1
|
Paderni D, Macedi E, Sordini E, Amatori S, Rossi P, Formica M, Giorgi L, Paoli P, Fanelli M, Fusi V. Two bis-maltol-polyamines: Synthesis, characterization and studies of their palladium(II) complexes exploring their potential anticancer activity. J Inorg Biochem 2025; 262:112758. [PMID: 39393298 DOI: 10.1016/j.jinorgbio.2024.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The interest in the antineoplastic and binding properties shown by the bis-maltol polyamine family, particularly Malten and Maltonis, prompted us to study the Pd2+ complexes of these latter from both a biological and metallo-receptor point of view. The Malten-Pd2+ complex can lodge hard species such as Sr2+ in its coordination-driven preorganized pocket, as confirmed by X-ray diffraction. UV-Vis and NMR data showed that Malten-Pd2+ forms even at acidic pH and exists in aqueous solution in a wide range of pH. The mononuclear complex is stable enough not to release Pd2+ in solution for a long period of time (at least one week), thus Malten-Pd2+, similarly to Maltonis-Pd2+, is suitable to be tested in biological analyses. Studies on the U937 cell line revealed that the effect on cell survival reduction induced by Malten is partially lost in Malten-Pd2+, while no differences where monitored between the effects of Maltonis-Pd2+ and Maltonis, suggesting that the availability of free maltol moieties, that is retained in Maltonis-Pd2+, but not in Malten-Pd2+, is crucial to guarantee the biological activity of these compounds.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy.
| | - Enrica Sordini
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Stefano Amatori
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Mirco Fanelli
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy.
| |
Collapse
|
2
|
Han NR, Park HJ, Ko SG, Moon PD. Maltol has anti-cancer effects via modulating PD-L1 signaling pathway in B16F10 cells. Front Pharmacol 2023; 14:1255586. [PMID: 37731735 PMCID: PMC10508342 DOI: 10.3389/fphar.2023.1255586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Among skin cancers, melanoma has a high mortality rate. Recent advances in immunotherapy, particularly through immune checkpoint modulation, have improved the clinical treatment of melanoma. Maltol has various bioactivities, including anti-oxidant and anti-inflammatory properties, but the anti-melanoma property of maltol remains underexplored. The aim of this work is to explore the anti-melanoma potential of maltol through regulating immune checkpoints. Methods: The immune checkpoint PD-L1 was analyzed using qPCR, immunoblots, and immunofluorescence. Melanoma sensitivity towards T cells was investigated via cytotoxicity, cell viability, and IL-2 assays employing CTLL-2 cells. Results: Maltol was found to reduce melanin contents, tyrosinase activity, and expression levels of tyrosinase and tyrosinase-related protein 1. Additionally, maltol suppressed the proliferative capacity of B16F10 and induced cell cycle arrest. Maltol increased apoptotic rates by elevating cleaved caspase-3 and PARP. The co-treatment with maltol and cisplatin revealed a synergistic effect on inhibiting growth and promoting apoptosis. Maltol suppressed IFN-γ-induced PD-L1 and cisplatin-upregulated PD-L1 by attenuating STAT1 phosphorylation, thereby enhancing cisplatin's cytotoxicity against B16F10. Maltol augmented sensitivity to CTLL-2 cell-regulated melanoma destruction, leading to an increase in IL-2 production. Discussion: These findings demonstrate that maltol restricts melanoma growth through the downregulation of PD-L1 and elicits T cell-mediated anti-cancer responses, overcoming PD-L1-mediated immunotherapy resistance of cisplatin. Therefore, maltol can be considered as an effective therapeutic agent against melanoma.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Macedi E, Paderni D, Formica M, Conti L, Fanelli M, Giorgi L, Amatori S, Ambrosi G, Valtancoli B, Fusi V. Playing with Structural Parameters: Synthesis and Characterization of Two New Maltol-Based Ligands with Binding and Antineoplastic Properties. Molecules 2020; 25:molecules25040943. [PMID: 32093219 PMCID: PMC7070877 DOI: 10.3390/molecules25040943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/30/2022] Open
Abstract
