1
|
Liu S, Yu Y, Guo K, Zhang Q, Jia Z, Alfredo MR, Ma P, Xie H, Bian X. Expression and antiviral application of exogenous lectin (griffithsin) in sweetpotatoes. FRONTIERS IN PLANT SCIENCE 2024; 15:1421244. [PMID: 39081525 PMCID: PMC11286482 DOI: 10.3389/fpls.2024.1421244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Griffithsin (GRFT) is a highly effective, broad-spectrum, safe, and stable viral inhibitor used to suppress a variety of viruses. However, little information is available on whether GRFT can prevent plant viral diseases. In this study, we constructed a GRFT overexpression vector containing the sweetpotato storage cell signal peptide and generated exogenous GRFT overexpression lines through genetic transformation. The transgenic plants showed notable resistance to sweetpotato virus disease in the virus nursery. To verify the antiplant virus function of GRFT, transient expression in tobacco leaves showed that GRFT inhibited the sweetpotato leaf curl virus (SPLCV). The replication of SPLCV was entirely inhibited when the concentration of GRFT reached a certain level. The results of pulldown and BIFC assays showed that GRFT did not interact with the six components of SPLCV. In addition, the mutated GRFTD/A without the binding ability of carbohydrate and anticoronavirus function, in which three aspartate residues at carbohydrate binding sites were all mutated to alanine, also inhibited SPLCV. Quantitative reverse-transcription PCR analyses showed that the tobacco antiviral-related genes HIN1, ICS1, WRKY40, and PR10 were overexpressed after GRFT/GRFTD/A injection. Furthermore, HIN1, ICS1, and PR10 were more highly expressed in the leaves injected with GRFTD/A. The results suggest that sweetpotato is able to express GRFT exogenously as a bioreactor. Moreover, exogenous GRFT expression inhibits plant viruses by promoting the expression of plant antiviral genes.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Yu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ke Guo
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qian Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhaodong Jia
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Morales Rodriguez Alfredo
- Center for Tropical Crop Research, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Santo Domingo, Cuba
| | - Peiyong Ma
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hao Xie
- Xuzhou Institute of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Xuzhou, China
| | - Xiaofeng Bian
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Toumi ME, Kebaili FF, Rebai R, Derardja I, Toumi M, Calogero GS, Perduca M, Necib Y. Purification and Biochemical Characterization of Novel Galectin from the Black Poplar Medicinal Mushroom Cyclocybe cylindracea (Agaricomycetes) Strain MEST42 from Algeria. Int J Med Mushrooms 2024; 26:57-70. [PMID: 38421696 DOI: 10.1615/intjmedmushrooms.2023051925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In the present study, a new galectin designated Cyclocybe cylindracea lectin (CCL) was extracted from the fruiting bodies of the wild black popular mushroom C. cylindracea grown in Algeria. The protein was isolated using sepharose 4B as affinity chromatography matrix, and galactose as elutant. The purified galectin was composed of two subunits of 17.873 kDa each, with a total molecular mass of 35.6 kDa. Its agglutinant activity was impeded by galactose and its derivatives, as well as melibiose. Lactose showed the highest affinity, with a minimal inhibitory concentration of 0.0781 mM. CCL was sensitive to extreme pH conditions, and its binding function decreased when incubated with 10 mM EDTA, and it could be restored by metallic cations such as Ca2+, Mg2+, and Zn2+. CCL agglutinated human red blood cells, without any discernible specificity. Circular dichroism spectra demonstrated that its secondary structure contained β-sheet as dominant fold. In addition, bioinformatics investigation on their peptide fingerprint obtained after MALDI-TOF/TOF ionization using mascot software confirmed that CCL was not like any previous purified lectin from mushroom: instead, it possessed an amino acid composition with high similarity to that of the putative urea carboxylase of Emericella nidulans (strain FGSC A4/ATCC 38163/CBS 112.46/NRRL 194/M139) with 44% of similarity score.
