1
|
Lu P, Xia M, Li J, Qi H, Wang H, Mao R. XRCC1 is linked to poor prognosis in adenocarcinoma of the esophagogastric junction after radiotherapy: transcriptome and alternative splicing events analysis. Clin Transl Oncol 2025; 27:2502-2516. [PMID: 39527358 DOI: 10.1007/s12094-024-03773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This study aimed to (i) investigate the relationship between X-ray repair cross-complementing protein 1 gene (XRCC1) and prognosis in patients with adenocarcinoma of the esophagogastric junction (AEG), and (ii) analyze the roles of XRCC1 in human gastric adenocarcinoma (AGS) cells following X-ray radiation. METHODS A total of 46 AEG patients were enrolled and examined for XRCC1 protein by immunohistochemistry. XRCC1 was knocked down in AGS cells by transfection, and AGS cells were subsequently exposed to 6 Gy of X-ray radiation. XRCC1 mRNA and protein expression was examined via quantitative real-time PCR (qRT-PCR) and Western blot analysis. The apoptosis of AGS cells was examined by flow cytometer. RNA-sequencing technology was used to identified differentially expressed genes and alternative splicing events following XRCC1 knockdown and radiation exposure. RESULTS XRCC1 positivity was strongly associated with distant metastasis, pathological tumor-node-metastasis (pTNM) classification, and radiotherapy resistance in AEG patients. A significant difference in progression-free survival was observed between AEG patients with low and high XRCC1 protein expression. The knockdown of XRCC1 notably exacerbated the effects of X-ray radiation on apoptosis in AGS cells. Additionally, X-ray radiation modified the expression of genes related to apoptosis and immune response in XRCC1-knockdown AGS cells. Furthermore, the generation of splice variants was influenced by XRCC1 knockdown in AGS cells. CONCLUSION XRCC1 may serve as a key oncogene that elucidates the role of alternative splicing events in the progression of AEG following X-ray treatment.
Collapse
Affiliation(s)
- Pengfei Lu
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Road, Urumqi, 830054, Xinjiang, China
| | - Min Xia
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Road, Urumqi, 830054, Xinjiang, China
| | - Juan Li
- Department of Infectious Diseases, The First People's Hospital of Urumqi, Urumqi, 830000, China
| | - Hongzhi Qi
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Road, Urumqi, 830054, Xinjiang, China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| | - Rui Mao
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Road, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
2
|
Qi TT, Zhou SJ, Yu Z, Li Y, Chen JQ. Unveiling the heterogeneity and immunotherapy potency of tumor-associated neutrophils in the tumor microenvironment of gastric cancer. BMC Gastroenterol 2025; 25:303. [PMID: 40295944 PMCID: PMC12036284 DOI: 10.1186/s12876-025-03920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The differentiation characteristics of neutrophils within the gastric cancer (GC) tumor microenvironment (TME) and their interactions with malignant gastric epithelial cells require further investigation. Furthermore, the therapeutic potential of tumor-associated neutrophils (TANs) in immunotherapy remains inadequately explored. METHODS We integrated two single-cell transcriptome datasets comprising 12 samples, including gastric primary tumors, non-tumor tissues, and metastatic tumors, to profile the epithelial cells and TANs atlas within the TME and examine their interaction modules. In addition, these data were integrated with the bulk transcriptomic including the Cancer Genome Atlas - Stomach Adenocarcinoma (TCGA-STAD) and Asian Cancer Research Group (ACRG) datasets to analyze the expression levels of neutrophil-associated genes across the tumor-associated neutrophil subsets. RESULTS We analyzed 3,118 gastric epithelial cells and 2,365 TANs from all samples. Epithelial cells were classified into ten subclusters, while TANs were grouped into five subclusters. In gastric primary tumors, epithelial cell subtypes included primarily MUC16 + and stem-like populations. In metastatic tumors, the epithelial cell subset with high CXCL5 expression was a characteristic subtype. TANs mainly interacted with epithelial cells via the LGALS9-CD45 and CD46-JAG1 pathways. And RGS2 was highly expressed in N4, a tumor-associated neutrophils subcluster characterized by high MMP9 expression, highlighting its potential as an immunotherapy target. CONCLUSION TANs exhibit robust interactions with gastric malignant epithelial cell subsets. Furthermore, RGS2, which is highly expressed in N4, could serve as a promising target for immunotherapy.
Collapse
Affiliation(s)
- Tong-Tong Qi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Si-Jiang Zhou
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Zhu Yu
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Yong Li
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
- Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Qiang Chen
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China.
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China.
| |
Collapse
|
3
|
Katoozian F, Abedi Kichi Z, Sharifi R, Shirvani-Farsani Z. The Expression Analysis of Long Non-coding RNAs Related to Wnt/β-Catenin Signaling in Pancreatic Cancer Patients. Biochem Genet 2025; 63:1605-1619. [PMID: 38594570 DOI: 10.1007/s10528-024-10779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Background The oncogenic Wnt/β-catenin signaling plays a critical role in carcinogenesis, prognosis, and resistance to therapy. Pancreatic cancer (PC) has high mortality because of its poor prognosis. Several studies have suggested that lncRNAs are directly involved in the development and progression of PC as well as in Wnt/β-catenin signaling. In this study, we investigated and compared the expression of Wnt/β-catenin signaling-related ZFAS1 and HCG11 lncRNAs, and their targets, CTNNB1 and IGF2BP1 genes in the blood of patients with PC and healthy individuals. A total of 47 PC patients and 50 healthy individuals participated in this study. RNA was extracted from the peripheral blood samples of participants, and cDNA was synthesized. The expression level of the selected genes was quantified by real-time PCR. The expression of HCG11 lncRNA and CTNNB1 genes in patients with PC was significantly upregulated compared to healthy individuals, and the expression of the ZFAS1 lncRNA was significantly downregulated. According to the analysis of the ROC curve, the diagnostic powers of ZFAS1 and CTNNB1 in PC were 0.67 and 0.69, respectively. Altogether, the present study suggests a role for ZFAS1 and HCG11 lncRNAs and CTNNB1 and IGF2BP1 in the pathogenesis of pancreatic cancer. Moreover, the peripheral expression of these lncRNAs may be useful as potential biomarkers for PC.
Collapse
Affiliation(s)
- Fatemeh Katoozian
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany
| | - Roya Sharifi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
4
|
Wang X, Zhang T, Yu R. EFNA4 deletion suppresses the migration, invasion, stemness, and angiogenesis of gastric cancer cells through the inactivation of Pygo2/Wnt signaling. Histol Histopathol 2025; 40:343-356. [PMID: 38953488 DOI: 10.14670/hh-18-779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Gastric cancer represents an aggressive malignancy and a leading contributor to cancer death. Ephrin-A4 (EFNA4) has been proposed to be related to the immune microenvironment and prognosis of gastric cancer. This study was undertaken to discuss the participation and mechanism of EFNA4 in the development of gastric cancer. RT-qPCR and western blot examined EFNA4 and Pygopus2 (Pygo2) expression in gastric cancer cells. After transfection of EFNA4 interference plasmids or co-transfection of EFNA4 interference plasmids and Pygo2 overexpression plasmids, cell proliferation was detected by the CCK-8 method and EDU staining. Wound healing, Transwell, TUNEL, and endothelial cell tube formation assays detected cell migration, invasion, apoptosis, and angiogenesis, respectively. Western blot examined the expression of metastasis-, apoptosis-, angiogenesis-, and Wnt signaling-associated proteins. Cell stemness was estimated by the sphere formation assay, RT-qPCR, and western blot. Through the experimental data, it was noticed that EFNA4 expression was increased in gastric cancer cells. Knockdown of EFNA4 suppressed the proliferation, migration, invasion, angiogenesis as well as stemness while aggravating the apoptosis of gastric cancer cells. Also, EFNA4 depletion reduced Pygo2 protein expression and then inactivated Wnt/β-catenin signaling. Further elevation of Pygo2 reversed the impacts of EFNA4 silencing on Wnt/β-catenin signaling, cell proliferation, apoptosis, migration, invasion, angiogenesis as well as stemness in gastric cancer. Accordingly, the knockdown of EFNA4 might downregulate Pygo2 and inactivate Wnt/β-catenin signaling to exert protective effects against gastric cancer.