Two maltol-based ligands, N,N′-bis((3-hydroxy-4-pyron-2-yl)methyl)-1,4-piperazine (L1) and N,N′,N′-tris((3-hydroxy-4-pyron-2-yl)methyl)-N-methylethylendiamine (L2), were synthesized and characterized. L1 and L2, containing, respectively, two and three maltol units spaced by a diamine fragment, were designed to evaluate how biological and binding features are affected by structural modifications of the parent compound malten. The acid-base behavior and the binding properties towards transition, alkaline-earth (AE) and rare-earth (RE) cations in aqueous solution, studied by potentiometric, UV-Vis and NMR analysis, are reported along with biological studies on DNA and leukemia cells. Both ligands form stable complexes with Cu(II), Zn(II) and Co(II) that were studied as metallo-receptors for AE and RE at neutral pH. L1 complexes are more affected than L2 ones by hard cations, the L1-Cu(II) system being deeply affected by RE. The structural modifications altered the mechanism of action: L1 partially maintains the ability to induce structural alterations of DNA, while L2 provokes single strand (nicks) and to a lesser extent double strand breaks of DNA.
Collapse
Affiliation(s)
- Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, via della Stazione 4, 61029 Urbino, Italy; (D.P.); (M.F.); (L.G.); (G.A.)
- Correspondence: (E.M.); (V.F.); Tel.: +39-0722-305-905 (E.M.)
| | - Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, via della Stazione 4, 61029 Urbino, Italy; (D.P.); (M.F.); (L.G.); (G.A.)
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, via della Stazione 4, 61029 Urbino, Italy; (D.P.); (M.F.); (L.G.); (G.A.)
| | - Luca Conti
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (L.C.); (B.V.)
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “PaoLa”, University of Urbino “Carlo Bo”, via Arco d’Augusto 2, 61032 Fano, Italy; (M.F.); (S.A.)
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, via della Stazione 4, 61029 Urbino, Italy; (D.P.); (M.F.); (L.G.); (G.A.)
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “PaoLa”, University of Urbino “Carlo Bo”, via Arco d’Augusto 2, 61032 Fano, Italy; (M.F.); (S.A.)
| | - Gianluca Ambrosi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, via della Stazione 4, 61029 Urbino, Italy; (D.P.); (M.F.); (L.G.); (G.A.)
| | - Barbara Valtancoli
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (L.C.); (B.V.)
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, via della Stazione 4, 61029 Urbino, Italy; (D.P.); (M.F.); (L.G.); (G.A.)
- Correspondence: (E.M.); (V.F.); Tel.: +39-0722-305-905 (E.M.)
| |
Collapse
|
4
|
Sha JY, Zhou YD, Yang JY, Leng J, Li JH, Hu JN, Liu W, Jiang S, Wang YP, Chen C, Li W. Maltol (3-Hydroxy-2-methyl-4-pyrone) Slows d-Galactose-Induced Brain Aging Process by Damping the Nrf2/HO-1-Mediated Oxidative Stress in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10342-10351. [PMID: 31461273 DOI: 10.1021/acs.jafc.9b04614] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maltol, a maillard reaction product from ginseng (Panax ginseng C. A. Meyer), has been confirmed to inhibit oxidative stress in several animal models. Its beneficial effect on oxidative stress related brain aging is still unclear. In this study, the mouse model of d-galactose (d-Gal)-induced brain aging was employed to investigate the therapeutic effects and potential mechanisms of maltol. Maltol treatment significantly restored memory impairment in mice as determined by the Morris water maze tests. Long-term d-Gal treatment reduced expression of cholinergic regulators, i.e., the cholineacetyltransferase (ChAT) (0.456 ± 0.10 vs 0.211 ± 0.03 U/mg prot), the acetylcholinesterase (AChE) (36.4 ± 5.21 vs 66.5 ± 9.96 U/g). Maltol treatment prevented the reduction of ChAT and AChE in the hippocampus. Maltol decreased oxidative stress levels by reducing levels of reactive oxygen species (ROS) and malondialdehyde (MDA) production in the brain and by elevating antioxidative enzymes. Furthermore, maltol treatment minimized oxidative stress by increasing the phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1). The above results clearly indicate that supplementation of maltol diminishes d-Gal-induced behavioral dysfunction and neurological deficits via activation of the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in brain. Maltol might become a potential drug to slow the brain aging process and stimulate endogenous antioxidant defense capacity. This study provides the novel evidence that maltol may slow age-associated brain aging.
