1
|
Sabbir MG, Taylor CG, Zahradka P. Hypomorphic CAMKK2 in EA.hy926 endothelial cells causes abnormal transferrin trafficking, iron homeostasis and glucose metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118763. [DOI: 10.1016/j.bbamcr.2020.118763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
|
2
|
Yu Y, Li LF, Tao J, Zhou XM, Xu C. Silibinin induced apoptosis of human epidermal cancer A431 cells by promoting mitochondrial NOS. Free Radic Res 2019; 53:714-726. [DOI: 10.1080/10715762.2019.1603376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Lan-fang Li
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jing Tao
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xiao-mian Zhou
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
3
|
Guo L, Chen D, Yin X, Shu Q. GSK-3β Promotes Cell Migration and Inhibits Autophagy by Mediating the AMPK Pathway in Breast Cancer. Oncol Res 2018; 27:487-494. [PMID: 30037362 PMCID: PMC7848277 DOI: 10.3727/096504018x15323394008784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GSK-3β is a versatile protein kinase participating in many reactions. Currently, there is insufficient understanding of its influence on breast cancer (BC). In order to explore its influence on migration and invasion in BC, we investigated its expression in BC cell lines using qRT-PCR and Western blot (WB). Immunohistochemistry (IHC) was used to examine the potential of GSK-3β to predict clinical outcome in BC patients. GSK-3β knockdown was achieved using an shRNA plasmid vector in T47D cells. Our research explored the biological reactions and downstream pathways involved. We found excessive GSK-3β expression in BC tissues, which was correlated with worse clinicopathological parameters and clinical outcome. Progression of BC was suppressed by GSK-3β knockdown. Furthermore, suppression of GSK-3β function led to a noticeable decrease in ATP generation, and this was associated with stimulation of AMP-activated protein kinase (AMPK) in T47D cells. Activation of AMPK, a typical sign of autophagy stimulation, was triggered after suppression of GSK-3β function, in parallel with increased generation of LC3 II. Our findings therefore indicate that GSK-3β participates in regulation of migration as well as stimulation of autophagy via mediating activation of the AMPK pathway. This suggests that GSK-3β has potential as a predictor of clinical outcome and as a target for BC therapy.
Collapse
Affiliation(s)
- Lu Guo
- Jinan University, Guangzhou, Guangdong, P.R. China
| | - Duankai Chen
- General Surgery, YouJiang Medical University for Nationalities, Guangxi, P.R. China
| | - Xing Yin
- Wound Regeneration and Vascular Surgery Department of the First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, P.R. China
| | - Qingfeng Shu
- General Surgery, YouJiang Medical University for Nationalities, Guangxi, P.R. China
| |
Collapse
|
4
|
Yan T, Zhang J, Tang D, Zhang X, Jiang X, Zhao L, Zhang Q, Zhang D, Huang Y. Hypoxia Regulates mTORC1-Mediated Keratinocyte Motility and Migration via the AMPK Pathway. PLoS One 2017; 12:e0169155. [PMID: 28068384 PMCID: PMC5221764 DOI: 10.1371/journal.pone.0169155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/13/2016] [Indexed: 01/06/2023] Open
Abstract
Keratinocyte migration, the initial event and rate-limiting step in wound healing, plays a vital role in restoration of the intact skin barrier, also known as re-epithelialization. After acute tissue injury, hypoxic microenvironment gradually develops and acts as an early stimulus to initiate the healing process. Although we have previously found that hypoxia induces keratinocyte migration, the underlying mechanism remains unknown. Here, we first observed that hypoxia increased mTORC1 activity. Recombinant lentivirus vector and Rapamycin were used for silencing mTORC1 in HaCaT cells and primary mouse keratinocytes (MKs). Using cell migration assay and a Zeiss chamber equipped with imaging system, we also demonstrated that mTORC1 downregulation reversed hypoxia-induced keratinocyte motility and lateral migration. Importantly, hypoxia-activated mTORC1 was accompanied by the AMPK downregulation, and we found that the AMPK pathway activators Metformin (Met) and 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) decreased the mTORC1 activity, cell motility and lateral migration. Thus, our results suggest that hypoxia regulates mTORC1-mediated keratinocyte motility and migration via the AMPK pathway.
