1
|
Shenoy TN, Abdul Salam AA. Therapeutic potential of dietary bioactive compounds against anti-apoptotic Bcl-2 proteins in breast cancer. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39257284 DOI: 10.1080/10408398.2024.2398636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Breast cancer remains a leading cause of cancer-related mortality among women worldwide. One of its defining features is resistance to apoptosis, driven by aberrant expression of apoptosis-related proteins, notably the overexpression of anti-apoptotic Bcl-2 proteins. These proteins enable breast cancer cells to evade apoptosis and develop resistance to chemotherapy, underscoring their critical role as therapeutic targets. Diet plays a significant role in breast cancer risk, potentially escalating or inhibiting cancer development. Recognizing the limitations of current treatments, extensive research is focused on exploring bioactive compounds derived from natural sources such as plants, fruits, vegetables, and spices. These compounds are valued for their ability to exert potent anticancer effects with minimal toxicity and side effects. While literature extensively covers the effects of various dietary compounds in inducing apoptosis in cancer cells, comprehensive information specifically on how dietary bioactive compounds modulate anti-apoptotic Bcl-2 protein expression in breast cancer is limited. This review aims to provide a comprehensive understanding of the interaction between Bcl-2 proteins and caspases in the regulation of apoptosis, as well as the impact of dietary bioactive compounds on the modulation of anti-apoptotic Bcl-2 in breast cancer. It further explores how these interactions influence breast cancer progression and treatment outcomes.
Collapse
Affiliation(s)
- Thripthi Nagesh Shenoy
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Vellan CJ, Islam T, De Silva S, Mohd Taib NA, Prasanna G, Jayapalan JJ. Exploring novel protein-based biomarkers for advancing breast cancer diagnosis: A review. Clin Biochem 2024; 129:110776. [PMID: 38823558 DOI: 10.1016/j.clinbiochem.2024.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review provides a contemporary examination of the evolving landscape of breast cancer (BC) diagnosis, focusing on the pivotal role of novel protein-based biomarkers. The overview begins by elucidating the multifaceted nature of BC, exploring its prevalence, subtypes, and clinical complexities. A critical emphasis is placed on the transformative impact of proteomics, dissecting the proteome to unravel the molecular intricacies of BC. Navigating through various sources of samples crucial for biomarker investigations, the review underscores the significance of robust sample processing methods and their validation in ensuring reliable outcomes. The central theme of the review revolves around the identification and evaluation of novel protein-based biomarkers. Cutting-edge discoveries are summarised, shedding light on emerging biomarkers poised for clinical application. Nevertheless, the review candidly addresses the challenges inherent in biomarker discovery, including issues of standardisation, reproducibility, and the complex heterogeneity of BC. The future direction section envisions innovative strategies and technologies to overcome existing challenges. In conclusion, the review summarises the current state of BC biomarker research, offering insights into the intricacies of proteomic investigations. As precision medicine gains momentum, the integration of novel protein-based biomarkers emerges as a promising avenue for enhancing the accuracy and efficacy of BC diagnosis. This review serves as a compass for researchers and clinicians navigating the evolving landscape of BC biomarker discovery, guiding them toward transformative advancements in diagnostic precision and personalised patient care.