Collapse
Affiliation(s)
- Mohammed Esseddik Toumi
- Laboratory of Microbiological Engineering and Application.Department of Biochemistry and Molecular and Cellular Biology
| | - Fethi Farouk Kebaili
- Laboratory of Microbiological Engineering and Application, Biochemistry and Molecular and Cellular Biology Department, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
| | - Redouane Rebai
- Laboratory of Biotechnology, National Higher School of Biotechnology, Toufik Khaznadar, Universitary Town, Ali Mendjeli, BP E66 25100, Constantine, Algeria; University of Mohamed Kheider, Biskra, Algeria
| | | | - Mouad Toumi
- Laboratory of Microbiological Engineering and Application, Biochemistry and Molecular and Cellular Biology Department, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
| | - Gaglio Salvatore Calogero
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Massimiliano Perduca
- Biocrystallography and Nanostructures Laboratory Faculty of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Youcef Necib
- Laboratory of Microbiological Engineering and Application, Biochemistry and Molecular and Cellular Biology Department, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
| |
Collapse
|
3
|
Gupta DK, Rühl M, Mishra B, Kleofas V, Hofrichter M, Herzog R, Pecyna MJ, Sharma R, Kellner H, Hennicke F, Thines M. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes. BMC Genomics 2018; 19:48. [PMID: 29334897 PMCID: PMC5769442 DOI: 10.1186/s12864-017-4430-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology. RESULTS Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery. CONCLUSIONS The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.
Collapse
Affiliation(s)
- Deepak K Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany.,Project Group "Bioresources", Fraunhofer IME, Giessen, Germany
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Vanessa Kleofas
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Martin Hofrichter
- International Institute (IHI) Zittau, Technische Universität Dresden, Zittau, Germany
| | - Robert Herzog
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Gesellschaft für Naturforschung, Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Marek J Pecyna
- University of Applied Sciences Zittau/Görlitz, Zittau, Germany
| | - Rahul Sharma
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Harald Kellner
- International Institute (IHI) Zittau, Technische Universität Dresden, Zittau, Germany
| | - Florian Hennicke
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Gesellschaft für Naturforschung, Frankfurt a. M., Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany. .,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany. .,Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands.
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany. .,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany.
| |
Collapse
|
4
|
Ma LB, Xu BY, Huang M, Sun LH, Yang Q, Chen YJ, Yin YL, He QG, Sun H. Adjuvant effects mediated by the carbohydrate recognition domain of Agrocybe aegerita lectin interacting with avian influenza H 9N 2 viral surface glycosylated proteins. J Zhejiang Univ Sci B 2017; 18:653-661. [PMID: 28786240 DOI: 10.1631/jzus.b1600106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the potential adjuvant effect of Agrocybe aegerita lectin (AAL), which was isolated from mushroom, against a virulent H9N2 strain in vivo and in vitro. METHODS In trial 1, 50 BALB/c male mice (8 weeks old) were divided into five groups (n=10 each group) which received a subcutaneous injection of inactivated H9N2 (control), inactivated H9N2+0.2% (w/w) alum, inactivated H9N2+0.5 mg recombinant AAL/kg body weight (BW), inactivated H9N2+1.0 mg AAL/kg BW, and inactivated H9N2+2.5 mg AAL/kg BW, respectively, four times at 7-d intervals. In trial 2, 30 BALB/c male mice (8 weeks old) were divided into three groups (n=10 each group) which received a subcutaneous injection of inactivated H9N2 (control), inactivated H9N2+2.5 mg recombinant wild-type AAL (AAL-wt)/kg BW, and inactivated H9N2+2.5 mg carbohydrate recognition domain (CRD) mutant AAL (AAL-mutR63H)/kg BW, respectively, four times at 7-d intervals. Seven days after the final immunization, serum samples were collected from each group for analysis. Hemagglutination assay, immunogold electron microscope, lectin blotting, and co-immunoprecipitation were used to study the interaction between AAL and H9N2 in vitro. RESULTS IgG, IgG1, and IgG2a antibody levels were significantly increased in the sera of mice co-immunized with inactivated H9N2 and AAL when compared to mice immunized with inactivated H9N2 alone. No significant increase of the IgG antibody level was detected in the sera of the mice co-immunized with inactivated H9N2 and AAL-mutR63H. Moreover, AAL-wt, but not mutant AAL-mutR63H, adhered to the surface of H9N2 virus. The interaction between AAL and the H9N2 virus was further demonstrated to be associated with the CRD of AAL binding to the surface glycosylated proteins, hemagglutinin and neuraminidase. CONCLUSIONS Our findings indicated that AAL could be a safe and effective adjuvant capable of boosting humoral immunity against H9N2 viruses in mice through its interaction with the viral surface glycosylated proteins, hemagglutinin and neuraminidase.
