1
|
Medunjanin S, Putzier M, Nöthen T, Weinert S, Kähne T, Luani B, Zuschratter W, Braun-Dullaeus RC. DNA-PK: gatekeeper for IKKγ/NEMO nucleocytoplasmic shuttling in genotoxic stress-induced NF-kappaB activation. Cell Mol Life Sci 2020; 77:4133-4142. [PMID: 31932854 PMCID: PMC7532968 DOI: 10.1007/s00018-019-03411-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/12/2019] [Accepted: 12/04/2019] [Indexed: 11/07/2022]
Abstract
The transcription factors of the nuclear factor κB (NF-κB) family play a pivotal role in the cellular response to DNA damage. Genotoxic stress-induced activation of NF-κB differs from the classical canonical pathway by shuttling of the NF-κB Essential Modifier (IKKγ/NEMO) subunit through the nucleus. Here, we show that DNA-dependent protein kinase (DNA-PK), an enzyme involved in DNA double-strand break (DSB) repair, triggers the phosphorylation of NEMO by genotoxic stress, thereby enabling shuttling of NEMO through the nucleus with subsequent NF-κB activation. We identified serine 43 of NEMO as a DNA-PK phosphorylation site and point mutation of this serine to alanine led to a complete block of NF-κB activation by ionizing radiation (IR). Blockade of DNA-PK by a specific shRNA or by DNA-PKcs-deficient cells abrogated NEMO entry into the nucleus, as well. Accordingly, SUMOylation of NEMO, a prerequisite of nuclear NEMO, was abolished. Based on these observations, we propose a model in which NEMO phosphorylation by DNA-PK provides the first step in the nucleocytoplasmic trafficking of NEMO.
Collapse
Affiliation(s)
- Senad Medunjanin
- Internal Medicine/Cardiology, Angiology and Pneumology, Magdeburg University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Maximilian Putzier
- Internal Medicine/Cardiology, Angiology and Pneumology, Magdeburg University, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Till Nöthen
- Internal Medicine/Cardiology, Angiology and Pneumology, Magdeburg University, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Sönke Weinert
- Internal Medicine/Cardiology, Angiology and Pneumology, Magdeburg University, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Magdeburg University, Magdeburg, Germany
| | - Blerim Luani
- Internal Medicine/Cardiology, Angiology and Pneumology, Magdeburg University, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | | | - Ruediger C Braun-Dullaeus
- Internal Medicine/Cardiology, Angiology and Pneumology, Magdeburg University, Leipziger Strasse 44, 39120, Magdeburg, Germany
| |
Collapse
|
2
|
Hewitt SL, Wong JB, Lee JH, Nishana M, Chen H, Coussens M, Arnal SM, Blumenberg LM, Roth DB, Paull TT, Skok JA. The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect. Cell Rep 2018; 21:979-993. [PMID: 29069605 PMCID: PMC5662208 DOI: 10.1016/j.celrep.2017.09.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022] Open
Abstract
Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.
Collapse
Affiliation(s)
- Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Jason B Wong
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Hongxi Chen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Marc Coussens
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suzzette M Arnal
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Lili M Blumenberg
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - David B Roth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2943-2956. [PMID: 28213501 PMCID: PMC5360515 DOI: 10.4049/jimmunol.1601639] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
Abstract
Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.
Collapse
Affiliation(s)
- Megan R Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Adrian Rivera-Reyes
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| | - Noah B Bloch
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06520
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
4
|
Meek K, Xu Y, Bailie C, Yu K, Neal JA. The ATM Kinase Restrains Joining of Both VDJ Signal and Coding Ends. THE JOURNAL OF IMMUNOLOGY 2016; 197:3165-3174. [PMID: 27574300 DOI: 10.4049/jimmunol.1600597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/06/2016] [Indexed: 11/19/2022]
Abstract
The evidence that ATM affects resolution of RAG-induced DNA double-strand breaks is profuse and unequivocal; moreover, it is clear that the RAG complex itself cooperates (in an undetermined way) with ATM to facilitate repair of these double-strand breaks by the classical nonhomologous end-joining pathway. The mechanistic basis for the cooperation between ATM and the RAG complex has not been defined, although proposed models invoke ATM and RAG2's C terminus in maintaining the RAG postcleavage complex. In this study, we show that ATM reduces the rate of both coding and signal joining in a robust episomal assay; we suggest that this is the result of increased stability of the postcleavage complex. ATM's ability to inhibit VDJ joining requires its enzymatic activity. The noncore C termini of both RAG1 and RAG2 are also required for ATM's capacity to limit signal (but not coding) joining. Moreover, potential phosphorylation targets within the C terminus of RAG2 are also required for ATM's capacity to limit signal joining. These data suggest a model whereby the RAG signal end complex is stabilized by phosphorylation of RAG2 by ATM.