Collapse
Affiliation(s)
- Christina Jane Vellan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tania Islam
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Galhena Prasanna
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Bisht A, Bhowmik S, Patel P, Gupta GD, Kurmi BD. Aptamer as a targeted approach towards treatment of breast cancer. J Drug Target 2024; 32:510-528. [PMID: 38512151 DOI: 10.1080/1061186x.2024.2333866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Aptamers, a novel type of targeted ligand used in drug delivery, have quickly gained popularity due to their high target specificity and affinity. Different aptamer-mediated drug delivery systems, such as aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalised nanoparticle systems, are currently being developed for the successful treatment of cancer based on the excellent properties of aptamers. These systems can decrease potential toxicity and enhance therapeutic efficacy by targeting the drug moiety. In this review, we provide an overview of recent developments in aptamer-mediated delivery systems for cancer therapy, specifically for breast cancer, and talk about the potential applications and current issues of novel aptamer-based techniques. This study in aptamer technology for breast cancer therapy highlights key aptamers targeting well-established biomarkers such as HER2, oestrogen receptor, and progesterone receptor. Additionally, we explore the potential of aptamers in overcoming various challenges such as drug resistance and improving the delivery of therapeutic agents. This review aims to provide a deeper understanding of the present aptamer-based targeted delivery applications through in-depth analysis to increase efficacy and create new therapeutic approaches that may ultimately lead to better treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
4
|
Mares-Quiñones MD, Galán-Vásquez E, Pérez-Rueda E, Pérez-Ishiwara DG, Medel-Flores MO, Gómez-García MDC. Identification of modules and key genes associated with breast cancer subtypes through network analysis. Sci Rep 2024; 14:12350. [PMID: 38811600 PMCID: PMC11137066 DOI: 10.1038/s41598-024-61908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer is the most common malignancy in women around the world. Intratumor and intertumoral heterogeneity persist in mammary tumors. Therefore, the identification of biomarkers is essential for the treatment of this malignancy. This study analyzed 28,143 genes expressed in 49 breast cancer cell lines using a Weighted Gene Co-expression Network Analysis to determine specific target proteins for Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes. Sixty-five modules were identified, of which five were characterized as having a high correlation with breast cancer subtypes. Genes overexpressed in the tumor were found to participate in the following mechanisms: regulation of the apoptotic process, transcriptional regulation, angiogenesis, signaling, and cellular survival. In particular, we identified the following genes, considered as hubs: IFIT3, an inhibitor of viral and cellular processes; ETS1, a transcription factor involved in cell death and tumorigenesis; ENSG00000259723 lncRNA, expressed in cancers; AL033519.3, a hypothetical gene; and TMEM86A, important for regulating keratinocyte membrane properties, considered as a key in Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes, respectively. The modules and genes identified in this work can be used to identify possible biomarkers or therapeutic targets in different breast cancer subtypes.
Collapse
Affiliation(s)
- María Daniela Mares-Quiñones
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | - D Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Hajab H, Anwar A, Nawaz H, Majeed MI, Alwadie N, Shabbir S, Amber A, Jilani MI, Nargis HF, Zohaib M, Ismail S, Kamal A, Imran M. Surface-enhanced Raman spectroscopy of the filtrate portions of the blood serum samples of breast cancer patients obtained by using 30 kDa filtration device. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124046. [PMID: 38364514 DOI: 10.1016/j.saa.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Raman spectroscopy is reliable tool for analyzing and exploring early disease diagnosis related to body fluids, such as blood serum, which contain low molecular weight fraction (LMWF) and high molecular weight fraction (HMWF) proteins. The disease biomarkers consist of LMWF which are dominated by HMWF hence their analysis is difficult. In this study, in order to overcome this issue, centrifugal filter devices of 30 kDa were used to obtain filtrate and residue portions obtained from whole blood serum samples of control and breast cancer diagnosed patients. The filtrate portions obtained in this way are expected to contain the marker proteins of breast cancer of the size below this filter size. These may include prolactin, Microphage migration inhabitation factor (MIF), γ-Synuclein, BCSG1, Leptin, MUC1, RS/DJ-1 present in the centrifuged blood serum (filtrate portions) which are then analyzed by the SERS technique to recognize the SERS spectral characteristics associated with the progression of breast cancer in the samples of different stages as compared to the healthy ones. The key intention of this study is to achieve early-stage breast cancer diagnosis through the utilization of Surface Enhanced Raman Spectroscopy (SERS) after the centrifugation of healthy and breast cancer serum samples with Amicon ultra-filter devices of 30 kDa. The silver nanoparticles with high plasmon resonance are used as a substrate for SERS analysis. Principal Component Analysis (PCA) and Partial Least Discriminant Analysis (PLS-DA) models are utilized as spectral classification tools to assess and predict rapid, reliable, and non-destructive SERS-based analysis. Notably, they were particularly effective in distinguishing between different SERS spectral groups of the cancerous and non-cancerous samples. By comparing all these spectral data sets to each other PLSDA shows the 79 % accuracy, 76 % specificity, and 81 % sensitivity in samples with AUC value of AUC = 0.774 SERS has proven to be a valuable technique for the rapid identification of the SERS spectral features of blood serum and its filtrate fractions from both healthy individuals and those with breast cancer, aiding in disease diagnosis.