Collapse
Affiliation(s)
- Ji-Yue Sha
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Yan-Dan Zhou
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Jia-Yu Yang
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Jing Leng
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Jian-Hao Li
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Wei Liu
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Shuang Jiang
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development , Changchun 130118 , China
| | - Chen Chen
- School of Biomedical Sciences , The University of Queensland , Brisbane 4072 , Australia
| | - Wei Li
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development , Changchun 130118 , China
| |
Collapse
|
5
|
Liu W, Wang Z, Hou JG, Zhou YD, He YF, Jiang S, Wang YP, Ren S, Li W. The Liver Protection Effects of Maltol, a Flavoring Agent, on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Inhibiting Apoptosis and Inflammatory Response. Molecules 2018; 23:molecules23092120. [PMID: 30142916 PMCID: PMC6225187 DOI: 10.3390/molecules23092120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
The purpose of this research was to evaluate whether maltol could protect from hepatic injury induced by carbon tetrachloride (CCl4) in vivo by inhibition of apoptosis and inflammatory responses. In this work, maltol was administered at a level of 100 mg/kg for 15 days prior to exposure to a single injection of CCl4 (0.25%, i.p.). The results clearly indicated that the intrapulmonary injection of CCl4 resulted in a sharp increase in serum aspartate transaminase (AST) and alanine transaminase (ALT) activities, tumor necrosis factor-α (TNF-α), irreducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB) and interleukin-1β (IL-1β) levels. Histopathological examination demonstrated severe hepatocyte necrosis and the destruction of architecture in liver lesions. Immunohistochemical staining and western blot analysis suggested an accumulation of iNOS, NF-κB, IL-1β and TNF-α expression. Maltol, when administered to mice for 15 days, can significantly improve these deleterious changes. In addition, TUNEL and Hoechst 33258 staining showed that a liver cell nucleus of a model group diffused uniform fluorescence following CCl4 injection. Maltol pretreatment groups did not show significant cell nuclear condensation and fragmentation, indicating that maltol inhibited CCl4-induced cell apoptosis. By evaluating the liver catalase (CAT), glutathione (GSH), superoxide dismutase (SOD) activity, and further using a single agent to evaluate the oxidative stress in CCl4-induced hepatotoxicity by immunofluorescence staining, maltol dramatically attenuated the reduction levels of hepatic CAT, GSH and SOD, and the over-expression levels of CYP2E1 and HO-1. In the mouse model of CCl4-induced liver injury, we have demonstrated that the inflammatory responses were inhibited, the serum levels of ALT and AST were reduced, cell apoptosis was suppressed, and liver injury caused by CCl4 was alleviated by maltol, demonstrating that maltol may be an efficient hepatoprotective agent.
Collapse
Affiliation(s)
- Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea.
| | - Yan-Dan Zhou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yu-Fang He
- College of Management, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
6
|
Song Y, Hong S, Iizuka Y, Kim CY, Seong GJ. The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells. KOREAN JOURNAL OF OPHTHALMOLOGY 2015; 29:58-65. [PMID: 25646062 PMCID: PMC4309870 DOI: 10.3341/kjo.2015.29.1.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro. METHODS R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis. RESULTS R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71%. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-κB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-κB, ERK, and JNK. CONCLUSIONS Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act through the NF-κB and mitogen-activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Yookyung Song
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Samin Hong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoko Iizuka
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Gong Je Seong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice. Nutrients 2015; 7:682-96. [PMID: 25608939 PMCID: PMC4303861 DOI: 10.3390/nu7010682] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.