Collapse
Affiliation(s)
- Li-Bao Ma
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao-Yang Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Huang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lv-Hui Sun
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Jie Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ya-Lin Yin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi-Gai He
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan 430071, China.,State Key Laboratory of Virology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Nikitina VE, Loshchinina EA, Vetchinkina EP. Lectins from Mycelia of Basidiomycetes. Int J Mol Sci 2017; 18:E1334. [PMID: 28640205 PMCID: PMC5535827 DOI: 10.3390/ijms18071334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022] Open
Abstract
Lectins are proteins of a nonimmunoglobulin nature that are capable of specific recognition of and reversible binding to the carbohydrate moieties of complex carbohydrates, without altering the covalent structure of any of the recognized glycosyl ligands. They have a broad range of biological activities important for the functioning of the cell and the whole organism and, owing to the high specificity of reversible binding to carbohydrates, are valuable tools used widely in biology and medicine. Lectins can be produced by many living organisms, including basidiomycetes. Whereas lectins from the fruit bodies of basidiomycetes have been studied sufficiently well, mycelial lectins remain relatively unexplored. Here, we review and comparatively analyze what is currently known about lectins isolated from the vegetative mycelium of macrobasidiomycetes, including their localization, properties, and carbohydrate specificities. Particular attention is given to the physiological role of mycelial lectins in fungal growth and development.
Collapse
Affiliation(s)
- Valentina E Nikitina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Ekaterina A Loshchinina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Elena P Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| |
Collapse
|
6
|
Sivanandhan S, Khusro A, Paulraj MG, Ignacimuthu S, Al-Dhabi NA. Biocontrol Properties of Basidiomycetes: An Overview. J Fungi (Basel) 2017; 3:E2. [PMID: 29371521 PMCID: PMC5715959 DOI: 10.3390/jof3010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
In agriculture, there is an urgent need for alternate ecofriendly products to control plant diseases. These alternate products must possess preferable characteristics such as new modes of action, cost effectiveness, biodegradability, and target specificity. In the current scenario, studies on macrofungi have been an area of importance for scientists. Macrofungi grow prolifically and are found in many parts of the world. Basidiomycetes (mushrooms) flourish ubiquitously under warm and humid climates. Basidiomycetes are rich sources of natural antibiotics. The secondary metabolites produced by them possess antimicrobial, antitumor, and antioxidant properties. The present review discusses the potential role of Basidiomycetes as anti-phytofungal, anti-phytobacterial, anti-phytoviral, mosquito larvicidal, and nematicidal agents.