Collapse
Affiliation(s)
- Hawa Hajab
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Anwar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Najah Alwadie
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Sana Shabbir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Arooj Amber
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Hafiza Faiza Nargis
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Zohaib
- Department of Zoology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sidra Ismail
- Medical College, Foundation University Islamabad, Pakistan
| | - Abida Kamal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
6
|
Novais AA, Tamarindo GH, Chuffa LGDA, Zuccari DAPDC. Decoding Hidden Messengers: Proteomic Profiling of Exosomes in Mammary Cancer Research. Biomedicines 2023; 11:2839. [PMID: 37893211 PMCID: PMC10604896 DOI: 10.3390/biomedicines11102839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a complex and heterogeneous disease, influenced by various factors that affect its progression and response to treatment. Although a histopathological diagnosis is crucial for identifying and classifying cancer, it may not accurately predict the disease's development and evolution in all cases. To address this limitation, liquid biopsy has emerged as a valuable tool, enabling a more precise and non-invasive analysis of cancer. Liquid biopsy can detect tumor DNA fragments, circulating tumor cells, and exosomes released by cancer cells into the bloodstream. Exosomes attracted significant attention in cancer research because of their specific protein composition, which can provide valuable insights into the disease. The protein profile of exosomes often differs from that of normal cells, reflecting the unique molecular characteristics of cancer. Analyzing these proteins can help identify cancer-associated markers that play important roles in tumor progression, invasion, and metastasis. Ongoing research and clinical validation are essential to advance and effectively utilize protein biomarkers in cancer. Nevertheless, their potential to improve diagnosis and treatment is highly promising. This review discusses several exosome proteins of interest in breast cancer, particularly focusing on studies conducted in mammary tissue and cell lines in humans and experimental animals. Unfortunately, studies conducted in canine species are scarce. This emphasis sheds light on the limited research available in this field. In addition, we present a curated selection of studies that explored exosomal proteins as potential biomarkers, aiming to achieve benefits in breast cancer diagnosis, prognosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Adriana Alonso Novais
- Health Sciences Institute (ICS), Universidade Federal de Mato Grosso (UFMT), Sinop 78550-728, Brazil;
| | - Guilherme Henrique Tamarindo
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil;
- Cancer Molecular Research Laboratory (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/FAMERP (FAMERP), São José do Rio Preto 15090-000, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, Brazil;
| | - Debora Aparecida Pires de Campos Zuccari
- Cancer Molecular Research Laboratory (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/FAMERP (FAMERP), São José do Rio Preto 15090-000, Brazil
| |
Collapse
|
7
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
8
|
Reilly L, Seddighi S, Singleton AB, Cookson MR, Ward ME, Qi YA. Variant biomarker discovery using mass spectrometry-based proteogenomics. FRONTIERS IN AGING 2023; 4:1191993. [PMID: 37168844 PMCID: PMC10165118 DOI: 10.3389/fragi.2023.1191993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Genomic diversity plays critical roles in risk of disease pathogenesis and diagnosis. While genomic variants-including single nucleotide variants, frameshift variants, and mis-splicing isoforms-are commonly detected at the DNA or RNA level, their translated variant protein or polypeptide products are ultimately the functional units of the associated disease. These products are often released in biofluids and could be leveraged for clinical diagnosis and patient stratification. Recent emergence of integrated analysis of genomics with mass spectrometry-based proteomics for biomarker discovery, also known as proteogenomics, have significantly advanced the understanding disease risk variants, precise medicine, and biomarker discovery. In this review, we discuss variant proteins in the context of cancers and neurodegenerative diseases, outline current and emerging proteogenomic approaches for biomarker discovery, and provide a comprehensive proteogenomic strategy for detection of putative biomarker candidates in human biospecimens. This strategy can be implemented for proteogenomic studies in any field of enquiry. Our review timely addresses the need of biomarkers for aging related diseases.
Collapse
Affiliation(s)
- Luke Reilly
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Phosphorylated Proteins from Serum: A Promising Potential Diagnostic Biomarker of Cancer. Int J Mol Sci 2022; 23:ijms232012359. [PMID: 36293212 PMCID: PMC9604268 DOI: 10.3390/ijms232012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a fatal disease worldwide. Each year ten million people are diagnosed around the world, and more than half of patients eventually die from it in many countries. A majority of cancer remains asymptomatic in the earlier stages, with specific symptoms appearing in the advanced stages when the chances of adequate treatment are low. Cancer screening is generally executed by different imaging techniques like ultrasonography (USG), mammography, CT-scan, and magnetic resonance imaging (MRI). Imaging techniques, however, fail to distinguish between cancerous and non-cancerous cells for early diagnosis. To confirm the imaging result, solid and liquid biopsies are done which have certain limitations such as invasive (in case of solid biopsy) or missed early diagnosis due to extremely low concentrations of circulating tumor DNA (in case of liquid biopsy). Therefore, it is essential to detect certain biomarkers by a noninvasive approach. One approach is a proteomic or glycoproteomic study which mostly identifies proteins and glycoproteins present in tissues and serum. Some of these studies are approved by the Food and Drug Administration (FDA). Another non-expensive and comparatively easier method to detect glycoprotein biomarkers is by ELISA, which uses lectins of diverse specificities. Several of the FDA approved proteins used as cancer biomarkers do not show optimal sensitivities for precise diagnosis of the diseases. In this regard, expression of phosphoproteins is associated with a more specific stage of a particular disease with high sensitivity and specificity. In this review, we discuss the expression of different serum phosphoproteins in various cancers. These phosphoproteins are detected either by phosphoprotein enrichment by immunoprecipitation using phosphospecific antibody and metal oxide affinity chromatography followed by LC-MS/MS or by 2D gel electrophoresis followed by MALDI-ToF/MS analysis. The updated knowledge on phosphorylated proteins in clinical samples from various cancer patients would help to develop these serum phophoproteins as potential diagnostic/prognostic biomarkers of cancer.