Collapse
Affiliation(s)
- Tiantian Yan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Di Tang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xingyue Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liping Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
5
|
Xue RQ, Sun L, Yu XJ, Li DL, Zang WJ. Vagal nerve stimulation improves mitochondrial dynamics via an M 3 receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med 2017; 21:58-71. [PMID: 27491814 PMCID: PMC5192749 DOI: 10.1111/jcmm.12938] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dynamics-fission and fusion-are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)-induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin-related peptide1 (Drp1) and mitochondrial fission protein1 (Fis-1)) and decreased the expression of fusion proteins (optic atrophy-1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis-1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP-activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ) during myocardial ischaemia. Treatment with subtype-3 of muscarinic acetylcholine receptor (M3 R) antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3 R/CaMKKβ/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3 R/CaMKKβ/AMPK pathway, to attenuate ISO-induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.
Collapse
Affiliation(s)
- Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
6
|
Yung MMH, Ngan HYS, Chan DW. Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges. Acta Biochim Biophys Sin (Shanghai) 2016; 48:301-17. [PMID: 26764240 PMCID: PMC4886241 DOI: 10.1093/abbs/gmv128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/29/2015] [Indexed: 12/25/2022] Open
Abstract
The development and strategic application of effective anticancer therapies have turned out to be one of the most critical approaches of managing human cancers. Nevertheless, drug resistance is the major obstacle for clinical management of these diseases especially ovarian cancer. In the past years, substantial studies have been carried out with the aim of exploring alternative therapeutic approaches to enhance efficacy of current chemotherapeutic regimes and reduce the side effects caused in order to produce significant advantages in overall survival and to improve patients' quality of life. Targeting cancer cell metabolism by the application of AMP-activated protein kinase (AMPK)-activating agents is believed to be one of the most plausible attempts. AMPK activators such as 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, A23187, metformin, and bitter melon extract not only prevent cancer progression and metastasis but can also be applied as a supplement to enhance the efficacy of cisplatin-based chemotherapy in human cancers such as ovarian cancer. However, because of the undesirable outcomes along with the frequent toxic side effects of most pharmaceutical AMPK activators that have been utilized in clinical trials, attentions of current studies have been aimed at the identification of replaceable reagents from nutraceuticals or traditional medicines. However, the underlying molecular mechanisms of many nutraceuticals in anticancer still remain obscure. Therefore, better understanding of the functional characterization and regulatory mechanism of natural AMPK activators would help pharmaceutical development in opening an area to intervene ovarian cancer and other human cancers.
Collapse
Affiliation(s)
- Mingo M H Yung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - David W Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Jin SW, Choi CY, Hwang YP, Kim HG, Kim SJ, Chung YC, Lee KJ, Jeong TC, Jeong HG. Betulinic Acid Increases eNOS Phosphorylation and NO Synthesis via the Calcium-Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:785-791. [PMID: 26750873 DOI: 10.1021/acs.jafc.5b05416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Betulinic acid (BA) is a naturally occurring pentacyclic triterpene that attenuates vascular diseases and atherosclerosis, but the mechanism by which it stimulates endothelial nitric oxide synthase (eNOS) is unclear. eNOS is the key regulatory enzyme in the vascular endothelium. This study examined the intracellular pathways underlying the effects of BA on eNOS activity and endothelial nitric oxide (NO) production in endothelial cells. BA treatment induced both eNOS phosphorylation at Ser1177 and NO production. It also increased the level of intracellular Ca(2+) and phosphorylation of Ca(2+)/calmodulin-dependent kinase IIα (CaMKIIα) and Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Inhibition of the L-type Ca(2+) channel (LTCC) and the ryanodine receptor (RyR) abolished BA-induced intracellular levels of Ca(2+) and eNOS phosphorylation. Treatment with W7 (a CaM antagonist), KN-93 (a selective inhibitor of CaMKII), and STO 609 (a selective inhibitor of CaMKK) suppressed eNOS phosphorylation and NO production. Moreover, AMP-activated protein kinase (AMPK) was induced by BA, and BA-induced eNOS phosphorylation was inhibited by compound C, an AMPK inhibitor. Taken together, these results indicate that BA activates eNOS phosphorylation and NO synthesis via the Ca(2+)/CaMKII and Ca(2+)/CaMKK/AMPK pathways. These findings provide further insight into the eNOS signaling pathways involved in the antiatherosclerosis effects of BA.