Collapse
Affiliation(s)
- Xian Wang
- Image Center, Mudanjiang Cancer Hospital, Heilongjiang, PR China
| | - Tiran Zhang
- Department of Thyroid and Breast Surgery, Xinghua People's Hospital, Taizhou, Jiangsu, PR China
- Department of General Surgery, Quzhou Kecheng People's Hospital, Quzhou, Zhejiang, PR China
| | - Rong Yu
- Department of General Surgery, Quzhou Kecheng People's Hospital, Quzhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Nayak A, Streiff H, Gonzalez I, Adekoya OO, Silva I, Shenoy AK. Wnt Pathway-Targeted Therapy in Gastrointestinal Cancers: Integrating Benchside Insights with Bedside Applications. Cells 2025; 14:178. [PMID: 39936971 PMCID: PMC11816596 DOI: 10.3390/cells14030178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
The Wnt signaling pathway is critical in the onset and progression of gastrointestinal (GI) cancers. Anomalies in this pathway, often stemming from mutations in critical components such as adenomatous polyposis coli (APC) or β-catenin, lead to uncontrolled cell proliferation and survival. In the case of colorectal cancer, dysregulation of the Wnt pathway drives tumor initiation and growth. Similarly, aberrant Wnt signaling contributes to tumor development, metastasis, and resistance to therapy in other GI cancers, such as gastric, pancreatic, and hepatocellular carcinomas. Targeting the Wnt pathway or its downstream effectors has emerged as a promising therapeutic strategy for combating these highly aggressive GI malignancies. Here, we review the dysregulation of the Wnt signaling pathway in the pathogenesis of GI cancers and further explore the therapeutic potential of targeting the various components of the Wnt pathway. Furthermore, we summarize and integrate the preclinical evidence supporting the therapeutic efficacy of potent Wnt pathway inhibitors with completed and ongoing clinical trials in GI cancers. Additionally, we discuss the challenges of Wnt pathway-targeted therapies in GI cancers to overcome these concerns for effective clinical translation.
Collapse
|
7
|
Jang JH, Jung J, Kang HG, Kim W, Kim WJ, Lee H, Cho JY, Hong R, Kim JW, Chung JY, Chun KH, Kim SJ. Kindlin-1 promotes gastric cancer cell motility through the Wnt/β-catenin signaling pathway. Sci Rep 2025; 15:2481. [PMID: 39833319 PMCID: PMC11756408 DOI: 10.1038/s41598-025-86220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Despite advances in gastric cancer diagnosis and treatment, its prognosis remains poor owing to aggressive tumor progression and metastasis. As understanding the relevant molecular mechanisms is essential to effectively improve patient outcomes, we elucidated the role of Kindlin-1 in gastric cancer progression and metastasis. Kindlin-1 expression was analyzed in 359 gastric cancer tissue samples provided by Kangnam Sacred Heart Hospital and publicly available GSE datasets. Kindlin-1 showed significantly higher expression in gastric cancer tissues than that in normal tissues, and high Kindlin-1 expression was associated with poor prognosis. Further, the mRNA and protein expression of Kindlin-1 were high in gastric cancer cell lines, where they were associated with increased proliferation, migration, and invasion. Our findings demonstrated that Kindlin-1 regulated epithelial-mesenchymal transition-related genes through interaction with activated Wnt/β-catenin signaling. Notably, Kindlin-1 enhanced β-catenin expression and promoted its nuclear translocation from the cytoplasm, increasing TCF4 transcriptional activity and inducing gastric cancer progression and metastasis. Overall, these findings demonstrate that Kindlin-1 is upregulated in gastric cancer and activates Wnt/β-catenin signaling to promote cell proliferation and motility.
Collapse
Affiliation(s)
- Jun-Ho Jang
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jiyoon Jung
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
| | - Hyeon-Gu Kang
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Woong Kim
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Won-Jin Kim
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hana Lee
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ju Yeon Cho
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ran Hong
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seok-Jun Kim
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
8
|
Liu Q, Sun S, Zhou C, Xu H. Comprehensive analysis of the prognostic, immunological, and diagnostic roles of SIRT1 in pan-cancer and its validation in KIRC. Front Immunol 2025; 15:1501867. [PMID: 39845948 PMCID: PMC11751020 DOI: 10.3389/fimmu.2024.1501867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking. Our study aimed to analyze the role of SIRT1 in pan-cancer to gain a more comprehensive understanding of its role in multiple malignancies. Methods We systematically examined the role of SIRT1 in pan-cancer by analyzing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Various tools, including R, Cytoscape, HPA, Archs4, TISIDB, cBioPortal, STRING, GSCALite, and CancerSEA, were used to integrate and analyze SIRT1 gene expression, prognosis, protein interactions, signaling pathways, immune infiltration, and other relevant information. Furthermore, we validated the differential expression of SIRT1 in normal human kidney cells and kidney cancer cell lines via experimental verification. Results SIRT1 expression was significantly reduced in various cancers and was different across molecular and immune subtypes. SIRT1 is intricately linked to numerous cancer pathways. In most cancer types, increased SIRT1 expression is positively associated with eosinophils, helper T cells, central memory T cells, effector memory T cells, γδ T cells, and Th2 cells. SIRT1 expression is significantly correlated with immune regulatory factors across various cancer types. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot (WB) analyses confirmed that SIRT1 is differentially expressed in kidney renal clear cell carcinoma (KIRC). Conclusions Using an integrative approach involving bioinformatics analysis and experimental validation, we clarified the potential roles and mechanisms of SIRT1 in pan-cancer, providing a theoretical basis for the development of SIRT1-targeted therapies in clinical applications.