Collapse
Affiliation(s)
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
| | - Michael Gabriel Paulraj
- Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
| | - Savarimuthu Ignacimuthu
- Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
- The International Scientific Partnership Program (ISPP), King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2454, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
7
|
Lu YP, Chen RL, Long Y, Li X, Jiang YJ, Xie BG. A Jacalin-Related Lectin Regulated the Formation of Aerial Mycelium and Fruiting Body in Flammulina velutipes. Int J Mol Sci 2016; 17:E1884. [PMID: 27916794 PMCID: PMC5187758 DOI: 10.3390/ijms17121884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023] Open
Abstract
Flammulina velutipes, one of the most popular mushroom species in the world, has been recognized as a useful model system to study the biochemical and physiological aspects of the formation and elongation of fruit body. However, few reports have been published on the regulation of fruiting body formation in F. velutipes at the molecular level. In this study, a jacalin-related lectin gene from F. velutipes was characterized. The phylogenetic tree revealed that Fv-JRL1 clustered with other basidiomycete jacalin-like lectins. Moreover, the transcriptional pattern of the Fv-JRL1 gene in different developmental stages of F. velutipes implied that Fv-JRL1 could be important for formation of fruit body. Additionally, RNA interference (RNAi) and overexpression analyses provided powerful evidence that the lectin gene Fv-JRL1 from F. velutipes plays important roles in fruiting body formation.
Collapse
Affiliation(s)
- Yuan-Ping Lu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ren-Liang Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ying Long
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiao Li
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Ji Jiang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 2015; 16:7802-38. [PMID: 25856678 PMCID: PMC4425051 DOI: 10.3390/ijms16047802] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.
Collapse
|
9
|
Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Ng TB. Lectins from edible mushrooms. Molecules 2014; 20:446-69. [PMID: 25558856 PMCID: PMC6272671 DOI: 10.3390/molecules20010446] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.
Collapse
Affiliation(s)
- Senjam Sunil Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India.
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China.
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Cui Ming Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Leiden University of Applied Science, Zernikedreef 11, Leiden 2333 CK, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
10
|
Liu XY, Li H, Zhang W. The lectin from Musa paradisiaca binds with the capsid protein of tobacco mosaic virus and prevents viral infection. BIOTECHNOL BIOTEC EQ 2014; 28:408-416. [PMID: 26019527 PMCID: PMC4433934 DOI: 10.1080/13102818.2014.925317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
It has been demonstrated that the lectin from Musa paradisiaca (BanLec-1) could inhibit the cellular entry of human immunodeficiency virus (HIV). In order to evaluate its effects on tobacco mosaic virus (TMV), the banlec-1 gene was cloned and transformed into Escherichia coli and tobacco, respectively. Recombinant BanLec-1 showed metal ions dependence, and higher thermal and pH stability. Overexpression of banlec-1 in tobacco resulted in decreased leaf size, and higher resistance to TMV infection, which includes reduced TMV cellular entry, more stable chlorophyll contents, and enhanced antioxidant enzymes. BanLec-1 was found to bind directly to the TMV capsid protein in vitro, and to inhibit TMV infection in a dose-dependent manner. In contrast to limited prevention in vivo, purified rBanLec-1 exhibited more significant effects on TMV infection in vitro. Taken together, our study indicated that BanLec-1 could prevent TMV infection in tobacco, probably through the interaction between BanLec-1 and TMV capsid protein.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agricultural University , Nanjing , Jiangsu , P. R. China
| | - Huan Li
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agricultural University , Nanjing , Jiangsu , P. R. China
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agricultural University , Nanjing , Jiangsu , P. R. China
| |
Collapse
|
11
|
Expression of lec-1, a mycobiont gene encoding a galectin-like protein in the lichen Peltigera membranacea. Symbiosis 2012. [DOI: 10.1007/s13199-012-0175-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem J 2012; 443:369-78. [PMID: 22268569 PMCID: PMC3316157 DOI: 10.1042/bj20112061] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel lectin was isolated from the mushroom Agrocybe aegerita (designated AAL-2) by affinity chromatography with GlcNAc (N-acetylglucosamine)-coupled Sepharose 6B after ammonium sulfate precipitation. The AAL-2 coding sequence (1224 bp) was identified by performing a homologous search of the five tryptic peptides identified by MS against the translated transcriptome of A. aegerita. The molecular mass of AAL-2 was calculated to be 43.175 kDa from MS, which was consistent with the data calculated from the amino acid sequence. To analyse the carbohydrate-binding properties of AAL-2, a glycan array composed of 465 glycan candidates was employed, and the result showed that AAL-2 bound with high selectivity to terminal non-reducing GlcNAc residues, and further analysis revealed that AAL-2 bound to terminal non-reducing GlcNAc residues with higher affinity than previously well-known GlcNAc-binding lectins such as WGA (wheatgerm agglutinin) and GSL-II (Griffonia simplicifolia lectin-II). ITC (isothermal titration calorimetry) showed further that GlcNAc bound to AAL-2 in a sequential manner with moderate affinity. In the present study, we also evaluated the anti-tumour activity of AAL-2. The results showed that AAL-2 could bind to the surface of hepatoma cells, leading to induced cell apoptosis in vitro. Furthermore, AAL-2 exerted an anti-hepatoma effect via inhibition of tumour growth and prolongation of survival time of tumour-bearing mice in vivo.