Collapse
Affiliation(s)
- Sun Woo Jin
- College of Pharmacy, Chungnam National University , Daejeon 305-764, Republic of Korea
| | - Chul Yung Choi
- Jeollanamdo Institute of Natural Resources Research , Jeollanamdo 529-851, Republic of Korea
| | | | - Hyung Gyun Kim
- College of Pharmacy, Chungnam National University , Daejeon 305-764, Republic of Korea
| | - Se Jong Kim
- College of Pharmacy, Chungnam National University , Daejeon 305-764, Republic of Korea
| | | | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine , Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan 712-749, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University , Daejeon 305-764, Republic of Korea
| |
Collapse
|
8
|
Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu SS, Chen JX, Li RL, Wu Y, Zhang HY, Zhu Y, Li YX, He JH, Wang M, Jiang W. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms. Basic Res Cardiol 2016; 111:13. [PMID: 26786260 DOI: 10.1007/s00395-016-0531-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/08/2016] [Indexed: 02/05/2023]
Abstract
SIRT6, a member of the NAD(+)-dependent class III deacetylase sirtuin family, has been revealed to play important roles in promoting cellular resistance against oxidative stress. The formation of reactive oxygen species (ROS) and oxidative stress are the crucial mechanisms underlying cellular damage and dysfunction in cardiac ischemia/reperfusion (I/R) injury, but the role of SIRT6 in I/R-induced ROS and oxidative stress is poorly understood. In this study, by using heterozygous SIRT6 knockout (SIRT6(+/-)) mice and cultured neonatal cardiomyocyte models, we investigated how SIRT6 mediates oxidative stress and myocardial injury during I/R. Partial knockout (KO) of SIRT6 aggravated myocardial damage, ventricular remodeling, and oxidative stress in mice subjected to myocardial I/R, whereas restoration of SIRT6 expression by direct cardiac injection of adenoviral constructs encoding SIRT6 reversed these deleterious effects of SIRT6 KO in the ischemic heart. In addition, partial deletion of the SIRT6 gene decreased myocardial functional recovery following I/R in a Langendorff perfusion model. Similarly, the protective effects of SIRT6 were also observed in cultured cardiomyocytes following hypoxia/reoxygenation. Intriguingly, SIRT6 was noticed to up-regulate AMP/ATP and then activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)-forkhead box O3α (FoxO3α) axis and further initiated the downstream antioxidant-encoding gene expression (manganese superoxide dismutase and catalase), thereby decreasing cellular levels of oxidative stress and mediating cardioprotection in the ischemic heart. These results suggest that SIRT6 protects the heart from I/R injury through FoxO3α activation in the ischemic heart in an AMP/ATP-induced AMPK-dependent way, thus upregulating antioxidants and suppressing oxidative stress.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu-Lei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- School of Life Sciences and Bioengineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Ming-ming Tong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lu Gan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huali Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-si Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jia-Xiang Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ru-Li Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yao Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Heng-yu Zhang
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ye Zhu
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yan-xin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Jin-han He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Meijing Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Cremer C, Reid G. A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 2015; 16:246. [PMID: 26541514 PMCID: PMC4635527 DOI: 10.1186/s13059-015-0802-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Results Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40–700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. Conclusions These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0802-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ina Kirmes
- Institute for Molecular Biology, 55128, Mainz, Germany
| | | | - Kirti Prakash
- Institute for Molecular Biology, 55128, Mainz, Germany.,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | | | | | | | | | - Karolina Fornalczyk
- Institute for Molecular Biology, 55128, Mainz, Germany.,Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Dongyu Ma
- Institute for Molecular Biology, 55128, Mainz, Germany.,Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, 68167, Mannheim, Germany
| | - Udo Birk
- Institute for Molecular Biology, 55128, Mainz, Germany
| | - Christoph Cremer
- Institute for Molecular Biology, 55128, Mainz, Germany. .,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany.
| | - George Reid
- Institute for Molecular Biology, 55128, Mainz, Germany.