Collapse
Affiliation(s)
- Qi Liu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Songxian Sun
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Houxi Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
10
|
Llorent-Martínez EJ, Yagi S, Zengin G, Cetiz MV, Uba AI, Yuksekdag O, Akgul BH, Yildiztugay E, Koyuncu I. Characterization of the chemical profiles and biological activities of Thesium bertramii Azn. Extracts using a combination of in vitro, in silico, and network pharmacology methods. Fitoterapia 2025; 180:106329. [PMID: 39638077 DOI: 10.1016/j.fitote.2024.106329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The genus Thesium, family Santalaceae, comprises about 350 species, and, although many of them are used as functional food and in traditional medicine, there are limited studies evaluating their pharmacological potential. The present study was designed to evaluate the chemical profile, antioxidant, and enzyme inhibition potential of aerial parts and roots of T. bertramii Azn. Extracts were rich in phenolics: MeOH and aqueous extracts of the aerial parts showed the highest total phenolic and flavonoid contents and the best antioxidant activity in most assays. Ethyl acetate extracts of both organs exerted comparable anti-butyrylcholinesterase activity, while their methanol extracts displayed comparable anti-tyrosinase activity. The highest acetylcholinesterase inhibitory activity was recorded from the root's ethyl acetate extract, while that of the aerial parts revealed the best α-amylase and α-glucosidase inhibitory activity. Chemically, the aerial parts were dominated by quercetin derivatives, feruloylquinic acids, caffeoylquinic acids, and elenolic acid glucoside. Roots showed a lower diversity of compounds with elenolic acid, quercetin glycoside, and kaempferol glycoside as major compounds. Additionally, network pharmacology analyses (KEGG and STRING) identified critical molecular pathways and hub genes, including IL6, TNF, BCL-2, and JUN, indicating the multi-target potential of T. bertramii in cancer and cardiovascular diseases. In conclusion, this study assessed the chemical and biological properties of T. bertramii for the first time, and the obtained results indicated the potential of this species as a valuable source of bioactive molecules for the pharmaceutical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan; Université de Lorraine, INRAE, LAE, F-54000 Nancy, France
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Mehmet Veysi Cetiz
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey; Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, 63290, Turkey
| | | | - Evren Yildiztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, 63290, Turkey
| |
Collapse
|
11
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
12
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
13
|
Zhang J, Hou N, Rao D, Chen Q, Ning Z, Lu M. HOXC12 promotes the invasion and migration of gastric cancer cells by upregulating SALL4 and activating Wnt/β-catenin signaling pathway. Discov Oncol 2024; 15:620. [PMID: 39500780 PMCID: PMC11538222 DOI: 10.1007/s12672-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world, with a poor prognosis. HOXC is a family of transcription factors that are up-regulated in gastric cancer tissues. However, the relationship between Homeobox C12 (HOXC12) and gastric cancer is still unclear. METHODS TCGA-STAD and HPA data were analyzed to explore HOXC12 level. Kaplan-Meier Plotter was used to analyze the relationship between HOXC12 level and the prognosis of gastric cancer patients. The HOXC12 was knocked down or overexpressed by shRNA or overexpression vector to explore its functions. Cell migration/invasion assays and wound healing assay were used to assess the invasion/migration ability of gastric cancer cells. Western blot and qPCR were used to detect gene expression and the activation of Wnt/β-catenin signaling pathway. Dual-luciferase reporter assay was used to detect the active region bound by HOXC12 in the promoter of Spalt-like transcription factor 4 (SALL4). RESULTS HOXC12 was highly expressed in gastric cancer and was positively correlated with the poor prognosis of gastric cancer patients. HOXC12 promotes the invasion and migration of gastric cancer cells via Wnt/β-catenin signaling pathway. HOXC12 upregulated the transcription of SALL4 by binding to its promoter. HOXC12 was negatively correlated with both the levels of CD8+ T cells and T cell cytotoxicity-related genes. CONCLUSION HOXC12 promotes the invasion/migration of gastric cancer cells via SALL4/Wnt/β-catenin axis, and is negatively correlated with the infiltration of CD8+ T cells, suggesting HOXC12 as a diagnostic marker and a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Division of life Science and Medicine, Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC (Anhui Provincial Tumor Hospital), University of Science and Technology of China, No.107 Huan Hu Road, Hefei, 230031, Anhui, People's Republic of China
| | - Nengbin Hou
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Dewang Rao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qian Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhongliang Ning
- Division of life Science and Medicine, Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC (Anhui Provincial Tumor Hospital), University of Science and Technology of China, No.107 Huan Hu Road, Hefei, 230031, Anhui, People's Republic of China.
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
14
|
Sugai T, Uesugi N, Osakabe M, Yamamoto R, Hamada K, Honda M, Yanagawa N, Suzuki H. The molecular profile of gastric intraepithelial foveolar type neoplasia based on somatic copy number alterations and multiple mutation analysis. Gastric Cancer 2024; 27:1220-1228. [PMID: 39133395 PMCID: PMC11513720 DOI: 10.1007/s10120-024-01543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Gastric foveolar type neoplasia is a rare histological variant of gastric tumors. It is very difficult to differentiate between benign and malignant intraepithelial foveolar neoplasia (IFN). Although limited molecular alterations have been identified in IFNs, somatic copy number alterations (SCNAs), which are linked to tumor progression, have not been systematically evaluated in IFN. METHODS The aim of the present study was to comprehensively examine SCNAs using a SNP array in 37 cases of IFN, compared with intestinal type dysplasia, including 39 low grade (LGD) and 32 high grade dysplasia (HGD) cases. In addition, gene mutations were evaluated using a gene panel. Finally, we attempted to determine molecular profiles using a hierarchical clustering analysis. RESULTS Two patterns could be categorized according to the SCNAs in 108 tumors examined: high (subgroup 1) and low (subgroup 2) frequencies of SCNAs. Although IFN and LGD were associated with subgroup 2, HGD was found in both subgroups. The median numbers of total SCNAs and copy number gains were higher in IFN or HGD than in LGD. In addition, the IFN genotype was characterized by altered genes located at 4p13-4q35.2, including RAP1GDS1 and LEF1, which may be associated with IFN development. Finally, no significant mutations were found in IFNs using a gene panel. CONCLUSIONS The current molecular profiles of IFN may help elucidate the mechanisms of IFN development.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, 028-3695, Japan.
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Kooriyama City, Fukushima, 963-8563, Japan.
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, 028-3695, Japan
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Kooriyama City, Fukushima, 963-8563, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, 028-3695, Japan
| | - Ryuya Yamamoto
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
- Department of Surgery, Southern-Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama City, Fukushima, 963-8563, Japan
| | - Koichi Hamada
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Michitaka Honda
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
- Department of Surgery, Southern-Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama City, Fukushima, 963-8563, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, 028-3695, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
15
|
Millapán T, Gutiérrez Á, Rosas K, Buchegger K, Ili CG, Brebi P. In Silico Insights Reveal Fibronectin 1 as a Theranostic Marker in Gastric Cancer. Int J Mol Sci 2024; 25:11113. [PMID: 39456895 PMCID: PMC11507984 DOI: 10.3390/ijms252011113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Gastric cancer (GC) is a complex and highly variable disease, ranking among the top five cancers diagnosed globally, and a leading cause of cancer-related deaths. Emerging from stomach lining cells amid chronic inflammation, it often advances to preneoplastic stages. Late-stage diagnoses and treatment challenges highlight the critical need for early detection and innovative biomarkers, motivating this study's focus on identifying theranostic markers through gene ontology analysis. By exploring deregulated biological processes, this study aims to uncover insights into cancer progression and associated markers, potentially identifying novel theranostic candidates in GC. Using public data from The Human Protein Atlas, this study pinpointed 299 prognostic genes, delineating 171 with unfavorable prognosis and 128 with favorable prognosis. Functional enrichment and protein-protein interaction analyses, supported by RNAseq results and conducted via Metascape and Cytoscape, highlighted five genes (vWF, FN1, THBS1, PCDH7, and F5) with promising theranostic potential. Notably, FN1 and THBS1 exhibited significant promise, with FN1 showing a 370% expression increase in cancerous tissue, and it is possible that FN1 can also indicate the stratification status in GC. While further validation is essential, these findings provide new insights into molecular alterations in GC and potential avenues for clinical application of theranostic markers.