Collapse
Affiliation(s)
- Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; .,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Caleb Bailie
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, College of Human Medicine, Michigan State University, East Lansing, MI 48824
| | - Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| |
Collapse
|
5
|
Abstract
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
6
|
Gapud EJ, Lee BS, Mahowald GK, Bassing CH, Sleckman BP. Repair of chromosomal RAG-mediated DNA breaks by mutant RAG proteins lacking phosphatidylinositol 3-like kinase consensus phosphorylation sites. THE JOURNAL OF IMMUNOLOGY 2011; 187:1826-34. [PMID: 21742970 DOI: 10.4049/jimmunol.1101388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunits (DNA-PKcs) are members of the phosphatidylinositol 3-like family of serine/threonine kinases that phosphorylate serines or threonines when positioned adjacent to a glutamine residue (SQ/TQ). Both kinases are activated rapidly by DNA double-strand breaks (DSBs) and regulate the function of proteins involved in DNA damage responses. In developing lymphocytes, DSBs are generated during V(D)J recombination, which is required to assemble the second exon of all Ag receptor genes. This reaction is initiated through a DNA cleavage step by the RAG1 and RAG2 proteins, which together comprise an endonuclease that generates DSBs at the border of two recombining gene segments and their flanking recombination signals. This DNA cleavage step is followed by a joining step, during which pairs of DNA coding and signal ends are ligated to form a coding joint and a signal joint, respectively. ATM and DNA-PKcs are integrally involved in the repair of both signal and coding ends, but the targets of these kinases involved in the repair process have not been fully elucidated. In this regard, the RAG1 and RAG2 proteins, which each have several SQ/TQ motifs, have been implicated in the repair of RAG-mediated DSBs. In this study, we use a previously developed approach for studying chromosomal V(D)J recombination that has been modified to allow for the analysis of RAG1 and RAG2 function. We show that phosphorylation of RAG1 or RAG2 by ATM or DNA-PKcs at SQ/TQ consensus sites is dispensable for the joining step of V(D)J recombination.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
7
|
Gapud EJ, Sleckman BP. Unique and redundant functions of ATM and DNA-PKcs during V(D)J recombination. Cell Cycle 2011; 10:1928-35. [PMID: 21673501 DOI: 10.4161/cc.10.12.16011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lymphocyte antigen receptor genes are assembled through the process of V(D)J recombination, during which pairwise DNA cleavage of gene segments results in the formation of four DNA ends that are resolved into a coding joint and a signal joint. The joining of these DNA ends occurs in G1-phase lymphocytes and is mediated by the non-homologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. The ataxia telangiectasia mutated (ATM) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), two related kinases, both function in the repair of DNA breaks generated during antigen receptor gene assembly. Although these proteins have unique functions during coding joint formation, their activities in signal joint formation, if any, have been less clear. However, two recent studies demonstrated that ATM and DNA-PKcs have overlapping activities important for signal joint formation. Here, we discuss the unique and shared activities of the ATM and DNA-PKcs kinases during V(D)J recombination, a process that is essential for lymphocyte development and the diversification of antigen receptors.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
8
|
Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation. Proc Natl Acad Sci U S A 2011; 108:2022-7. [PMID: 21245316 DOI: 10.1073/pnas.1013295108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lymphocyte antigen receptor gene assembly occurs through the process of V(D)J recombination, which is initiated when the RAG endonuclease introduces DNA DSBs at two recombining gene segments to form broken DNA coding end pairs and signal end pairs. These paired DNA ends are joined by proteins of the nonhomologous end-joining (NHEJ) pathway of DSB repair to form a coding joint and signal joint, respectively. RAG DSBs are generated in G1-phase developing lymphocytes, where they activate the ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases to orchestrate diverse cellular DNA damage responses including DSB repair. Paradoxically, although Atm and DNA-PKcs both function during coding joint formation, Atm appears to be dispensible for signal joint formation; and although some studies have revealed an activity for DNA-PKcs during signal joint formation, others have not. Here we show that Atm and DNA-PKcs have overlapping catalytic activities that are required for chromosomal signal joint formation and for preventing the aberrant resolution of signal ends as potentially oncogenic chromosomal translocations.