| |
Collapse
|
10
|
Bejaoui M, Pantazi E, Folch-Puy E, Panisello A, Calvo M, Pasut G, Rimola A, Navasa M, Adam R, Roselló-Catafau J. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:794287. [PMID: 26543868 PMCID: PMC4620277 DOI: 10.1155/2015/794287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022]
Abstract
Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Eirini Pantazi
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Arnau Panisello
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - María Calvo
- Serveis Cientifico-Tècnics, Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35122 Padova, Italy
| | - Antoni Rimola
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Miquel Navasa
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - René Adam
- Centre Hepato-Biliaire, AP-P-HP Hôpital Paul Brousse, Inserm U776, Université Paris Sud, Villejuif, 75008 Paris, France
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Malvoisin E, Makhloufi D, Livrozet JM. Searching for biomarkers of comorbidities in sera of treated HIV-infected patients by isoelectric focusing. Electrophoresis 2015; 36:1251-5. [PMID: 25630581 DOI: 10.1002/elps.201400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/11/2015] [Accepted: 01/11/2015] [Indexed: 11/08/2022]
Abstract
Based on their characteristics, we hypothesized that the following parameters, namely collagen IV, glutathione S-transferase, secretory component (SC), and AMP-activated protein kinase α1α2 may be useful serum markers in the detection of comorbidities in treated HIV-infected patients. These parameters were determined in 204 HIV-infected patients and 35 controls by using IEF and densitometry. Collagen IV was undetectable in controls and the majority of HIV-infected patients. Twenty-two HIV-infected patients presented significantly elevated levels of collagen IV, most of them were coinfected with hepatitis C virus and/or hepatitis B virus. SC was undetectable in controls. SC was significantly increased in 81 HIV-infected patients and significantly correlated with aspartate aminotransferase (r = 0.267, p = 0.0049), alkaline phosphatase (r = 0.309, p = 0.0011), and γ-glutamyl-transferase (r = 0.264, p = 0.0054). Glutathione S-transferase levels of HIV-infected patients were significantly higher than the controls (3779 ± 5860 vs. 785 ± 71 DU, p = 0.0007) and significantly correlated with serum urea (r = 0.204, p = 0.0038), triglycerides (r = 0.209, p = 0.0033), and lipase (r = 0.219, p = 0.0025). AMP-activated protein kinase α1α2 levels of HIV-infected patients were significantly higher than the controls (5676 ± 6248 vs. 1189 ± 6248 DU, p = 0.0009). Further studies are needed to demonstrate the relevance of these results to diagnose non-AIDS-related illnesses in HIV-infected patients.
Collapse
Affiliation(s)
| | - Djamila Makhloufi
- Service des Maladies Infectieuses et Tropicales de l'hôpital Edouard Herriot, Lyon, France
| | - Jean-Michel Livrozet
- Service des Maladies Infectieuses et Tropicales de l'hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
12
|
Kee HJ, Cheong JH. Tumor bioenergetics: an emerging avenue for cancer metabolism targeted therapy. BMB Rep 2014; 47:158-66. [PMID: 24499670 PMCID: PMC4163877 DOI: 10.5483/bmbrep.2014.47.3.273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/28/2013] [Accepted: 01/28/2014] [Indexed: 12/28/2022] Open
Abstract
Cell proliferation is a delicately regulated process that couples growth signals and metabolic demands to produce daughter cells. Interestingly, the proliferation of tumor cells immensely depends on glycolysis, the Warburg effect, to ensure a sufficient amount of metabolic flux and bioenergetics for macromolecule synthesis and cell division. This unique metabolic derangement ould provide an opportunity for developing cancer therapeutic strategy, particularly when other diverse anti-cancer treatments have been proved ineffective in achieving durable response, largely due to the emergence of resistance. Recent advances in deeper understanding of cancer metabolism usher in new horizons of the next generation strategy for cancer therapy. Here, we discuss the focused review of cancer energy metabolism, and the therapeutic exploitation of glycolysis and OXPHOS as a novel anti-cancer strategy, with particular emphasis on the promise of this approach, among other cancer metabolism targeted therapies that reveal unexpected complexity and context-dependent metabolic adaptability, complicating the development of effective strategies. [BMB Reports 2014; 47(3): 158-166]
Collapse
Affiliation(s)
- Hyun Jung Kee
- Departments of Biomedical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jae-Ho Cheong
- Departments of Surgery and; Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
13
|