Collapse
|
8
|
D'Abrosca B, Pacifico S, Scognamiglio M, Tsafantakis N, Pagliari E, Monaco P, Fiorentino A. Petrorhagiosides A - D, Newγ-Pyrone Derivatives fromPetrorhagia saxifragaLink. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Tan HP, Wong DZH, Ling SK, Chuah CH, Kadir HA. Neuroprotective activity of galloylated cyanogenic glucosides and hydrolysable tannins isolated from leaves of Phyllagathis rotundifolia. Fitoterapia 2011; 83:223-9. [PMID: 22093753 DOI: 10.1016/j.fitote.2011.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/25/2011] [Accepted: 10/31/2011] [Indexed: 12/25/2022]
Abstract
The galloylated cyanogenic glucosides based on prunasin (1-7), gallotannins (8-14), ellagitannins (15-17), ellagic acid derivatives (18, 19) and gallic acid (20) isolated from the leaves of Phyllagathis rotundifolia (Melastomataceae) were investigated for their neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced oxidative damage in NG108-15 hybridoma cell line. Among these compounds, the gallotannins and ellagitannins exhibited remarkable neuroprotective activities against oxidative damage in vitro as compared to galloylated cyanogenic glucosides and ellagic acid derivatives in a dose-dependent manner. They could be explored further as potential natural neuroprotectors in various remedies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hooi Poay Tan
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | | | |
Collapse
|
10
|
Liu J, Wang Y, Yuan X, Feng Y, Liu H. Cyclic-stretch induces the apoptosis of myoblast by activation of Caspase-3 protease in a magnitude-dependent manner. Int J Biochem Cell Biol 2010; 42:2004-11. [DOI: 10.1016/j.biocel.2010.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/26/2010] [Accepted: 08/19/2010] [Indexed: 12/25/2022]
|
11
|
Kim SO, Choi BT, Choi IW, Cheong J, Kim GY, Kwon TK, Kim ND, Choi YH. Anti-invasive activity of histone deacetylase inhibitors via the induction of Egr-1 and the modulation of tight junction-related proteins in human hepatocarcinoma cells. BMB Rep 2010; 42:655-60. [PMID: 19874710 DOI: 10.5483/bmbrep.2009.42.10.655] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential anti-metastasis and anti-invasion activities of early growth response gene-1 (Egr-1) and claudin-3, a tight junction (TJ)-related protein, were evaluated using histone deacetylase (HDAC) inhibitors in human hepatocarcinoma cells. The results of wound healing and Transwell assays showed that HDAC inhibitors such as trichostatin A and sodium butyrate inhibited cell migration and invasion. HDAC inhibitors markedly induced Egr-1 expression during the early period, after which expression levels decreased. In addition, the down-regulation of snail and type 1 insulin-like growth factor receptor (IGF-1R) in HDAC inhibitor-treated cells induced the upregulation of thrombospondin-1 (TSP-1), E-cadherin and claudin-3. Cells transfected with Egr-1 and claudin-3 siRNA displayed significant blockage of HDAC inhibitor-induced anti-invasive activity. Collectively, these findings indicate that the up-regulation of Egr-1 and claudin-3 are crucial steps in HDAC inhibitor-induced anti-metastasis and anti-invasion.
