004-5037. [PMID: 36201393 DOI: 10.1111/1541-4337.13048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Trehalose is a nonreducing disaccharide composed of two glucose molecules linked by α, α-1,1-glycosidic bond. It is present in a wide variety of organisms, including bacteria, fungi, insects, plants, and invertebrate animals. Trehalose has distinct physical and chemical properties that have been investigated for their biological importance in a range of prokaryotic and eukaryotic species. Emerging research on trehalose has identified untapped opportunities for its application in the food, medical, pharmaceutical, and cosmetics industries. This review summarizes the chemical and biological properties of trehalose, its occurrence and metabolism in living organisms, its protective role in molecule stabilization, and natural and commercial production methods. Utilization of trehalose in the food industry, in particular how it stabilizes protein, fat, carbohydrate, and volatile compounds, is also discussed in depth. Challenges and opportunities of its application in specific applications (e.g., diagnostics, bioprocessing, ingredient technology) are described. We conclude with a discussion on the potential of leveraging the unique molecular properties of trehalose in molecular stabilization for improving the safety, quality, and sustainability of our food systems.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Hugo Tapia
- Biology Program, California State University - Channel Islands, Camarillo, California, USA
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Yasuda A, Miyata M, Sano O, Sogo T, Kishishita S, Yamamoto T, Aga H, Yamamoto K. A novel dextrin produced by the enzymatic reaction of 6-α-glucosyltransferase. I. The effect of nonreducing ends of glucose with by α-1,6 bonds on the retrogradation inhibition of high molecular weight dextrin. Biosci Biotechnol Biochem 2021; 85:1737-1745. [DOI: 10.1093/bbb/zbab062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022]
Abstract
ABSTRACT
We prepared a high-molecular-weight modified dextrin (MWS-1000) from a partial hydrolysate of waxy corn starch with a weight average molecular weight of 1 × 106 (WS-1000) using Paenibacillus alginolyticus PP710 α-glucosyltransferase. The gel permeation chromatography showed that the weight average molecular weight of MWS-1000 was almost the same as that of WS-1000. The side chain lengths of WS-1000 and MWS-1000 after isomaltodextranase digestion were also shown to be similar to each other by high-performance anion exchange chromatography with pulsed amperometric detection. Since MWS-1000 confirmed the presence of α-1,6 bonds by enzyme digestibility, methylation, and 1H-NMR analyses, it was presumed that the structure of MWS-1000 was based on the introduction of α-1,6 glucosyl residues at the nonreducing ends of the partial hydrolysate of waxy corn starch. Furthermore, the MWS-1000 solution was not retrograded even during refrigerated storage or after repeated freeze–thaw cycles.
Collapse
|
4
|
Sokołowska E, Sadowska A, Sawicka D, Kotulska-Bąblińska I, Car H. A head-to-head comparison review of biological and toxicological studies of isomaltulose, d-tagatose, and trehalose on glycemic control. Crit Rev Food Sci Nutr 2021; 62:5679-5704. [PMID: 33715524 DOI: 10.1080/10408398.2021.1895057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus is the most common metabolic disorder contributing to significant morbidity and mortality in humans. Different preventive and therapeutic agents, as well as various pharmacological strategies or non-pharmacological tools, improve the glycemic profile of diabetic patients. Isomaltulose, d-tagatose, and trehalose are naturally occurring, low glycemic sugars that are not synthesized by humans but widely used in food industries. Various studies have shown that these carbohydrates can regulate glucose metabolism and provide support in maintaining glucose homeostasis in patients with diabetes, but also can improve insulin response, subsequently leading to better control of hyperglycemia. In this review, we discussed the anti-hyperglycemic effects of isomaltulose, D-tagatose, and trehalose, comparing their properties with other known sweeteners, and highlighting their importance for the development of the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Emilia Sokołowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Sekitoh T, Okamoto T, Fujioka A, Yoshioka T, Terui S, Imanaka H, Ishida N, Imamura K. Crystallization characteristics of amorphous trehalose dried from alcohol. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Influence of Trehalose Mouth Rinse on Anaerobic and Aerobic Exercise Performance. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20969594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Trehalose is a disaccharide consisting of 2 glucose units linked in an alpha 1,1-glycosidic bond. Pre-exercise trehalose ingestion enhances exercise performance within 30 minutes. Enhanced performance was hypothesized to be due to a mouth rinse effect. A 3-arm double-blind crossover trial was conducted to test this hypothesis. Ten healthy male collegiate distance runners rinsed their mouths with either trehalose (6% w/v) or maltose (6% w/v) or acesulfame potassium (0.04 mg/mL) for 5 seconds and then performed an exercise assessment composed of 6-second peak power and endurance tests. Trehalose induced the highest mean power output ( P < .01) in peak power tests. In the endurance test, trehalose consistently showed higher mean power output than maltose. The 3 test drinks displayed indistinguishable sweetness and were expected to activate receptors for sweetness (T1R2-T1R3) with the same intensity. Trehalose activates taste receptors T1R1-T1R3, T1R3-T1R3 homodimer, and T1R2-T1R3, whereas sucrose activates only T1R2-T1R3. Therefore, a difference in mouth rinse effect might be due to a specific receptor in the oral cavity that recognizes differences between trehalose and maltose.