Collapse
Affiliation(s)
- Tatiana Millapán
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Álvaro Gutiérrez
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Doctoral Program in Sciences with a Specialization in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4810296, Chile
| | - Krisnna Rosas
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Biotechnology Engineering Program, Universidad de La Frontera, Temuco 4810296, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- BMRC, Biomedical Research Consortium, Santiago 8331150, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
| | - Carmen Gloria Ili
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- BMRC, Biomedical Research Consortium, Santiago 8331150, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- BMRC, Biomedical Research Consortium, Santiago 8331150, Chile
| |
Collapse
|
16
|
Vázquez-Ibarra KC, Sánchez López JY, Pineda Razo TD, Cruz Lozano JR, Ortiz-Tamayo BG, Palafox-Mariscal LA, González Arreola RM, González-García JR, Ortiz-Lazareno PC. Metformin in combination with chemotherapy increases apoptosis in gastric cancer cells and counteracts senescence induced by chemotherapy. Oncol Lett 2024; 28:457. [PMID: 39114572 PMCID: PMC11304395 DOI: 10.3892/ol.2024.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer death in the world, and there is a demand for new therapeutic agents to treat GC. Metformin has been demonstrated to be an antineoplastic agent in some types of cancer; however, it has not been sufficiently valued in treating GC because the effect of metformin in combination with chemotherapy regimens has not yet been evaluated. The present study aimed to evaluate the mechanisms underlying cell death induced by metformin alone or when combined with chemotherapy. The cytogenetic characteristics of the NCI-N87 cell line were determined by fluorescence in situ hybridization (FISH). To determine viability, the cells were treated with metformin, epirubicin, cisplatin, docetaxel and 5-fluorouracil (individually and at different concentrations). Subsequently, the cells were treated with metformin alone, and in combination with the chemotherapeutic drugs and the epirubicin + cisplatin + 5-fluorouracil, docetaxel + cisplatin + 5-fluorouracil, and cisplatin + 5-fluorouracil regimens. Cell viability, proliferation and mitochondrial membrane potential (ΔΨm) were analyzed by spectrophotometry. Apoptosis, caspase activity and cell cycle progression were assessed by flow cytometry. Finally, light microscopy was used to evaluate senescence and clonogenicity. The results revealed that metformin, alone and when combined with chemotherapy, increased the proportion of apoptotic cells, promoted the loss of ΔΨm, and induced apoptosis through caspase activity in GC cells. Moreover, metformin decreased cell proliferation. In addition, metformin alone did not induce senescence and it counteracted the effects of chemotherapy-induced senescence in GC cells. Additionally, metformin, alone and when combined with chemotherapy, decreased the clonogenic capacity of NCI-N87 GC cells. In conclusion, metformin may increase the effects of chemotherapy on NCI-N87 cell death and could represent an option to improve the treatment of GC.
Collapse
Affiliation(s)
- Katia Carolina Vázquez-Ibarra
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Josefina Yoaly Sánchez López
- Genetic Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco, 44340, Mexico
| | - Tomás Daniel Pineda Razo
- Medical Oncology Service, Western National Medical Center, Mexican Social Security Institute, Guadalajara, Jalisco 44329, Mexico
| | - José Roberto Cruz Lozano
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Brenda Guadalupe Ortiz-Tamayo
- Division of Biological and Environmental Sciences, University Center of Biological and Agricultural Sciences, University of Guadalajara, Guadalajara, Jalisco 44600, Mexico
| | - Luis Arturo Palafox-Mariscal
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Rosa María González Arreola
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Juan Ramón González-García
- Genetic Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco, 44340, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
17
|
Li F, Wang Y, Ping X, Yin JC, Wang F, Zhang X, Li X, Zhai J, Shen L. Molecular evolution of intestinal-type early gastric cancer according to Correa cascade. J Biomed Res 2024; 38:1-16. [PMID: 39314047 DOI: 10.7555/jbr.38.20240118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Early screening is crucial for the prevention of intestinal-type gastric cancer. The objective of the current study was to ascertain molecular evolution of intestinal-type gastric cancer according to the Correa cascade for the precise gastric cancer screening. We collected sequential lesions of the Correa cascade in the formalin-fixed and paraffin-embedded endoscopic submucosal dissection-resected specimens from 14 Chinese patients by microdissection, and subsequently determined the profiles of somatic aberrations during gastric carcinogenesis using the whole exome sequencing, identifying multiple variants at different Correa stages. The results showed that TP53, PCLO, and PRKDC were the most frequently mutated genes in the early gastric cancer (EGC). A high frequency of TP53 alterations was found in low-grade intraepithelial neoplasia (LGIN), which further increased in high-grade intraepithelial neoplasia (HGIN) and EGC. Intestinal metaplasia (IM) had no significant correlation with EGC in terms of mutational spectra, whereas both LGIN and HGIN showed higher genomic similarities to EGC, compared with IM. Based on Jaccard similarity coefficients, three evolutionary models were further constructed, and most patients showed linear progression from LGIN to HGIN, ultimately resulting in EGC. The ECM-receptor interaction pathway was revealed to be involved in the linear evolution. Additionally, the retrospective validation study of 39 patients diagnosed with LGIN indicated that PRKDC mutations, in addition to TP53 mutations, may drive LGIN progression to HGIN or EGC. In conclusion, the current study unveils the genomic evolution across the Correa cascade of intestinal-type gastric cancer, elucidates the underlying molecular mechanisms of gastric carcinogenesis, and provides some evidence for potential personalized gastric cancer surveillance.
Collapse
Affiliation(s)
- Fangyuan Li
- Digestive Endoscopy Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Yaohui Wang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaochun Ping
- Department of General Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiani C Yin
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu 210061, China
| | - Fufeng Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu 210061, China
| | - Xian Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu 210061, China
| | - Xiang Li
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jing Zhai
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Lizong Shen
- Department of General Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
18
|
Huang ZD, Ran WH, Wang GZ. Construction of a prognostic model via WGCNA combined with the LASSO algorithm for stomach adenocarcinoma patients. Front Genet 2024; 15:1418818. [PMID: 39170694 PMCID: PMC11335515 DOI: 10.3389/fgene.2024.1418818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study aimed to identify prognostic signatures to predict the prognosis of patients with stomach adenocarcinoma (STAD), which is necessary to improve poor prognosis and offer possible treatment strategies for STAD patients. Methods The overlapping genes between the key model genes that were screened by the weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) whose expression was different with significance between normal and tumor tissues were extracted to serve as co-expression genes. Then, enrichment analysis was performed on these genes. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression was performed to screen the hub genes among overlapping genes. Finally, we constructed a model to explore the influence of polygenic risk scores on the survival probability of patients with STAD, and interaction effect and mediating analyses were also performed. Results DEGs included 2,899 upregulated genes and 2,896 downregulated genes. After crossing the DEGs and light-yellow module genes that were obtained by WGCNA, a total of 39 overlapping genes were extracted. The gene enrichment analysis revealed that these genes were enriched in the prion diseases, biosynthesis of unsaturated fatty acids, RNA metabolic process, hydrolase activity, etc. PIP5K1P1, PTTG3P, and SNORD15B were determined by LASSO-Cox. The prognostic prediction of the three-gene model was established. The Cox regression analysis showed that the comprehensive risk score for three genes was an independent prognosis factor. Conclusion PIP5K1P1, PTTG3P, and SNORD15B are related to the prognosis and overall survival of patients. The three-gene risk model constructed has independent prognosis predictive ability for STAD.
Collapse
Affiliation(s)
- Zi-duo Huang
- Department of General Surgery, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Wen-hua Ran
- Department of General Surgery, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Guo-zhu Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Lam SK, Lau GKK. Proton pump inhibitors are not associated with fundic gland polyps - a systematic review that takes into consideration all known confounders. Eur J Gastroenterol Hepatol 2024; 36:831-844. [PMID: 38829941 PMCID: PMC11146189 DOI: 10.1097/meg.0000000000002788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
Sporadic fundic gland polyps (FGPs) progress, albeit rarely, to dysplasia and cancer. Two meta-analyses, including 8 and 11 studies, concluded that proton pump inhibitors (PPIs) were associated with FGPs. Intervention is considered unnecessary when FGPs have a background of PPIs use. Both meta-analyses, however, disregarded known confounders: age, sex, endoscopy indications, study design (prospective or retrospective), duration of PPI use, and H. pylori infection. Confounders are known to invalidate meta-analyses. We followed PRIXMA guidelines and searched the literature for studies on FGPs in PPI-users and PPI-nonusers. In the 22 studies searched, we compared FGPs in PPI-users (n = 6534) and PPI-nonusers (n = 41 115). Heterogeneity was significant (Cochran Q = 277.8, P < 0.0001; I2 = 92.8%), annulling meta-analysis performed by blanket tallying. To offset the above confounders, we matched PPI-users and PPI-nonusers by (a) age and sex (n = 4300 and 29 307, respectively) and (b) their propensity scores derived from the confounders (n = 2950 and 4729, respectively). After both matching, FGPs were not significantly different between PPI-users and PPI-nonusers [odds ratio (OR) = 1.1, P = 0.3078; OR = 0.9, P = 0.3258, respectively]. Furthermore, FGP frequency did not correlate with increasing duration of PPI use (Pearson and Spearman correlation coefficients = 0.1162, 0.0386, P < 0.6064, 0.8646, respectively); it was not significantly different between any of the duration periods of observation, namely, <10, 10-20, 20-40, >40 months, nor was it significantly different between PPI-users and PPI-nonusers within each duration period (P > 0.05). We conclude that PPIs are not associated with FGPs, implying that a background history of PPI use is not a justification for nonintervention in the management of FGPs.