Collapse
|
13
|
Aleuria aurantia lectin exhibits antifungal activity against Mucor racemosus. Biosci Biotechnol Biochem 2012; 76:967-70. [PMID: 22738968 DOI: 10.1271/bbb.110982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aleuria aurantia lectin (AAL) is an L-fucose-specific lectin produced in the mycelia and fruit-bodies of the widespread ascomycete fungus Aleuria aurantia. It is extensively used in the detection of fucose, but its physiological role remains unknown. To investigate this, we analyzed the interaction between AAL and, a zygomycete fungus Mucor racemosus, which is assumed to contain fucose in its cell wall. AAL specifically bound to the hyphae of M. racemosus, because binding was inhibited by L-fucose but not by D-fucose. It inhibited the growth of the fungus at 1 µM, and the M. racemosus cells were remarkably disrupted at 7.5 µM. In contrast, two other fucose-specific lectins, Anguilla anguilla agglutinin and Ulex europaeus agglutinin, did not inhibit the growth of M. racemosus. These results suggest that the growth inhibition activity is unique to AAL, and that AAL could act as an antifungal protein in natural ecosystems.
Collapse
|
14
|
Vetchinkina EP, Nikitina VE, Tsivileva OM, Garibova LV. Activity of Lentinus edodes intracellular lectins at various developmental stages of the fungus. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683808010110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Singh RS, Bhari R, Kaur HP. Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol 2010; 30:99-126. [PMID: 20105049 DOI: 10.3109/07388550903365048] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lectins are nonimmune proteins or glycoproteins that bind specifically to cell surface carbohydrates, culminating in cell agglutination. These are known to play key roles in host defense system and also in metastasis. Many new sources have been explored for the occurrence of lectins during the last few years. Numerous novel lectins with unique specificities and exploitable properties have been discovered. Mushrooms have attracted a number of researchers in food and pharmaceuticals. Many species have long been used in traditional Chinese medicines or functional foods in Japan and other Asian countries. A number of bioactive constituents have been isolated from mushrooms including polysaccharides, polysaccharopeptides, polysaccharide-protein complexes, proteases, ribonucleases, ribosome inactivating proteins, antifungal proteins, immunomodulatory proteins, enzymes, lectins, etc. Mushroom lectins are endowed with mitogenic, antiproliferative, antitumor, antiviral, and immune stimulating potential. In this review, an attempt has been made to collate the information on mushroom lectins, their blood group and sugar specificities, with an emphasis on their biomedical potential and future perspectives.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India.