Collapse
|
7
|
Fujita A, Kawashima A, Ota H, Watanabe H, Mori T, Nishimoto T, Aga H, Ushio S. A cyclic tetrasaccharide, cycloisomaltotetraose, was enzymatically produced from dextran and its crystal structure was determined. Carbohydr Res 2020; 496:108104. [PMID: 32795710 DOI: 10.1016/j.carres.2020.108104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
Two bacterial strains isolated from soil, namely Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006, were found to produce a novel oligosaccharide. The oligosaccharide was enzymatically produced from dextran using the culture supernatant of Agreia sp. D1110 or M. trichothecenolyticum D2006. LC-MS and NMR analysis identified the novel oligosaccharide as cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→}, which was named cycloisomaltotetraose, and abbreviated as CI4. CI4 was subsequently crystalized and its X-ray crystallographic structure was determined. CI4 crystals were shown to be pentahydrate, with the CI4 molecules in the crystal structure displaying a unique 3D structure, in which two glucosyl residues in the molecule were facing each other. This unique 3D structure was quite different from the 3D structure of known cyclic tetrasaccharides. This is the first report of CI4 molecules and their unique crystal structure.
Collapse
Affiliation(s)
- Akihiro Fujita
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan.
| | - Akira Kawashima
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Hiromi Ota
- Advanced Science Research Center, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hikaru Watanabe
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Tetsuya Mori
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Tomoyuki Nishimoto
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Hajime Aga
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Shimpei Ushio
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| |
Collapse
|
8
|
Suzuki Y, Sato K, Sakuraba K, Akaishi T, Sugiyama K, Suzuki H, Ymawaki K. Pre-exercise Trehalose Ingestion Enhanced Exercise Performance in Male Collegiate Distance Runners. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20933727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A total of 10 male collegiate distance runners participated in a randomized crossover trial. After completing a warm-up, each participant ingested 300 mL of a test drink and performed 2 sets of pedaling for the duration of 10 minutes (tests 1 and 3) and a 30-second sprint test (tests 2 and 4) with 3-minute interval. During the exercise tests, participants were instructed to make a full power output in 30-second sprint tests and to keep the effort equivalent to their own pace in 10 000 m track race without a final push in the 10-minute pedaling phase. The test drinks allocated to the participants were either trehalose (6% w/v), glucose (6% w/v), or water. During the 4 tests, trehalose presented with the highest mean power outputs compared to that of glucose and water. It was statistically significant against water and glucose especially in the first 10 minutes of pedaling (test 1) and the last 30 seconds of sprint tests (test 4). Therefore, data indicate that trehalose may enhance exercise performance.
Collapse
Affiliation(s)
- Yoshio Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Kotaro Sato
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Keishoku Sakuraba
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Tatsuyuki Akaishi
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Kana Sugiyama
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Hiroyuki Suzuki
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Koudai Ymawaki
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
9
|
Walmagh M, Zhao R, Desmet T. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production. Int J Mol Sci 2015; 16:13729-45. [PMID: 26084050 PMCID: PMC4490520 DOI: 10.3390/ijms160613729] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 12/23/2022] Open
Abstract
Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-D-glucopyranosyl α-D-galactopyranoside) or galactotrehalose (α-D-galactopyranosyl α-D-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. "Greener" alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis.
Collapse
Affiliation(s)
- Maarten Walmagh
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Renfei Zhao
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Tom Desmet
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
10
|
Van der Borght J, Soetaert W, Desmet T. Engineering the acceptor specificity of trehalose phosphorylase for the production of trehalose analogs. Biotechnol Prog 2012; 28:1257-62. [PMID: 22848048 DOI: 10.1002/btpr.1609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/03/2012] [Indexed: 12/21/2022]
Abstract
Trehalose (α-D-glucopyranosyl-(1,1)-α-D-glucopyranoside) is widely used in the food industry, thanks to its protective effect against freezing and dehydration. Analogs of trehalose have the additional benefit that they are not digested and thus do not contribute to our caloric intake. Such trehalose analogs can be produced with the enzyme trehalose phosphorylase, when it is applied in the reverse, synthetic mode. Despite the enzyme's broad acceptor specificity, its catalytic efficiency for alternative monosaccharides is much lower than for glucose. For galactose, this difference is shown here to be caused by a lower K(m) whereas the k(cat) for both substrates is equal. Consequently, increasing the affinity was attempted by enzyme engineering of the trehalose phosphorylase from Thermoanaerobacter brockii, using both semirational and random mutagenesis. While a semirational approach proved unsuccessful, high-throughput screening of an error-prone PCR library resulted in the discovery of three beneficial mutations that lowered K(m) two- to three-fold. In addition, it was found that mutation of these positions also leads to an improved catalytic efficiency for mannose and fructose, suggesting their involvement in acceptor promiscuity. Combining the beneficial mutations did not further improve the affinity, and even resulted in a decreased catalytic activity and thermostability. Therefore, enzyme variant R448S is proposed as new biocatalyst for the industrial production of lactotrehalose (α-D-glucopyranosyl-(1,1)-α-D-galactopyranoside).