Collapse
|
10
|
Akbar S, Majeed MI, Nawaz H, Rashid N, Tariq A, Hameed W, Shakeel S, Dastgir G, Bari RZA, Iqbal M, Nawaz A, Akram M. Surface-Enhanced Raman Spectroscopic (SERS) Characterization of Low Molecular Weight Fraction of the Serum of Breast Cancer Patients with Principal Component Analysis (PCA) and Partial Least Square-Discriminant Analysis (PLS-DA). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2017948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Saba Akbar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad, Pakistan
| | - Ayesha Tariq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wajeeha Hameed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Samra Shakeel
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ghulam Dastgir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rana Zaki Abdul Bari
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Maham Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amna Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Maria Akram
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
11
|
Al-Amrani S, Al-Jabri Z, Al-Zaabi A, Alshekaili J, Al-Khabori M. Proteomics: Concepts and applications in human medicine. World J Biol Chem 2021; 12:57-69. [PMID: 34630910 PMCID: PMC8473418 DOI: 10.4331/wjbc.v12.i5.57] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Proteomics is the complete evaluation of the function and structure of proteins to understand an organism’s nature. Mass spectrometry is an essential tool that is used for profiling proteins in the cell. However, biomarker discovery remains the major challenge of proteomics because of their complexity and dynamicity. Therefore, combining the proteomics approach with genomics and bioinformatics will provide an understanding of the information of biological systems and their disease alteration. However, most studies have investigated a small part of the proteins in the blood. This review highlights the types of proteomics, the available proteomic techniques, and their applications in different research fields.
Collapse
Affiliation(s)
- Safa Al-Amrani
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat 123, Oman
| | - Zaaima Al-Jabri
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat 123, Oman
| | - Adhari Al-Zaabi
- Department of Human and Clinical Anatomy, Sultan Qaboos University, Muscat 123, Oman
| | - Jalila Alshekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman
| | | |
Collapse
|
12
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
13
|
Mahmood RI, Abbass AK, Razali N, Al-Saffar AZ, Al-Obaidi JR. Protein profile of MCF-7 breast cancer cell line treated with lectin delivered by CaCO 3NPs revealed changes in molecular chaperones, cytoskeleton, and membrane-associated proteins. Int J Biol Macromol 2021; 184:636-647. [PMID: 34174302 DOI: 10.1016/j.ijbiomac.2021.06.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
The second most predominant cancer in the world and the first among women is breast cancer. We aimed to study the protein abundance profiles induced by lectin purified from the Agaricus bisporus mushroom (ABL) and conjugated with CaCO3NPs in the MCF-7 breast cancer cell line. Two-dimensional electrophoresis (2-DE) and orbitrap mass spectrometry techniques were used to reveal the protein abundance pattern induced by lectin. Flow cytometric analysis showed the accumulation of ABL-CaCO3NPs treated cells in the G1 phase than the positive control. Thirteen proteins were found different in their abundance in breast cancer cells after 24 h exposure to lectin conjugated with CaCO3NPs. Most of the identified proteins were showing a low abundance in ABL-CaCO3NPs treated cells in comparison to the positive and negative controls, including V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP. Hornerin, tropomyosin alpha-1 chain, annexin A2, and protein disulfide-isomerase were up-regulated in comparison to the positive. Bioinformatic analyses revealed the regulation changes of these proteins mainly affected the pathways of 'Bcl-2-associated athanogene 2 signalling pathway', 'Unfolded protein response', 'Caveolar-mediated endocytosis signalling', 'Clathrin-mediated endocytosis signalling', 'Calcium signalling' and 'Sucrose degradation V', which are associated with breast cancer. We concluded that lectin altered the abundance in molecular chaperones/heat shock proteins, cytoskeletal, and metabolic proteins. Additionally, lectin induced a low abundance of MCF-7 cancer cell proteins in comparison to the positive and negative controls, including; V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP.