Collapse
Affiliation(s)
- Shiu Kum Lam
- Gastroenterology & Hepatology of The Humanity & Health Medical Centre
- Former Chair & Dean of Medicine, The University of Hong Kong
| | - George Ka Kit Lau
- Gastroenterology & Hepatology of The Humanity & Health Medical Centre, Hong Kong, Hong Kong
- Liver Diseases & Transplant Centre, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Ye C, Yao Z, Wang Y, Zhang C. Asiaticoside promoted ferroptosis and suppressed immune escape in gastric cancer cells by downregulating the Wnt/β-catenin pathway. Int Immunopharmacol 2024; 134:112175. [PMID: 38733821 DOI: 10.1016/j.intimp.2024.112175] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Our previous study has revealed that asiaticoside (AC) promotes endoplasmic reticulum stress and antagonizes proliferation and migration of gastric cancer (GC) via miR-635/HMGA1 axis. However, the effect and mechanism of AC on other progressions of GC, such as ferroptosis and immune escape, are still unknown. METHODS AGS and HGC27 cells were incubated with 1, 2 and 4 μM of AC for 24 h. Mice xenografted with AGS cells were intragastrically injected with AC. The effect and mechanism of AC on GC were determined by the measurement of the ferrous iron level, the ROS level and the glutathione peroxidase (GSH) content, flow cytometry, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and western blotting assays. RESULTS AC increased the Fe2+ level and the ROS level, but decreased the expression of GPX4 and SLC7A11 and the GSH level. Besides, AC enhanced the percent of CD8+ T cells and the IFN-γ concentration, but reduced the PD-L1 expression and the IL-10 level. Mechanically, AC downregulated the relative levels of β-catenin, active-β-catenin, p-GSK3β/GSK3β, cyclin D1 and c-Myc in GC cells, which were rescued with the application of LiCl (an activator of Wnt/β-catenin pathway) in AGS cells. Moreover, activation of Wnt/β-catenin pathway by LiCl or the β-catenin overexpression inverted the effect of AC on ferroptosis and immune escape in GC cells. In vivo, AC treatment declined the tumor size and weight, the level of GPX4, SLC7A11, PD-L1 and IFN-γ, and the expression of Wnt/β-catenin pathway. CONCLUSION AC enhanced ferroptosis and repressed immune escape by downregulating the Wnt/β-catenin signaling in GC.
Collapse
Affiliation(s)
- Chenmin Ye
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhichao Yao
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yaoyao Wang
- Department of Internal Medicine, Wenzhou Lucheng District People's Hospital, Wenzhou, Zhejiang, PR China
| | - Chao Zhang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
21
|
Jafarzadeh A, Jafarzadeh Z, Nemati M, Yoshimura A. The Interplay Between Helicobacter pylori and Suppressors of Cytokine Signaling (SOCS) Molecules in the Development of Gastric Cancer and Induction of Immune Response. Helicobacter 2024; 29:e13105. [PMID: 38924222 DOI: 10.1111/hel.13105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Wu X, Luo G, Dong Z, Zheng W, Jia G. Integrated Pleiotropic Gene Set Unveils Comorbidity Insights across Digestive Cancers and Other Diseases. Genes (Basel) 2024; 15:478. [PMID: 38674412 PMCID: PMC11049963 DOI: 10.3390/genes15040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Comorbidities are prevalent in digestive cancers, intensifying patient discomfort and complicating prognosis. Identifying potential comorbidities and investigating their genetic connections in a systemic manner prove to be instrumental in averting additional health challenges during digestive cancer management. Here, we investigated 150 diseases across 18 categories by collecting and integrating various factors related to disease comorbidity, such as disease-associated SNPs or genes from sources like MalaCards, GWAS Catalog and UK Biobank. Through this extensive analysis, we have established an integrated pleiotropic gene set comprising 548 genes in total. Particularly, there enclosed the genes encoding major histocompatibility complex or related to antigen presentation. Additionally, we have unveiled patterns in protein-protein interactions and key hub genes/proteins including TP53, KRAS, CTNNB1 and PIK3CA, which may elucidate the co-occurrence of digestive cancers with certain diseases. These findings provide valuable insights into the molecular origins of comorbidity, offering potential avenues for patient stratification and the development of targeted therapies in clinical trials.
Collapse
Affiliation(s)
- Xinnan Wu
- Institute of Public-Safety and Big Data, College of Data Science, Taiyuan University of Technology, University Street, Yuci District, Jinzhong 030600, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (G.L.); (Z.D.)
| | - Guangwen Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (G.L.); (Z.D.)
| | - Zhaonian Dong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (G.L.); (Z.D.)
| | - Wen Zheng
- Institute of Public-Safety and Big Data, College of Data Science, Taiyuan University of Technology, University Street, Yuci District, Jinzhong 030600, China;
| | - Gengjie Jia
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (G.L.); (Z.D.)
| |
Collapse
|
23
|
Shang R, Liao Y, Zheng X. Inhibition of Wnt Signaling by Atovaquone Inhibits Gastric Cancer and Enhances Chemotherapy Effectiveness Through Activation of Casein Kinase 1α. Nutr Cancer 2024; 76:452-462. [PMID: 38494910 DOI: 10.1080/01635581.2024.2328377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Abnormal activation of the Wnt/β-catenin signaling pathway is a driving force behind the progression of gastric cancer. Atovaquone, known as an antimalarial drug, has emerged as a potential candidate for anti-cancer therapy. This study investigated atovaquone's effects on gastric cancer and its underlying mechanisms. Using gastric cancer cell lines, we found that atovaquone, at concentrations relevant to clinical use, significantly reduced their viability. Notably, atovaquone exhibited a lower effectiveness in reducing the viability of normal gastric cells compared to gastric cancer cells. We further demonstrated that atovaquone inhibited gastric cancer growth and colony formation. Mechanism studies revealed that atovaquone inhibited mitochondrial respiration and induced oxidative stress. Experiments using ρ0 cells, deficient in mitochondrial respiration, indicated a slightly weaker effect of atovaquone on inducing apoptosis compared to wildtype cells. Atovaquone increased phosphorylated β-catenin at Ser45 and Ser33/37/Thr41, elevated Axin, and reduced β-catenin. The inhibitory effects of atovaquone on β-catenin were reversed upon depletion of CK1α. Furthermore, the combination of atovaquone with paclitaxel suppressed gastric cancer growth and improved overall survival in mice. Given that atovaquone is already approved for clinical use, these findings suggest its potential as a valuable addition to the drug arsenal available for treating gastric cancer.