Koltsova SV, Shilov B, Birulina JG, Akimova OA, Haloui M, Kapilevich LV, Gusakova SV, Tremblay J, Hamet P, Orlov SN. Transcriptomic changes triggered by hypoxia: evidence for HIF-1α-independent, [Na+]i/[K+]i-mediated, excitation-transcription coupling. PLoS One 2014; 9:e110597. [PMID: 25375852 PMCID: PMC4222758 DOI: 10.1371/journal.pone.0110597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022] Open
Abstract
This study examines the relative impact of canonical hypoxia-inducible factor-1alpha- (HIF-1α and Na+i/K+i-mediated signaling on transcriptomic changes evoked by hypoxia and glucose deprivation. Incubation of RASMC in ischemic conditions resulted in ∼3-fold elevation of [Na+]i and 2-fold reduction of [K+]i. Using global gene expression profiling we found that Na+,K+-ATPase inhibition by ouabain or K+-free medium in rat aortic vascular smooth muscle cells (RASMC) led to the differential expression of dozens of genes whose altered expression was previously detected in cells subjected to hypoxia and ischemia/reperfusion. For further investigations, we selected Cyp1a1, Fos, Atf3, Klf10, Ptgs2, Nr4a1, Per2 and Hes1, i.e. genes possessing the highest increments of expression under sustained Na+,K+-ATPase inhibition and whose implication in the pathogenesis of hypoxia was proved in previous studies. In ouabain-treated RASMC, low-Na+, high-K+ medium abolished amplification of the [Na+]i/[K+]i ratio as well as the increased expression of all tested genes. In cells subjected to hypoxia and glucose deprivation, dissipation of the transmembrane gradient of Na+ and K+ completely eliminated increment of Fos, Atf3, Ptgs2 and Per2 mRNAs and sharply diminished augmentation expression of Klf10, Edn1, Nr4a1 and Hes1. In contrast to low-Na+, high-K+ medium, RASMC transfection with Hif-1a siRNA attenuated increments of Vegfa, Edn1, Klf10 and Nr4a1 mRNAs triggered by hypoxia but did not impact Fos, Atf3, Ptgs2 and Per2 expression. Thus, our investigation demonstrates, for the first time, that Na+i/K+i-mediated, Hif-1α- -independent excitation-transcription coupling contributes to transcriptomic changes evoked in RASMC by hypoxia and glucose deprivation.
Collapse
MESH Headings
- Animals
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Ouabain/pharmacology
- Rats
- Signal Transduction/drug effects
- Sodium-Potassium-Exchanging ATPase/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Svetlana V. Koltsova
- Department of Biology, Moscow State University, Moscow, Russia
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Boris Shilov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Julia G. Birulina
- Department of Medical Biology, Siberian State Medical University, Tomsk, Russia
| | - Olga A. Akimova
- Department of Biology, Moscow State University, Moscow, Russia
| | - Mounsif Haloui
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Leonid V. Kapilevich
- Department of Medical Biology, Siberian State Medical University, Tomsk, Russia
- Department of Physical Education, Tomsk State University, Tomsk, Russia
| | | | - Johanne Tremblay
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Pavel Hamet
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Sergei N. Orlov
- Department of Biology, Moscow State University, Moscow, Russia
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Department of Medical Biology, Siberian State Medical University, Tomsk, Russia
- * E-mail:
| |
Collapse
|
14
|
Yang C, Xu Z, Zhao Z, Li L, Zhao T, Peng D, Xu M, Rong R, Long YQ, Zhu T. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2306-17. [PMID: 25220479 DOI: 10.1016/j.bbadis.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/14/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Helix B surface peptide (HBSP), derived from erythropoietin, displays powerful tissue protection during kidney ischemia reperfusion (IR) injury without erythropoietic side effects. We employed cyclization strategy for the first time, and synthesized thioether-cyclized helix B peptide (CHBP) to improve metabolic stability and renoprotective effect. LC-MS/MS analysis was adopted to examine the stability of CHBP in vitro and in vivo. The renoprotective effect of CHBP in terms of renal function, apoptosis, inflammation, extracellular matrix deposition, and histological injury was also detected in vivo and in vitro. Antibody array and western blot were performed to analyze the signal pathway of involvement by CHBP in the IR model and renal tubular epithelial cells. In this study, thioether-cyclized peptide was significantly stable in vivo and in vitro. One dose of 8nmol/kg CHBP administered intraperitoneally at the onset of reperfusion improved renal protection compared with three doses of 8nmol/kg linear HBSP in a 48h murine IR model. In a one-week model, the one dose CHBP-treated group exhibited remarkably improved renal function over the IR group, and attenuated kidney injury, including reduced inflammation and apoptosis. Interestingly, we found that the phosphorylation of autophagy protein mTORC1 was dramatically reduced upon CHBP treatment. We also demonstrated that CHBP induced autophagy via inhibition of mTORC1 and activation of mTORC2, leading to renoprotective effects on IR. Our results indicate that the novel metabolically stable CHBP is a promising therapeutic medicine for kidney IR injury treatment.