Collapse
Affiliation(s)
- Rana I Mahmood
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq; Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Amal Kh Abbass
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq
| | - Nurhanani Razali
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, 658-8558, Kobe, Japan; Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan, 904-0495
| | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| |
Collapse
|
14
|
Vi C, Mandarano G, Shigdar S. Diagnostics and Therapeutics in Targeting HER2 Breast Cancer: A Novel Approach. Int J Mol Sci 2021; 22:6163. [PMID: 34200484 PMCID: PMC8201268 DOI: 10.3390/ijms22116163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15-30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer's functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.
Collapse
Affiliation(s)
- Chris Vi
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
| | - Giovanni Mandarano
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
15
|
Decreased expression level of long non-coding RNA CCAT1, was observed in breast cancer tissue of an Isfahanian population (Iran). GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Bansod AA, Ramasamy G, Nathan B, Kandhasamy R, Palaniappan M, Vichangal Pridiuldi S. Exploring the endogenous potential of Hemidesmus indicus against breast cancer using in silico studies and quantification of 2-hydroxy-4-methoxy benzaldehyde through RP-HPLC. 3 Biotech 2021; 11:235. [PMID: 33968579 DOI: 10.1007/s13205-021-02768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Being a woman and getting older are the main risk factors for breast cancer. While admitting the increasing prevalence of breast cancer among females globally, there is an increasing urge for widening the range of chemical compounds that can act as potential inhibitors for certain cancer target receptors. Current investigation involves virtually screening of 19 protein receptors having major role in signal transduction pathway of breast cancer development against 47 compounds present in Hemidesmus indicus. Virtual screening and supplementary analysis were performed using freely available softwares, tools and online servers. To obtain meaningful results, a comparative scenario was created by screening FDA-approved drugs/drug analogues against the same 19 receptors by keeping all the parameters same as to that of ligands. Two ligands namely Taraxasteryl acetate and Rutin were found to be the best ligands with high binding affinity towards six protein receptors establishing strong receptor ligand interactions. Furthermore, the major volatile compound, a high demand flavouring agent and an isomer of vanillin, namely 2-hydroxy-4-methoxy benzaldehyde (MBALD) specifically found in the roots of Hemidesmus, was quantified by RP-HPLC using a reverse phase C-18 column. The methanolic extract of fresh roots was found to contain 0.221 mg of MBALD/gram of tissue. From the current investigation, it could be surmised that Hemidesmus indicus had demonstrated its potential in both pharmaceuticals and the food industry.
Collapse
|
17
|
Ratan C, Cicily K D D, Nair B, Nath LR. MUC Glycoproteins: Potential Biomarkers and Molecular Targets for Cancer Therapy. Curr Cancer Drug Targets 2021; 21:132-152. [PMID: 33200711 DOI: 10.2174/1568009620666201116113334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/02/2020] [Accepted: 10/04/2020] [Indexed: 02/08/2023]
Abstract
MUC proteins have great significance as prognostic and diagnostic markers as well as a potential target for therapeutic interventions in most cancers of glandular epithelial origin. These are high molecular weight glycosylated proteins located in the epithelial lining of several tissues and ducts. Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted or membrane-bound. Glycosylation, a post-translational modification affects the biophysical, functional and biochemical properties and provides structural complexity for these proteins. Aberrant expression and glycosylation of mucins contribute to tumour survival and proliferation in many cancers, which in turn activates numerous signalling pathways such as NF-kB, ERα, HIF, MAPK, p53, c-Src, Wnt and JAK-STAT, etc. This subsequently induces cancer cell growth, proliferation and metastasis. The present review mainly demonstrates the functional aspects of MUC glycoproteins along with its unique signalling mechanism and role of aberrant glycosylation in cancer progression and therapeutics. The importance of MUC proteins and its subtypes in a wide spectrum of cancers including but not limited to breast cancer, colorectal cancer, endometrial and cervical cancer, lung cancer, primary liver cancer, pancreatic cancer, prostate cancer and ovarian cancer has been exemplified with significance in targeting the same. Several patents associated with the MUC proteins in the field of cancer therapy are also emphasized in the current review.