Collapse
Affiliation(s)
- Jef Van der Borght
- Dept. of Biochemical and Microbial Technology, Center of Expertise for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | |
Collapse
|
11
|
Ohtake S, Wang YJ. Trehalose: Current Use and Future Applications. J Pharm Sci 2011; 100:2020-53. [DOI: 10.1002/jps.22458] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/05/2010] [Accepted: 12/06/2010] [Indexed: 12/30/2022]
|
12
|
Teramoto N, Sachinvala ND, Shibata M. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 2008; 13:1773-816. [PMID: 18794785 PMCID: PMC6245314 DOI: 10.3390/molecules13081773] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 08/11/2008] [Indexed: 12/20/2022] Open
Abstract
Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears), and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1→1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-d-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives. Trehalose-chemistry is a relatively new and emerging field, and polymers of trehalose derivatives appear environmentally benign, biocompatible, and biodegradable. The discriminating properties of trehalose are attributed to its structure, symmetry, solubility, kinetic and thermodynamic stability and versatility. While syntheses of trehalose-based polymer networks can be straightforward, syntheses and characterization of well defined linear polymers with tailored properties using trehalose-based monomers is challenging, and typically involves protection and deprotection of hydroxyl groups to attain desired structural, morphological, biological, and physical and chemical properties in the resulting products. In this review, we will overview known literature on trehalose’s fascinating involvement in cryptobiology; highlight its applications in many fields; and then discuss methods we used to prepare new trehalose-based monomers and polymers and explain their properties.
Collapse
Affiliation(s)
- Naozumi Teramoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
- Author to whom correspondence should be addressed; E-Mail:
| | - Navzer D. Sachinvala
- Retired, Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA; Home: 2261 Brighton Place, Harvey, LA 70058; E-mail:
| | - Mitsuhiro Shibata
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
| |
Collapse
|
13
|
Oku K, Kurose M, Kubota M, Fukuda S, Kurimoto M, Tujisaka Y, Okabe A, Sakurai M. Combined NMR and quantum chemical studies on the interaction between trehalose and dienes relevant to the antioxidant function of trehalose. J Phys Chem B 2007; 109:3032-40. [PMID: 16851317 DOI: 10.1021/jp045906w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In a previous study (Oku, K.; Watanabe, H.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Komori, M.; Inoue, Y.; Sakurai, M. J. Am. Chem. Soc. 2003, 125, 12739), we investigated the mechanism of the antioxidant function of trehalose against unsaturated fatty acids (UFAs) and revealed that the key factor relevant to the function is the formation of OH...pi and CH...O hydrogen bonds between trehalose and the cis double bonds of the UFA. Here, we investigate whether such intriguing interactions also occur between this sugar and cis double bonds in other unsaturated compounds. For this purpose, we selected various diene compounds (1,3-butadiene, 1,3-pentadiene, 1,4-pentadiene, and 2,5-heptadiene) as interaction partners. All NMR experiments performed, including 1H-1H NOESY measurements, indicated that trehalose selectively interacts with the cis-olefin proton pair in the above diene with a 1:1 stoichiometry, and the C-3 (C-3') and C-6' (C-6) sites of the sugar are responsible for the interaction. Similar interactions were not observed for the mixtures of the diene and other saccharides (neotrehalose, kojibiose, nigerose, maltose, isomaltose, sucrose, maltitol, and sorbitol). Quantum chemical calculations revealed that the OH-3 and OH-6 groups bind to the olefin double bonds of the diene through OH...pi and CH...O types of hydrogen bonds, respectively, and the stabilization energy of the resulting complex is 5-6 kcal mol(-1). These results strongly support the above NMR results. Finally, the activation energies were calculated for the hydrogen abstraction reactions from the activated methylene group of heptadiene. In particular, when the reaction was initiated by a methyl radical, the activation energy was only 10 kcal mol(-1) for the free heptadiene, but on complexation with trehalose it drastically increased to ca. 40 kcal mol(-1). This indicates that trehalose has a significant depression effect on the oxidation of the diene compounds. These results strongly support the antioxidant mechanism deduced in the previous study and indicate that the formation of unique multiple hydrogen bonds between trehalose and cis-olefin bonds is rather a general event not confined to the case of UFA.
Collapse
Affiliation(s)
- Kazuyuki Oku
- Amase Institute, Hayashibara Biochemical Laboratories, Inc., 7-7 Amaseminami-machi, Okayama 700-0834, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakakuki T. Present Status and Future Prospects of Functional Oligosaccharide Development in Japan. J Appl Glycosci (1999) 2005. [DOI: 10.5458/jag.52.267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|