| | | | | |
Collapse
|
16
|
Zhang G, Sun J, Wang H, Ng TB. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:775-781. [PMID: 20378319 DOI: 10.1016/j.phymed.2010.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/18/2009] [Accepted: 02/04/2010] [Indexed: 05/29/2023]
Abstract
To date only a ribonuclease and a protein with anti-HIV-1 reverse transcriptase activity have been isolated from mushrooms of the genus Russula. In this study a novel lectin, with a molecular weight of 32 kDa, and a unique N-terminal sequence different from other lectins, was isolated from the mushroom Russula lepida. It represents the first lectin isolated from Russula mushrooms. The purification scheme involved (NH4)2SO4 precipitation, ion exchange chromatography on diethylaminoethyl DEAE-cellulose and SP-Sepharose, and fast protein liquid chromatography-gel filtration on Superdex 75. The hemagglutinating activity of the lectin (RLL) was inhibited by inulin and O-nitrophenyl-beta-D-galacto-pyranoside. The lectin was stable at temperatures up to 70 degrees C (half of the activity was preserved at 80 degrees C), and in the presence of NaOH or HCl solutions up to a concentration of 12.5 mM. Its hemagglutinating activity was reduced in the presence of Mn2+, Co2+, and Hg2+ ions, and enhanced by Cu2+ ions. It exhibited antiproliferative activity toward hepatoma Hep G2 cells and human breast cancer MCF-7 cells with an IC(50) of 1.6 microM and 0.9 microM, respectively. Daily intraperitoneal injections of RLL (5.0 mg/kg body weight/day for 20 days) brought about 67.6% reduction in the weight of S-180 tumor. RLL was devoid of antifungal, ribonuclease, and HIV-1 reverse transcriptase inhibitory activities.
Collapse
Affiliation(s)
- G Zhang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
17
|
Luan R, Liang Y, Chen Y, Liu H, Jiang S, Che T, Wong B, Sun H. Opposing developmental functions of Agrocybe aegerita galectin (AAL) during mycelia differentiation. Fungal Biol 2010; 114:599-608. [PMID: 20943171 DOI: 10.1016/j.funbio.2010.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 05/07/2010] [Accepted: 05/09/2010] [Indexed: 12/22/2022]
Abstract
Mycelia of basidiomycetes differentiating into fruiting body is a controlled developmental process, however the underlying molecular mechanism remains unknown. In previous work, a novel fungal Agrocybe aegerita galectin (AAL) was isolated from A. aegerita in our laboratory. AAL was shown to promote mycelial differentiation in A. aegerita and Auricularia polytricha, indicating that AAL might function as a conserved fruiting initiator during basidiomycete mycelia development. In the current work, we investigate the role of AAL in mycelia differentiation and fruiting body formation. First, the expression and localization of AAL in mycelia, primordium and fruiting body were assessed by Western blotting and immunohistochemistry. AAL was found to be ubiquitously expressed in the primordium and fruiting body but not in the mycelia. AAL facilitated mycelia congregation and promoted fruiting body production when AAL was applied on mycelia. At the same time, when AAL was spread on potato dextrose agar (PDA) medium prior to mycelia inoculation, mycelia exhibited slowed growth rates, resulting in mycelia cords formation and inhibition of fruiting body formation. The 5' regulatory sequence of aal was cloned by 'genome walking'. Here, we show that aal lack introns in the coding region and the upstream 740 bp sequence was characterized by the existence of core promoter elements, which included: two CCAAT boxes (-535/-280), a GC box (-145), a TATA box (-30) and a fungal leader intron within the 5' UTR. The identification of regulatory expression elements may provide an explanation to the stage-specific and high-level expression of aal during fruiting development.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Butschi A, Titz A, Wälti MA, Olieric V, Paschinger K, Nöbauer K, Guo X, Seeberger PH, Wilson IBH, Aebi M, Hengartner MO, Künzler M. Caenorhabditis elegans N-glycan core beta-galactoside confers sensitivity towards nematotoxic fungal galectin CGL2. PLoS Pathog 2010; 6:e1000717. [PMID: 20062796 PMCID: PMC2798750 DOI: 10.1371/journal.ppat.1000717] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/04/2009] [Indexed: 12/01/2022] Open
Abstract
The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galbeta1,4Fucalpha1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galbeta1,4Fucalpha1,6GlcNAc trisaccharide at 1.5 A resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms.