Collapse
Affiliation(s)
- Sung Ok Kim
- Department of Biomaterial Control (BK21 Program), Dongeui University Graduate School, Busan 614-052, Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Park HH. Fifty C-terminal amino acid residues are necessary for the chaperone activity of DFF45 but not for the inhibition of DFF40. BMB Rep 2009; 42:713-8. [DOI: 10.5483/bmbrep.2009.42.11.713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Park BJ, Lim YS, Lee HJ, Eum WS, Park J, Han KH, Choi SY, Lee KS. Anti-oxidative effects of Phellinus linteus and red ginseng extracts on oxidative stress-induced DNA damage. BMB Rep 2009; 42:500-5. [PMID: 19712586 DOI: 10.5483/bmbrep.2009.42.8.500] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-oxidative effect of Phellinus linteus (P. linteus) and red ginseng extracts on DNA damage induced by reactive oxygen species (ROS) were investigated in this study. P. linteus (PLE) and red ginseng extracts (RGE) inhibited the breaking of E. coli ColE1 plasmid DNA strands as well as nuclear DNA of rat hepatocytes damaged by oxidative stress. In addition, a reaction mixture of PLE and RGE showed synergistic inhibitory effect against DNA damage. These results suggest that PLE and RGE have a cellular defensive effect against DNA damage induced by ROS.
Collapse
Affiliation(s)
- Byung-Jae Park
- Department of Life Science, Hallym University, Chunchon 202-702, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shin KY, Lee GH, Park CH, Kim HJ, Park SH, Kim S, Kim HS, Lee KS, Won BY, Lee HG, Choi JH, Suh YH. A novel compound, maltolyl p-coumarate, attenuates cognitive deficits and shows neuroprotective effects in vitro and in vivo dementia models. J Neurosci Res 2007; 85:2500-11. [PMID: 17600377 DOI: 10.1002/jnr.21397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To develop a novel and effective drug that could enhance cognitive function and neuroprotection, we newly synthesized maltolyl p-coumarate by the esterification of maltol and p-coumaric acid. In the present study, we investigated whether maltolyl p-coumarate could improve cognitive decline in scopolamine-injected rats and in amyloid beta peptide(1-42)-infused rats. Maltolyl p-coumarate was found to attenuate cognitive deficits in both rat models using passive avoidance test and to reduce apoptotic cell death observed in the hippocampus of the amyloid beta peptide(1-42)-infused rats. We also examined the neuroprotective effects of maltolyl p-coumarate in vitro using SH-SY5Y cells. Cells were pretreated with maltolyl p-coumarate, before exposed to amyloid beta peptide(1-42), glutamate or H2O2. We found that maltolyl p-coumarate significantly decreased apoptotic cell death and reduced reactive oxygen species, cytochrome c release, and caspase 3 activation. Taking these in vitro and in vivo results together, our study suggests that maltolyl p-coumarate is a potentially effective candidate against Alzheimer's disease that is characterized by wide spread neuronal death and progressive decline of cognitive function.
Collapse
Affiliation(s)
- Ki Young Shin
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang H, Jenner AM, Lee CYJ, Shui G, Tang SY, Whiteman M, Wenk MR, Halliwell B. The identification of antioxidants in dark soy sauce. Free Radic Res 2007; 41:479-88. [PMID: 17454130 DOI: 10.1080/10715760601110871] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Soy sauce is a traditional fermented seasoning in Asian countries, that has high antioxidant activity in vitro and some antioxidant activity in vivo. We attempted to identify the major antioxidants present, using the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay as a guide. 3-Hydroxy-2-methyl-4H-pyran-4-one (maltol) was one of several active compounds found in an ethyl acetate extract of dark soy sauce (DSS) and was present at millimolar concentrations in DSS. However, most of the antioxidant activity was present in colored fractions, two of which (CP1 and CP2) were obtained by gel filtration chromatography. Their structural characteristics based on nuclear magnetic resonance (NMR) and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS) analysis suggest that carbohydrate-containing pigments such as melanoidins are the major contributors to the high antioxidant capacity of DSS.
Collapse
Affiliation(s)
- Huansong Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | | | | | | | | | | | | | | |
Collapse
|