Collapse
Affiliation(s)
- Rui Shang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yingying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuejiao Zheng
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
24
|
Wang YM, Luo ZW, Shu YL, Zhou X, Wang LQ, Liang CH, Wu CQ, Li CP. Effects of Helicobacter pylori and Moluodan on the Wnt/β-catenin signaling pathway in mice with precancerous gastric cancer lesions. World J Gastrointest Oncol 2024; 16:979-990. [PMID: 38577474 PMCID: PMC10989371 DOI: 10.4251/wjgo.v16.i3.979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the primary risk factor for gastric cancer (GC), the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis. GC has a high mortality rate and treatment cost, and there are no drugs to prevent the progression of gastric precancerous lesions to GC. Therefore, it is necessary to find a novel drug that is inexpensive and preventive to against GC. AIM To explore the effects of H. pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC (PLGC). METHODS Mice were divided into the control, N-methyl-N-nitrosourea (MNU), H. pylori + MNU, and Moluodan groups. We first created an H. pylori infection model in the H. pylori + MNU and Moluodan groups. A PLGC model was created in the remaining three groups except for the control group. Moluodan was fed to mice in the Moloudan group ad libitum. The general condition of mice were observed during the whole experiment period. Gastric tissues of mice were grossly and microscopically examined. Through quantitative real-time PCR (qRT-PCR) and Western blotting analysis, the expression of relevant genes were detected. RESULTS Mice in the H. pylori + MNU group showed the worst performance in general condition, gastric tissue visual and microscopic observation, followed by the MNU group, Moluodan group and the control group. QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes, the results showed that the H. pylori + MNU group had the highest expression, followed by the MNU group, Moluodan group and the control group. CONCLUSION H. pylori can activate the Wnt/β-catenin signaling pathway, thereby facilitating the development and progression of PLGC. Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway, thereby decreasing the progression of PLGC.
Collapse
Affiliation(s)
- Yi-Mei Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zheng-Wei Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yu-Lin Shu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiu Zhou
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lin-Qing Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chun-Hong Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chao-Qun Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chang-Ping Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
25
|
S M N Mydin RB, Azlan A, Okekpa SI, Gooderham NJ. Regulatory role of miRNAs in nasopharyngeal cancer involving PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F signaling pathways: A review. Cell Biochem Funct 2024; 42:e3945. [PMID: 38362935 DOI: 10.1002/cbf.3945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.
Collapse
Affiliation(s)
- Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- School of General and Foundation Studies, Asian Institute of Medicine, Science and Technology (AIMST University), Bedong, Kedah, Malaysia
| | - Simon I Okekpa
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- Department of Medical Laboratory Science, Faculty of Health Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Nigel J Gooderham
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| |
Collapse
|
26
|
Fang L, Tao Y, Che G, Yun Y, Ren M, Liu Y. WSB1, as an E3 ligase, restrains myocardial ischemia-reperfusion injury by activating β-catenin signaling via promoting GSK3β ubiquitination. Mol Med 2024; 30:31. [PMID: 38395742 PMCID: PMC10893653 DOI: 10.1186/s10020-024-00800-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Reperfusion is the most effective strategy for myocardial infarct, but induces additional injury. WD repeat and SOCS box containing protein 1 (WSB1) plays a protective role in ischemic cells. This study aims to investigate the effects of WSB1 on myocardial ischemia-reperfusion (IR) injury. METHODS The myocardial IR was induced by left anterior descending (LAD) ligation for 45 min and subsequent reperfusion. The overexpression of WSB1 was mediated by tail vein injection of AAV9 loaded with WSB1 encoding sequence two weeks before IR surgery. H9c2 myocardial cells underwent oxygen-sugar deprivation/reperfusion (OGD/R) to mimic IR, and transfected with WSB1 overexpression or silencing plasmid to alter the expression of WSB1. RESULTS WSB1 was found highly expressed in penumbra of myocardial IR rats, and the WSB1 overexpression relieved IR-induced cardio dysfunction, myocardial infarct and pathological damage, and cardiomyocyte death in penumbra. The ectopic expression of WSB1 in H9c2 myocardial cells mitigated OGD/R-caused apoptosis, and silencing of WSB1 exacerbated the apoptosis. In addition, WSB1 activated β-catenin signaling, which was deactivated under the ischemic condition. The co-immunoprecipitation results revealed that WSB1 mediated ubiquitination and degradation of glycogen synthase kinase 3 beta (GSK3β) as an E3 ligase in myocardial cells. The effects of WSB1 on myocardial cells under ischemic conditions were abolished by an inhibitor of β-catenin signaling. CONCLUSION WSB1 activated β-catenin pathway by promoting the ubiquitination of GSK3β, and restrained IR-induced myocardial injury. These findings might provide novel insights for clinical treatment of myocardial ischemic patients.
Collapse
Affiliation(s)
- Lini Fang
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Yang Tao
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Guoying Che
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yongzi Yun
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Min Ren
- Ultrasound Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 536# Changle Road, Shanghai, China.
| | - Yujie Liu
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China.
| |
Collapse
|
27
|
Wang J, Zhao G, Zhao Y, Zhao Z, Yang S, Zhou A, Li P, Zhang S. N 6-methylation in the development, diagnosis, and treatment of gastric cancer. J Transl Int Med 2024; 12:5-21. [PMID: 38525439 PMCID: PMC10956730 DOI: 10.2478/jtim-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Gastric cancer (GC) ranks third among cancers in terms of mortality rate worldwide. A clear understanding of the mechanisms underlying the genesis and progression of GC will contribute to clinical decision making. N6-methyladenosine (m6A) is the most abundant among diverse mRNA modification types and regulates multiple facets of RNA metabolism. In recent years, emerging studies have shown that m6A modifications are involved in gastric carcinoma tumorigenesis and progression and can potentially be valuable new prospects for diagnosis and prognosis. This article reviews the recent progress regarding m6A in GC.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
28
|
Mostaghimi T, Bahadoran E, Bakht M, Taheri S, Sadeghi H, Babaei A. Role of lncRNAs in Helicobacter pylori and Epstein-Barr virus associated gastric cancers. Life Sci 2024; 336:122316. [PMID: 38035995 DOI: 10.1016/j.lfs.2023.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Helicobacter pylori infection is a risk factor for the development of gastric cancer (GC), and the role of co-infection with viruses, such as Epstein-Barr virus, in carcinogenesis cannot be ignored. Furthermore, it is now known that genetic factors such as long non-coding RNAs (lncRNAs) are involved in many diseases, including GC. On the other side, they can also be used as therapeutic goals. Modified lncRNAs can cause aberrant expression of genes encoding proximal proteins, which are essential for the development of carcinoma. In this review, we present the most recent studies on lncRNAs in GC, concentrating on their roles in H. pylori and EBV infections, and discuss some of the molecular mechanisms of these GC-related pathogens. There was also a discussion of the research gaps and future perspectives.