Collapse
Affiliation(s)
- Chameli Ratan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Dalia Cicily K D
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| |
Collapse
|
18
|
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, Mishra D, Sanghi SK, Chaurasia JP, Srivastava AK, Khan R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal Biochem 2020; 610:113996. [PMID: 33080213 DOI: 10.1016/j.ab.2020.113996] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023]
Abstract
Breast cancer is the most commonly occurring cancer among women which leads to thousands of deaths worldwide. The chances of survival are more if the breast cancer is diagnosed at early stage. At present, mammography, magnetic resonance imaging, ultrasound and tissue biopsies are the main diagnostic techniques available for the detection of breast cancer. However, despite of offering promising results, requirement of expensive setup, skilled supervision, expert analysis, invasive procedure (biopsy) and low capacity of multiplexing are the main limitations of these diagnostic techniques. Due to high cost, these screening tests are out of reach of people belonging to low socioeconomic groups and this poses serious health burden to the society. Recently, biosensor-based diagnostic technology for early detection of various types of cancers and other non-oncological disorders have gained considerable attention because of their several advantageous features over existing diagnostic technologies such as high throughput, noninvasive nature, cost effectiveness, easy interpretable results and capacity for multiplexing. Further, biosensors can be designed for biomarkers which are confined to particular type of cancer. In this review, we have discussed about various genomic, transcriptomic, proteomic and metabolomic biomarkers associated with breast cancer, various biosensors-based diagnostic approaches designed for detection of specific biomarkers associated with breast cancer are also described. Further, this review throws insight on various biomarkers linked with breast cancer which can be effectively exploited to develop new diagnostic technology. The assessment of these biomarkers associated with BC using biosensors in large population are cost-effective, non-invasive and high throughput. They help in risk assessment of disease at very initial stage even in backward areas and also help to lower the disease burden of society and economic cost of treatment for a common man. This review would provide new avenues for the development of biosensor based diagnostic technology for the detection of biomarkers associated with breast cancer.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Arpana Parihar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Surbhi Jain
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Neeraj Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Chetna Dhand
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - S Murali
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Deepti Mishra
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Sunil K Sanghi
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - J P Chaurasia
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| |
Collapse
|
19
|
Woollam M, Teli M, Liu S, Daneshkhah A, Siegel AP, Yokota H, Agarwal M. Urinary Volatile Terpenes Analyzed by Gas Chromatography-Mass Spectrometry to Monitor Breast Cancer Treatment Efficacy in Mice. J Proteome Res 2020; 19:1913-1922. [PMID: 32227867 DOI: 10.1021/acs.jproteome.9b00722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Urinary volatile terpene (VT) levels are significantly altered with induced models of breast cancer in mice. The question arises whether VTs can detect the efficacy of antitumor treatments. BALB/c mice were injected with 4T1.2 murine tumor cells in the mammary pad or iliac artery to model localized breast cancer and induced bone metastasis. The effect of two dopaminergic antitumor agents was tested by conventional histology and altered VT levels. The headspace of urine specimens was analyzed by gas chromatography-mass spectrometry. In the localized model, the statistical significance (p < 0.05) was identified for 26% of VTs, and in the metastasis model, 19% of VTs. The authors discovered separate VT panels classifying localized/control [area under the curve (AUC) = 1.0] and metastasis/control (AUC = 0.98). Treatment samples were tested using these panels, which showed that mice treated with either agent were statistically significantly different from cancer samples, which is consistent with conventional analysis.