Collapse
Affiliation(s)
- Alex Butschi
- Institute of Molecular Biology, University of Zürich, Zürich, Switzerland
| | - Alexander Titz
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Martin A. Wälti
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Vincent Olieric
- Swiss Light Source (SLS), Paul-Scherrer-Institute (PSI), Villigen, Switzerland
| | - Katharina Paschinger
- Department of Chemistry, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Katharina Nöbauer
- VetOMICS Core Facility for Proteomics & Metabolomics Studies, University of Veterinary Medicine, Vienna, Austria
| | - Xiaoqiang Guo
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Peter H. Seeberger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Iain B. H. Wilson
- Department of Chemistry, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Markus Aebi
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | | | - Markus Künzler
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Structural Basis for the Tumor Cell Apoptosis-Inducing Activity of an Antitumor Lectin from the Edible Mushroom Agrocybe aegerita. J Mol Biol 2009; 387:694-705. [DOI: 10.1016/j.jmb.2009.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 11/18/2022]
|
20
|
Vetchinkina EP, Sokolov OI, Nikitina VE. Intracellular lectins of Lentinus edodes at various developmental stages of the fungus. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708040097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Bhowal J, Guha AK, Chatterjee BP. Purification and molecular characterization of a sialic acid specific lectin from the phytopathogenic fungus Macrophomina phaseolina. Carbohydr Res 2005; 340:1973-82. [PMID: 16009354 DOI: 10.1016/j.carres.2005.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 11/27/2022]
Abstract
A lectin was isolated and purified from the culture filtrate of the plant pathogenic fungus Macrophomina phaseolina by a combination of ammonium sulfate precipitation, affinity chromatography on fetuin-Sepharose 4B and ion-exchange chromatography on DEAE-A 50. The lectin designated MPL was homogeneous by PAGE and HPLC and a monomeric protein with a molecular weight of approximately 34 kDa as demonstrated by SDS-PAGE. It is a glycoprotein and agglutinated human erythrocytes regardless of the human blood type. Neuraminidase treatment of erythrocytes reduced the agglutination activity of the lectin. It is thermally stable and exhibits maximum activity between pH 6 and 7.2. Its carbohydrate binding specificity was investigated both by hapten inhibition of hemagglutination and by enzyme-conjugated lectin inhibition assay. Although, M. phaseolina lectin bound sialic acid, it exhibited binding affinity towards neuraminyl oligosaccharides of N-linked glycoproteins, alpha-Neu5Ac-(2-->3)-beta-Gal-(1-->4)-GlcNAc being maximum.
Collapse
Affiliation(s)
- Jayati Bhowal
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | | | | |
Collapse
|
22
|
Yang N, Tong X, Xiang Y, Zhang Y, Sun H, Wang DC. Crystallization and preliminary crystallographic studies of the recombinant antitumour lectin from the edible mushroom Agrocybe aegerita. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:209-12. [PMID: 15996911 DOI: 10.1016/j.bbapap.2005.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 11/23/2022]
Abstract
The antitumour lectin from Agrocybe aegerita, named AAL, shows strong inhibition effects on human and mouse tumour cells via apoptosis induction activity. Recombinant AAL (rAAL) has been expressed and purified. Both rAAL and rAAL-lactose complex have been crystallized and their X-ray diffraction data were collected to resolutions of 1.9 A and 1.6 A, respectively. Both crystals belong to space group P2(1) with unit cell parameters a = 53.20 A, b = 66.01 A, c = 57.86 A, beta = 109.38 and a = 53.38 A, b = 66.29 A, c = 58.02 A, beta = 109.03, respectively.
Collapse
Affiliation(s)
- Na Yang
- Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People's Republic of China
| | | | | | | | | | | |
Collapse
|