Collapse
Affiliation(s)
- Talieh Mostaghimi
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Hamid Sadeghi
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| |
Collapse
|
29
|
Sharma N, Panigrahi R, Pradhan P, Parida S, Sahoo SR. Expression of CD68+ Tumor associated macrophages in relation to β-catenin in carcinoma stomach. INDIAN J PATHOL MICR 2024; 67:15-20. [PMID: 38358183 DOI: 10.4103/ijpm.ijpm_535_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background With no unified system for tumor associated macrophages (TAMs) density assessment, limited information is available on their relationship with β-catenin expression. Aim To evaluate the density of CD68+ TAMs in gastric adenocarcinoma samples by immunohistochemistry and correlate it with grade, stage, invasion, and beta-catenin. Designs and Settings Formalin fixed paraffin embedded (FFPE) blocks from gastrectomy specimens of proven gastric adenocarcinoma were prospectively and retrospectively were studied over a period of two years. Materials and Methods Immunohistochemistry with CD68 and β-catenin was performed. TAM density was qualitatively compared in "tumor" versus "stroma" and "tumor" versus "non-tumor" regions. Quantitative CD68+ TAM density was assessed using different methods and compared. Cases were classified as high and low TAM based on the median value and correlated with histologic type, location, grade, stage and β-catenin expression pattern. Statistical Analysis Spearman's rank correlation test was used to compare the different methods of TAM density evaluation. The categorical variables were studied using Pearson's Chi-square or Fisher's exact test. CD68+ TAM density and β-catenin expression were correlated by analysis of variance. A P value ≤ 0.05 was taken as statistically significant. Results The CD68+ TAMs in the "tumor" versus "non-tumor" area (p = 0.34) and "tumor" versus "stroma distribution" (p = 0.81) did not show any statistical significance. All methods of TAM density were found to be comparable. High TAM group is significantly associated with lymphovascular invasion, tumor depth, lymph node metastasis, and abnormal β-catenin expression. Conclusion TAMs density plays an important role in the tumor stage. Macrophages may possibly induce gastric cancer invasiveness by activating β-catenin pathway.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Ranjita Panigrahi
- Department of Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Prita Pradhan
- Department of Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sabyasachi Parida
- Department of Surgical Oncology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Saroj R Sahoo
- Department of Surgical Oncology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
30
|
Liu T, Guo S, Ji Y, Zhu W. Role of cancer-educated mesenchymal stromal cells on tumor progression. Biomed Pharmacother 2023; 166:115405. [PMID: 37660642 DOI: 10.1016/j.biopha.2023.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
The malignant tumor is the main cause of human deaths worldwide. Current therapies focusing on the tumor itself have achieved unprecedented benefits. Various pro-tumorigenic factors in the tumor microenvironment (TME) could abolish the effect of cancer therapy. Mesenchymal stromal cells (MSCs) are one of the substantial components in the tumor microenvironment, contributing to tumor progression. However, MSCs are not inherently tumor-promoting. Indeed, they acquire pro-tumorigenic properties under the education of the TME. We herein review how various elements in the TME including tumor cells, immune cells, pro-inflammatory factors, hypoxia, and extracellular matrix influence the biological characteristics of MSCs through complex interactions and demonstrate the underlying mechanisms. We also highlight the importance of tumor-associated mesenchymal stromal cells (TA-MSCs) in promoting tumor progression. Our review gives a new insight into the TA-MSCs as a potential tumor therapeutic target. It is anticipated that subverting MSCs education will facilitate the outbreak of therapeutic strategies against tumors.
Collapse
Affiliation(s)
- Ting Liu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang 214500, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
31
|
Boicean A, Birsan S, Ichim C, Boeras I, Roman-Filip I, Blanca G, Bacila C, Fleaca RS, Dura H, Roman-Filip C. Has-miR-129-5p's Involvement in Different Disorders, from Digestive Cancer to Neurodegenerative Diseases. Biomedicines 2023; 11:2058. [PMID: 37509697 PMCID: PMC10377727 DOI: 10.3390/biomedicines11072058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
At present, it is necessary to identify specific biochemical, molecular, and genetic markers that can reliably aid in screening digestive cancer and correlate with the degree of disease development. Has-miR-129-5p is a small, non-coding molecule of RNA, circulating in plasma, gastric juice, and other biological fluids; it plays a protective role in tumoral growth, metastasis, etc. Furthermore, it is involved in various diseases, from the development of digestive cancer in cases of downregulation to neurodegenerative diseases and depression. Methods: We examined meta-analyses, research, and studies related to miR-129-5-p involved in digestive cancer and its implications in cancer processes, as well as metastasis, and described its implications in neurological diseases. Conclusions: Our review outlines that miR-129-5p is a significant controller of different pathways, genes, and proteins and influences different diseases. Some important pathways include the WNT and PI3K/AKT/mTOR pathways; their dysregulation results in digestive neoplasia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Ioana Boeras
- Molecular Biology Laboratory of the Applied Ecology Research Center, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Iulian Roman-Filip
- Department of Neurology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Grama Blanca
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Sorin Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
32
|
Li Y, Wang Y, Zou Q, Li S, Zhang F. KLF3 Transcription Activates WNT1 and Promotes the Growth and Metastasis of Gastric Cancer via Activation of the WNT/β-Catenin Signaling Pathway. J Transl Med 2023; 103:100078. [PMID: 36827869 DOI: 10.1016/j.labinv.2023.100078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
The transcription factor Krüppel-like factor (KLF) 3 is one of the members of the KLF family, which plays an important role in tumor progression. Nevertheless, the role of KLF3 in the growth and metastasis of gastric cancer (GC) still needs to be elucidated. Bioinformatics analysis showed that KLF3 was overexpressed in patients with GC, and the high expression of KLF3 was correlated with poor survival. KLF3 was also overexpressed in GC clinical samples and cell lines. In vitro functional role of KLF3 in GC cells was explored by a gain-of-function and loss-of-function assay. Overexpressed KLF3 promoted the cell proliferation, migration, invasion, and epithelial-mesenchymal transition of GC cells, whereas suppressed KLF3 inhibited these biological behaviors. The clinical samples and bioinformatics analysis showed that WNT1 was also highly expressed in GC tumor tissues and positively correlated with KLF3 expression. The luciferase reporter assay and chromatin immunoprecipitation result confirmed that KLF3 could directly bind to the WNT1 promoter to increase the transcriptional activity of WNT1, thus regulating its expression. Overexpressed KLF3 enhanced the protein expression level of p-GSK3β(Ser9) and β-catenin, the key elements in the WNT/β-catenin signaling pathway. Repression of KLF3 decreased the level of p-GSK3β(Ser9) and β-catenin. Immunofluorescence images showed that KLF3 promoted nuclear β-catenin accumulation. Inhibition of WNT1 attenuated the proliferation, migration, and invasiveness of KLF3-overexpressing GC cells. Moreover, the xenograft mouse model confirmed that KLF3 promotes GC tumor growth and metastasis in vivo. Our results demonstrated that KLF3 activates the WNT/β-catenin signaling pathway via WNT1 to promote GC tumor growth and metastasis, indicating that repression of KLF3 may act as a potential therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Wang
- Endoscopy Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qinguang Zou
- Department of Thoracic Surgery, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Shouqing Li
- Tumor Integrative Medicine Center, Jilin Province People's Hospital, Changchun, Jilin, China
| | - Fan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
33
|
Heo H, Kim HJ, Haam K, Sohn HA, Shin YJ, Go H, Jung HJ, Kim JH, Lee SI, Song KS, Kim MJ, Lee H, Kwon ES, Kim SY, Kim YS, Kim M. Epigenetic Activation of Tensin 4 Promotes Gastric Cancer Progression. Mol Cells 2023; 46:298-308. [PMID: 36896596 PMCID: PMC10183796 DOI: 10.14348/molcells.2023.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 03/11/2023] Open
Abstract
Gastric cancer (GC) is a complex disease influenced by multiple genetic and epigenetic factors. Chronic inflammation caused by Helicobacter pylori infection and dietary risk factors can result in the accumulation of aberrant DNA methylation in gastric mucosa, which promotes GC development. Tensin 4 (TNS4), a member of the Tensin family of proteins, is localized to focal adhesion sites, which connect the extracellular matrix and cytoskeletal network. We identified upregulation of TNS4 in GC using quantitative reverse transcription PCR with 174 paired samples of GC tumors and adjacent normal tissues. Transcriptional activation of TNS4 occurred even during the early stage of tumor development. TNS4 depletion in GC cell lines that expressed high to moderate levels of TNS4, i.e., SNU-601, KATO III, and MKN74, reduced cell proliferation and migration, whereas ectopic expression of TNS4 in those lines that expressed lower levels of TNS4, i.e., SNU-638, MKN1, and MKN45 increased colony formation and cell migration. The promoter region of TNS4 was hypomethylated in GC cell lines that showed upregulation of TNS4. We also found a significant negative correlation between TNS4 expression and CpG methylation in 250 GC tumors based on The Cancer Genome Atlas (TCGA) data. This study elucidates the epigenetic mechanism of TNS4 activation and functional roles of TNS4 in GC development and progression and suggests a possible approach for future GC treatments.