Collapse
Affiliation(s)
- Mark Woollam
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States.,Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States
| | - Meghana Teli
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis 46202, Indiana, United States
| | - Shengzhi Liu
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis 46202, Indiana, United States
| | - Ali Daneshkhah
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States
| | - Amanda P Siegel
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States.,Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States
| | - Hiroki Yokota
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis 46202, Indiana, United States.,Biomechanics and Biomaterials Research Center, Indianapolis 46202, Indiana, United States
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States.,Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States.,Department of Mechanical Engineering and Energy, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States
| |
Collapse
|
20
|
Kashyap D, Kaur H. Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci 2020; 246:117417. [PMID: 32044304 DOI: 10.1016/j.lfs.2020.117417] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the genetic diseases causing a high mortality among women around the world. Despite the availability of advanced diagnostic tools and treatment strategies, the incidence of breast cancer is increasing every year. This is due to the lack of accurate and reliable biomarkers whose deficiency creates difficulty in early breast cancer recognition, subtypes determination, and metastasis prophecy. Although biomarkers such as ER, PR, Her2, Ki-67, and other genetic platforms e.g. MammaPrint®, Oncotype DX®, Prosigna® or EndoPredict® are available for determination of breast cancer diagnosis and prognosis. However, pertaining to heterogeneous nature, lack of sensitivity, and specificity of these markers, it is still incessant to overcome breast cancer burden. Therefore, a novel biomarker is urgently needed for therapeutic diagnosis and improving prognosis. Lately, it has become more evident that cell-free miRNAs might be useful as good non-invasive biomarkers that are associated with different events in carcinogenesis. For example, some known biomarkers such as miR-21, miR-23a, miR-34a are associated with molecular subtyping and different biomolecular aspects i.e. apoptosis, angiogenesis, metastasis, and miR-1, miR-10b, miR-16 are associated with drug response. Cell-free miRNAs present in human body fluids have proven to be potential biomarkers with significant prognostic and predictive values. Numerous studies have found a distinct expression profile of circulating miRNAs in breast tumour versus non-tumour and in early and advanced-stage, thus implicating its clinical relevance. This review article will highlight the importance of different cell-free miRNAs as a biomarker for early breast cancer detection, subtype classification, and metastasis forecast.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
On the need for the development of a cancer early detection, diagnostic, prognosis, and treatment response system. Future Sci OA 2019; 6:FSO439. [PMID: 32025328 PMCID: PMC6997916 DOI: 10.2144/fsoa-2019-0028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of noncommunicable disease deaths in the world. In 2018, there were over 18 million new cancer cases and approximately 10 million people died from the disease globally. In 2019, almost two million new cases of cancer will be diagnosed in USA and over 600,000 people are expected to die from the disease. The incidence of cancer is expected to rise because of lifestyle changes and a rapidly aging population. Evidence suggests that early detection is critical to reducing cancer morbidity and mortality. In this paper, the development of an integrated smart wearable and biomarker detection system is proposed to help reduce cancer morbidity and mortality. The potential benefits and limitations of the system are discussed. Cancer is one of the leading causes of death in the world. Evidence suggests that its incidence will continue to rise in the future because of lifestyle changes and a rapidly aging population. There is currently no cure for the disease and the best way to reduce its incidence and morbidity is to detect it early. In this paper, an integrated smart wearable and biomarker detection system to help in the early detection, prognosis, diagnosis and treatment of cancer is proposed.
Collapse
|
22
|
Omran MM, Rashed RE, Darwish H, Belal AA, Mohamed FZ. Development of a gas chromatography-mass spectrometry method for breast cancer diagnosis based on nucleoside metabolomes 1-methyl adenosine, 1-methylguanosine and 8-hydroxy-2'-deoxyguanosine. Biomed Chromatogr 2019; 34:e4713. [PMID: 31633807 DOI: 10.1002/bmc.4713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 01/31/2023]
Abstract
Metabolomes are small molecule metabolites (<1000 Da) produced by cellular processes. Metabolomes are close counterparts to the genome, transcriptome and proteome. The aim of this study was to develop a method to detect and quantify candidate nucleoside metabolomes 1-methyl adenosine (1-MA), 1-methylguanosine (1-MG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the urine of patients with breast cancer using gas chromatography-mass spectrometry (GC-MS). The method was applied to urine specimens from patients with breast cancer (n = 56) and benign breast tumors (n = 22), as well as from healthy females (n = 20). The relative standard deviations of precision and repeatability analysis were <10%, and recoveries ranged from 88.5 to 105.6%. Limits of detection were 0.014, 0.012, and 0.018 mg/L for 1-MA, 1-MG and 8-OHdG, respectively. The lower limits of quantitation were 0.056, 0.048 and 0.072 mg/L, respectively. There were significant differences in concentrations of candidate metabolomes between patients with cancer and the healthy individuals, especially for those in the early stages of the disease (p < 0.001). No significant differences were observed between the benign and healthy groups. In conclusion, a reliable GC-MS method for the detection and quantification of 1-MA, 1-MG, and 8-OHdG metabolomes in urine has been developed.