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zhongliang Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tian Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Dian Peng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China; Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China; Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Kweon HJ, Suh BC. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep 2014; 46:295-304. [PMID: 23790972 PMCID: PMC4133903 DOI: 10.5483/bmbrep.2013.46.6.121] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn2+, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel’s large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated. [BMB Reports 2013; 46(6): 295-304]
Collapse
Affiliation(s)
- Hae-Jin Kweon
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | | |
Collapse
|
16
|
Saks V, Schlattner U, Tokarska-Schlattner M, Wallimann T, Bagur R, Zorman S, Pelosse M, Santos PD, Boucher F, Kaambre T, Guzun R. Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of Creatine, Phosphotransfer Pathways, and AMPK Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Lang F, Föller M. Regulation of ion channels and transporters by AMP-activated kinase (AMPK). Channels (Austin) 2013; 8:20-8. [PMID: 24366036 DOI: 10.4161/chan.27423] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The energy-sensing AMP-activated kinase AMPK ensures survival of energy-depleted cells by stimulating ATP production and limiting ATP utilization. Both energy production and energy consumption are profoundly influenced by transport processes across the cell membane including channels, carriers and pumps. Accordingly, AMPK is a powerful regulator of transport across the cell membrane. AMPK regulates diverse K(+) channels, Na(+) channels, Ca(2+) release activated Ca(2+) channels, Cl(-) channels, gap junctional channels, glucose carriers, Na(+)/H(+)-exchanger, monocarboxylate-, phosphate-, creatine-, amino acid-, peptide- and osmolyte-transporters, Na(+)/Ca(2+)-exchanger, H(+)-ATPase and Na(+)/K(+)-ATPase. AMPK activates ubiquitin ligase Nedd4-2, which labels several plasma membrane proteins for degradation. AMPK further regulates transport proteins by inhibition of Rab GTPase activating protein (GAP) TBC1D1. It stimulates phosphatidylinositol 3-phosphate 5-kinase PIKfyve and inhibits phosphatase and tensin homolog (PTEN) via glycogen synthase kinase 3β (GSK3β). Moreover, it stabilizes F-actin as well as downregulates transcription factor NF-κB. All those cellular effects serve to regulate transport proteins.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology; University of Tübingen; Tübingen, Germany
| | - Michael Föller
- Department of Physiology; University of Tübingen; Tübingen, Germany
| |
Collapse
|
18
|
Allagnat F, Klee P, Cardozo AK, Meda P, Haefliger JA. Connexin36 contributes to INS-1E cells survival through modulation of cytokine-induced oxidative stress, ER stress and AMPK activity. Cell Death Differ 2013; 20:1742-52. [PMID: 24096873 PMCID: PMC3824597 DOI: 10.1038/cdd.2013.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 08/25/2013] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication mediated by gap junctions made of Connexin36 (Cx36) contributes to pancreatic β-cell function. We have recently demonstrated that Cx36 also supports β-cell survival by a still unclear mechanism. Using specific Cx36 siRNAs or adenoviral vectors, we now show that Cx36 downregulation promotes apoptosis in INS-1E cells exposed to the pro-inflammatory cytokines (IL-1β, TNF-α and IFN-γ) involved at the onset of type 1 diabetes, whereas Cx36 overexpression protects against this effect. Cx36 overexpression also protects INS-1E cells against endoplasmic reticulum (ER) stress-mediated apoptosis, and alleviates the cytokine-induced production of reactive oxygen species, the depletion of the ER Ca(2+) stores, the CHOP overexpression and the degradation of the anti-apoptotic protein Bcl-2 and Mcl-1. We further show that cytokines activate the AMP-dependent protein kinase (AMPK) in a NO-dependent and ER-stress-dependent manner and that AMPK inhibits Cx36 expression. Altogether, the data suggest that Cx36 is involved in Ca(2+) homeostasis within the ER and that Cx36 expression is downregulated following ER stress and subsequent AMPK activation. As a result, cytokine-induced Cx36 downregulation elicits a positive feedback loop that amplifies ER stress and AMPK activation, leading to further Cx36 downregulation. The data reveal that Cx36 plays a central role in the oxidative stress and ER stress induced by cytokines and the subsequent regulation of AMPK activity, which in turn controls Cx36 expression and mitochondria-dependent apoptosis of insulin-producing cells.