Collapse
|
9
|
Medunjanin S, Weinert S, Schmeisser A, Mayer D, Braun-Dullaeus RC. Interaction of the double-strand break repair kinase DNA-PK and estrogen receptor-alpha. Mol Biol Cell 2010; 21:1620-8. [PMID: 20219974 PMCID: PMC2861619 DOI: 10.1091/mbc.e09-08-0724] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here we show that, upon estrogen stimulation, DNA-dependent protein kinase (DNA-PK) forms a complex with estrogen receptor-α in a breast cancer cell line (MELN). Inhibition of DNA-PK by siRNA technology demonstrated that estrogen-induced ERα activation and cell cycle progression is, at least, partially dependent on DNA-PK. Estrogens are suggested to play a role in the development and progression of proliferative diseases such as breast cancer. Like other steroid hormone receptors, the estrogen receptor-α (ERα) is a substrate of protein kinases, and phosphorylation has profound effects on its function and activity. Given the importance of DNA-dependent protein kinase (DNA-PK) for DNA repair, cell cycle progression, and survival, we hypothesized that it modulates ERα signaling. Here we show that, upon estrogen stimulation, DNA-PK forms a complex with ERα in a breast cancer cell line (MELN). DNA-PK phosphorylates ERα at Ser-118. Phosphorylation resulted in stabilization of ERα protein as inhibition of DNA-PK resulted in its proteasomal degradation. Activation of DNA-PK by double-strand breaks or its inhibition by siRNA technology demonstrated that estrogen-induced ERα activation and cell cycle progression is, at least, partially dependent on DNA-PK.
Collapse
Affiliation(s)
- Senad Medunjanin
- Internal Medicine, Department of Cardiology, Angiology, and Pneumology, Magdeburg University, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Transcriptional activation of DNA-dependent protein kinase catalytic subunit gene expression by oestrogen receptor-alpha. EMBO Rep 2010; 11:208-13. [PMID: 20111054 PMCID: PMC2838685 DOI: 10.1038/embor.2009.279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 11/23/2022] Open
Abstract
In this report Braun-Dullaeus and co-workers demonstrate that DNA-PK can be directly induced by oestrogen through increased binding of the transcription factor ERα to the DNA-PKcs promoter and identify functional oestrogen responsive DNA elements (EREs) within the DNA-PKcs promoter. Oestrogen-induced DNA-PK transactivation results in an increased ability of the cells to repair DNA double-strand breaks. The cellular response to DNA double-strand break (DSB) occurs through an integrated sensing and signalling network that maintains genomic stability. Oestrogen (E2), among its many functions, is known to have a positive effect on global genomic DNA repair; however, the mechanism by which it functions is unclear. A central enzyme involved in DNA DSB repair in mammalian cells is the DNA-dependent protein kinase (DNA-PK). Here, we show that E2 enhances DNA-PK catalytic subunit (DNA-PKcs) promoter activity with subsequent transcriptional and translational upregulation of DNA-PKcs in a breast cancer cell line. We identify two potential E2 receptor-α (ERα)-binding sites in a region upstream from the DNA-PKcs initiation site. By using small interfering RNA and the specific E2 receptor antagonist ICI 182,780, we demonstrate that ERα knockdown reduces E2-induced upregulation of DNA-PKcs expression and activity in breast carcinoma cells. E2-induced DNA-PK transactivation results in an increased ability of the cells to repair DNA DSB. This previously unknown mechanism of DNA-PK regulation sheds new light on tumour biology and reveals new possibilities for the prevention and therapy of E2-sensitive proliferative diseases.
Collapse
|
11
|
Netchvolodov KK, Kurova VS, Kononikhin AS, Savochkina YUA, Nikolaevb EN, Kupriyanova NS, Ryskov AP, Varfolomeev SD. Complexes of DNA-dependent protein kinase with single-stranded oligo-(AGGG)6: identification and possible role in modulation of ribosomal RNA transcription. DOKL BIOCHEM BIOPHYS 2009; 424:1-4. [PMID: 19341095 DOI: 10.1134/s1607672909010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- K K Netchvolodov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334 Russia
| | | | | | | | | | | | | | | |
Collapse
|