Collapse
Affiliation(s)
- Mohamed M Omran
- Chemistry Department, Faculty of Science-Helwan University, Cairo, Egypt
| | - Ramzy E Rashed
- Laboratory of Toxicology, Central Laboratories, Ministry of Health, Damietta, Egypt
| | - Hossam Darwish
- Damietta Cancer Institute, Damietta/Head of medical oncology department, Ismailia Teaching Oncology Hospital, Ismailia, Egypt
| | - Arafa A Belal
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Faten Z Mohamed
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Abrao Nemeir I, Saab J, Hleihel W, Errachid A, Jafferzic-Renault N, Zine N. The Advent of Salivary Breast Cancer Biomarker Detection Using Affinity Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2373. [PMID: 31126047 PMCID: PMC6566681 DOI: 10.3390/s19102373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Breast Cancer is one of the world's most notorious diseases affecting two million women in 2018 worldwide. It is a highly heterogeneous disease, making it difficult to treat. However, its linear progression makes it a candidate for early screening programs, and the earlier its detection the higher the chance of recovery. However, one key hurdle for breast cancer screening is the fact that most screening techniques are expensive, time-consuming, and cumbersome, making them impractical for use in several parts of the world. One current trend in breast cancer detection has pointed to a possible solution, the use of salivary breast cancer biomarkers. Saliva is an attractive medium for diagnosis because it is readily available in large quantities, easy to obtain at low cost, and contains all the biomarkers present in blood, albeit in lower quantities. Affinity sensors are devices that detect molecules through their interactions with biological recognition molecules. Their low cost, high sensitivity, and selectivity, as well as rapid detection time make them an attractive alternative to traditional means of detection. In this review article, we discuss the current status of breast cancer diagnosis, its salivary biomarkers, as well as the current trends in the development of affinity sensors for their detection.
Collapse
Affiliation(s)
- Imad Abrao Nemeir
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Joseph Saab
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Walid Hleihel
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Abdelhamid Errachid
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nicole Jafferzic-Renault
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nadia Zine
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
24
|
Amiri-Dashatan N, Koushki M, Abbaszadeh HA, Rostami-Nejad M, Rezaei-Tavirani M. Proteomics Applications in Health: Biomarker and Drug Discovery and Food Industry. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1523-1536. [PMID: 30568709 PMCID: PMC6269565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Advancing in genome sequencing has greatly propelled the understanding of the living world; however, it is insufficient for full description of a biological system. Focusing on proteomics has emerged as another large-scale platform for improving the understanding of biology. Proteomic experiments can be used for different aspects of clinical and health sciences such as food technology, biomarker discovery and drug target identification. Since proteins are main constituents of foods, proteomic technology can monitor and characterize protein content of foods and their change during production process. The proteomic biomarker discovery is advanced in various diseases such as cancer, cardiovascular diseases, AIDS, and renal diseases which provide non-invasive methods by the use of body fluids such as urine and serum. Proteomics is also used in drug target identification using different approaches such as chemical proteomics and protein interaction networks. The development and application of proteomics has increased tremendously over the last decade. Advances in proteomics methods offer many promising new directions of studying in clinical fields. In this regard, we want to discuss proteomics technology application in food investigations, drug, and biomarker discovery.
Collapse
Affiliation(s)
- Nasrin Amiri-Dashatan
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Koushki
- Department of Biochemistry, Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center.Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Rostami-Nejad
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
25
|
A shear-enhanced CNT-assembly nanosensor platform for ultra-sensitive and selective protein detection. Biosens Bioelectron 2017; 97:143-149. [PMID: 28587929 DOI: 10.1016/j.bios.2017.05.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/15/2017] [Accepted: 05/29/2017] [Indexed: 01/04/2023]
Abstract
Detection and quantification of low-concentration proteins in heterogeneous media are generally plagued by two distinct obstacles: lack of sensitivity due to high dissociation equilibrium constant KD and non-specificity due to an abundance of non-targets with similar KD. Herein, we report a nanoscale protein-sensing platform with a non-equilibrium on-off switch that employs dielectrophoretic and hydrodynamic shear forces to overcome these thermodynamic limitations with irreversible kinetics. The detection sensitivity is achieved with complete association of the antibody-antigen-antibody (Ab-Ag-Ab) complex by precisely and rapidly assembling carbon nanotubes (CNT) across two parallel electrodes via sequential DC electrophoresis and AC dielectrophoresis (DEP), and with single-CNT electron tunneling conductance. The high selectivity is achieved with a critical hydrodynamic shear rate between the activated dissociation shear rates of target and non-target linkers of the aligned CNTs. We are able to reach detection limits of 100 attomolar (aM) and 10 femtomolar (fM) in pure samples for two ELISA assays with low and high dissociation constant: biotin/streptavidin (10 fM) and HER2/HER2 antibody (0.44 ± 0.07nM), respectively. For both models, irreversible capture and shearing allow us to tune the dynamic range up to 5 decades by increasing the CNT numbers. We also demonstrate in spiked serum sample high selectivity towards target HER2 proteins against non-target HER2 isoform of a similar KD. The detection limit for HER2 in serum is lower than 100fM.
Collapse
|