Collapse
Affiliation(s)
- F Allagnat
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne. Switzerland
| | - P Klee
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland
| | - A K Cardozo
- Laboratoire de Médecine Expérimentale, Université Libre de Bruxelles, Brussels, Belgium
| | - P Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland
| | - J-A Haefliger
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne. Switzerland
| |
Collapse
|
19
|
Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK, Hwa Liu S. Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One 2013; 8:e79814. [PMID: 24223196 PMCID: PMC3819246 DOI: 10.1371/journal.pone.0079814] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/04/2013] [Indexed: 02/04/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury.
Collapse
Affiliation(s)
- Li-Ting Wang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bo-Lin Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Departments of Integrated Diagnostics & Therapeutics and Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (SHL); (CKC)
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail: (SHL); (CKC)
| |
Collapse
|
20
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
21
|
Wall AM, Corcoran AE, O'Halloran KD, O'Connor JJ. Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis 2013; 62:8-17. [PMID: 24055213 DOI: 10.1016/j.nbd.2013.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 01/11/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is an underlying component of obstructive sleep apnoea and has been shown to have deleterious and damaging effects on central neurons and to impair synaptic plasticity in the CA1 region of the rat hippocampus. CIH has previously been shown to impair synaptic plasticity and working memory. CIH is a potent inducer of hypoxia inducible factor (HIF), a key regulator in a cell's adaptation to hypoxia that plays an important role in the fate of neurons during ischemia. Levels of HIF-1α are regulated by the activity of a group of enzymes called HIF-prolyl 4-hydroxylases (PHDs) and these have become potential pharmacological targets for preconditioning against ischemia. However little is known about the effects of prolyl hydroxylase inhibition and CIH on synaptic transmission and plasticity in sub-regions of the hippocampus. Male Wistar rats were treated for 7-days with either saline, CIH or PHD inhibition (dimethyloxaloylglycine, DMOG; 50mg/kg, i.p.). At the end of treatment all three groups showed no change in synaptic excitability using paired pulse paradigms. However long-term potentiation (LTP) was impaired in the CA1 region of the hippocampus in both CIH and DMOG treated animals. LTP induced in the dentate gyrus was not significantly affected by either CIH or DMOG treatment. We also investigated the effect of 7-day CIH and DMOG treatment on the recovery of synaptic transmission following an acute 30min hypoxic insult. CIH treated animals showed an improved rate of recovery of synaptic transmission following re-oxygenation in both the CA1 and the dentate gyrus. These results suggest that LTP induction in the CA1 region is more sensitive to both CIH and DMOG treatments than the dentate gyrus.
Collapse
Affiliation(s)
- Audrey M Wall
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan E Corcoran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - John J O'Connor
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
22
|
He N, Kim N, Yoon S. Somatic mutation patterns and compound response in cancers. BMB Rep 2013; 46:97-102. [PMID: 23433112 PMCID: PMC4133857 DOI: 10.5483/bmbrep.2013.46.2.226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 01/13/2023] Open
Abstract
The use of various cancer cell lines can recapitulate known tumor-associated mutations and genetically define cancer subsets. This approach also enables comparative surveys of associations between cancer mutations and drug responses. Here, we analyzed the effects of ~40,000 compounds on cancer cell lines that showed diverse mutation-dependent sensitivity profiles. Over 1,000 compounds exhibited unique sensitivity on cell lines with specific mutational genotypes, and these compounds were clustered into six different classes of mutation-oriented sensitivity. The present analysis provides new insights into the relationship between somatic mutations and selectivity response of chemicals, and these results should have applications related to predicting and optimizing therapeutic windows for anti-cancer agents.
Collapse
Affiliation(s)
| | | | - Sukjoon Yoon
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 140-742, Korea
| |
Collapse
|