1
|
Berggren KA, Sinha S, Lin AE, Schwoerer MP, Maya S, Biswas A, Cafiero TR, Liu Y, Gertje HP, Suzuki S, Berneshawi AR, Carver S, Heller B, Hassan N, Ali Q, Beard D, Wang D, Cullen JM, Kleiner RE, Crossland NA, Schwartz RE, Ploss A. Liver-specific Mettl14 deletion induces nuclear heterotypia and dysregulates RNA export machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599413. [PMID: 38948765 PMCID: PMC11212911 DOI: 10.1101/2024.06.17.599413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Modification of RNA with N6-methyladenosine (m6A) has gained attention in recent years as a general mechanism of gene regulation. In the liver, m6A, along with its associated machinery, has been studied as a potential biomarker of disease and cancer, with impacts on metabolism, cell cycle regulation, and pro-cancer state signaling. However these observational data have yet to be causally examined in vivo. For example, neither perturbation of the key m6A writers Mettl3 and Mettl14, nor the m6A readers Ythdf1 and Ythdf2 have been thoroughly mechanistically characterized in vivo as they have been in vitro. To understand the functions of these machineries, we developed mouse models and found that deleting Mettl14 led to progressive liver injury characterized by nuclear heterotypia, with changes in mRNA splicing, processing and export leading to increases in mRNA surveillance and recycling.
Collapse
Affiliation(s)
- Keith A Berggren
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Saloni Sinha
- Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Aaron E Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Stephanie Maya
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, 08544, USA
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yongzhen Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sebastian Carver
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nora Hassan
- Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Qazi Ali
- Department of Medicine, Weill Cornell Medicine, NY, USA
| | - Daniel Beard
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - John M Cullen
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Berggren KA, Schwartz RE, Kleiner RE, Ploss A. The impact of epitranscriptomic modifications on liver disease. Trends Endocrinol Metab 2024; 35:331-346. [PMID: 38212234 DOI: 10.1016/j.tem.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
RNA modifications have emerged as important mechanisms of gene regulation. Developmental, metabolic, and cell cycle regulatory processes are all affected by epitranscriptomic modifications, which control gene expression in a dynamic manner. The hepatic tissue is highly metabolically active and has an impressive ability to regenerate after injury. Cell proliferation, differentiation, and metabolism, which are all essential to the liver response to injury and regeneration, are regulated via RNA modification. Two such modifications, N6-methyladenosine (m6A)and 5-methylcytosine (m5C), have been identified as prognostic disease markers and potential therapeutic targets for liver diseases. Here, we describe progress in understanding the role of RNA modifications in liver biology and disease and discuss specific areas where unexpected results could lead to improved future understanding.
Collapse
Affiliation(s)
- Keith A Berggren
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
4
|
Lv Z, Ran R, Yang Y, Xiang M, Su H, Huang J. The interplay between N6-methyladenosine and precancerous liver disease: molecular functions and mechanisms. Discov Oncol 2023; 14:78. [PMID: 37227534 DOI: 10.1007/s12672-023-00695-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
N6-methyladenosine(m6A) is one of the most abundant modifications of mammalian cellular RNAs. m6A regulates various biological functions in epitranscriptomic ways, including RNA stability, decay, splicing, translation and nuclear export. Recent studies have indicated the growing importance of m6A modification in precancerous disease, influencing viral replication, immune escape, and carcinogenesis. Here, we review the role of m6A modification in HBV/HCV infection, NAFLD and liver fibrosis, and its function in liver disease pathogenesis. Our review will provide a new sight for the innovative treatment strategy for precancerous liver disease.
Collapse
Affiliation(s)
- Zhihua Lv
- Department of Clinical Laboratory, Institute of Translational Medcine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruoxi Ran
- Department of Clinical Laboratory, Institute of Translational Medcine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yuting Yang
- Department of General Office, School of Stomatology, Wuhan University, Wuhan, China
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hanwen Su
- Department of Clinical Laboratory, Institute of Translational Medcine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingtao Huang
- Department of Clinical Laboratory, Institute of Translational Medcine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|