Collapse
Affiliation(s)
- Haejeong Heo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hee-Jin Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyun Ahm Sohn
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Yang-Ji Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hanyong Go
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hyo-Jung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jong-Hwan Kim
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Korea
| | - Sang-Il Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Min-Ju Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon 34113, Korea
| | - Seon-Young Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Korea
| | - Yong Sung Kim
- Functional Genomics Institute, PDXen Biosystems Co., Daejeon 34129, Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
| | - Mirang Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
| |
Collapse
|
34
|
van Ree JH, Jeganathan KB, Fierro Velasco RO, Zhang C, Can I, Hamada M, Li H, Baker DJ, van Deursen JM. Hyperphosphorylated PTEN exerts oncogenic properties. Nat Commun 2023; 14:2983. [PMID: 37225693 PMCID: PMC10209192 DOI: 10.1038/s41467-023-38740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of β-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Janine H van Ree
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
35
|
Jang E, Shin MK, Kim H, Lim JY, Lee JE, Park J, Kim J, Kim H, Shin Y, Son HY, Choi YY, Hyung WJ, Noh SH, Suh JS, Sung JY, Huh YM, Cheong JH. Clinical molecular subtyping reveals intrinsic mesenchymal reprogramming in gastric cancer cells. Exp Mol Med 2023; 55:974-986. [PMID: 37121972 PMCID: PMC10238377 DOI: 10.1038/s12276-023-00989-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 02/14/2023] [Indexed: 05/02/2023] Open
Abstract
The mesenchymal cancer phenotype is known to be clinically related to treatment resistance and a poor prognosis. We identified gene signature-based molecular subtypes of gastric cancer (GC, n = 547) based on transcriptome data and validated their prognostic and predictive utility in multiple external cohorts. We subsequently examined their associations with tumor microenvironment (TME) features by employing cellular deconvolution methods and sequencing isolated GC populations. We further performed spatial transcriptomics analysis and immunohistochemistry, demonstrating the presence of GC cells in a partial epithelial-mesenchymal transition state. We performed network and pharmacogenomic database analyses to identify TGF-β signaling as a driver pathway and, thus, a therapeutic target. We further validated its expression in tumor cells in preclinical models and a single-cell dataset. Finally, we demonstrated that inhibition of TGF-β signaling negated mesenchymal/stem-like behavior and therapy resistance in GC cell lines and mouse xenograft models. In summary, we show that the mesenchymal GC phenotype could be driven by epithelial cancer cell-intrinsic TGF-β signaling and propose therapeutic strategies based on targeting the tumor-intrinsic mesenchymal reprogramming of medically intractable GC.
Collapse
Affiliation(s)
- Eunji Jang
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Republic of Korea
| | - Min-Kyue Shin
- College of Medicine, Yonsei University, Seoul, Republic of Korea
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University, Seoul, Republic of Korea
| | - Joo Yeon Lim
- Department of Surgery, Yonsei University, Seoul, Republic of Korea
| | - Jae Eun Lee
- Department of Surgery, Yonsei University, Seoul, Republic of Korea
| | - Jungmin Park
- Department of Radiology, Yonsei University, Seoul, Republic of Korea
| | - Jungeun Kim
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Republic of Korea
| | - Hyeseon Kim
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Republic of Korea
| | - Youngmin Shin
- Department of Radiology, Yonsei University, Seoul, Republic of Korea
| | - Hye-Young Son
- Department of Radiology, Yonsei University, Seoul, Republic of Korea
| | - Yoon Young Choi
- Department of Surgery, Yonsei University, Seoul, Republic of Korea
| | - Woo Jin Hyung
- Department of Surgery, Yonsei University, Seoul, Republic of Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University, Seoul, Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology, Yonsei University, Seoul, Republic of Korea
| | - Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Systems Informatics, Yonsei University, Seoul, Republic of Korea
| | - Yong-Min Huh
- College of Medicine, Yonsei University, Seoul, Republic of Korea.
- Department of Radiology, Yonsei University, Seoul, Republic of Korea.
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea.
- Department of Biochemistry & Molecular Biology, College of Medicine, Yonsei University, Seoul, Republic of Korea.
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Ho Cheong
- College of Medicine, Yonsei University, Seoul, Republic of Korea.
- Department of Surgery, Yonsei University, Seoul, Republic of Korea.
- Department of Biomedical Systems Informatics, Yonsei University, Seoul, Republic of Korea.
- Department of Biochemistry & Molecular Biology, College of Medicine, Yonsei University, Seoul, Republic of Korea.
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Fujita M, Tsuchiya K, Kurohara T, Fukuhara K, Misawa T, Demizu Y. In silico optimization of peptides that inhibit Wnt/β-catenin signaling. Bioorg Med Chem 2023; 84:117264. [PMID: 37003158 DOI: 10.1016/j.bmc.2023.117264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
The Wnt/β-catenin signaling pathway causes transcriptional activation through the interaction between β-catenin and T cell-specific transcription factor (TCF) and regulates a wide variety of cellular responses, including proliferation, differentiation and cell motility. Excessive transcriptional activation of the Wnt/β-catenin pathway is implicated in developing or exacerbating various cancers. We have recently reported that liver receptor homolog-1 (LRH-1)-derived peptides inhibit the β-catenin/TCF interaction. In addition, we developed a cell-penetrating peptide (CPP)-conjugated LRH-1-derived peptide that inhibits the growth of colon cancer cells and specifically inhibits the Wnt/β-catenin pathway. Nonetheless, the inhibitory activity of the CPP-conjugated LRH-1-derived peptide was unsatisfactory (ca. 20 μM), and improving the bioactivity of peptide inhibitors is required for their in vivo applications. In this study, we optimized the LRH-1-derived peptide using in silico design to enhance its activity further. The newly designed peptides showed binding affinity toward β-catenin comparable to the parent peptide. In addition, the CPP-conjugated stapled peptide, Penetratin-st6, showed excellent inhibition (ca. 5 μM). Thus, the combination of in silico design by MOE and MD calculations has revealed that logical molecular design of PPI inhibitory peptides targeting β-catenin is possible. This method can be also applied to the rational design of peptide-based inhibitors targeting other proteins.
Collapse
Affiliation(s)
- Minami Fujita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Keisuke Tsuchiya
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan; Graduate School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Takashi Kurohara
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Kiyoshi Fukuhara
- Graduate School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
37
|
Demirci U, Orenay-Boyacioglu S, Kasap E, Gerçeker E, Bilgiç F, Yüceyar H, Yildirim H, Baykan AR, Ellidokuz EB, Korkmaz M. Overexpressions of RHOA, CSNK1A1, DVL2, FZD8, and LRP5 genes enhance gastric cancer development in the presence of Helicobacter pylori. Arab J Gastroenterol 2023:S1687-1979(23)00005-9. [PMID: 36720664 DOI: 10.1016/j.ajg.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND STUDY AIMS Intestinal metaplasia (IM), and Helicobacter pylori (HP) infection can be shown as risk factors in the development of gastric cancer (GC). WNT signaling pathway plays a critical role in carcinogenesis. However, the literature studies are limited on the significance of this pathway for the transition from IM to GC. PATIENTS AND METHODS We aimed to investigate the importance of the genes of WNT signaling pathways diagnostic and prognostic markers in the presence and absence of HP in conversion from IM to GC. 104 patients, (GC group n = 35, IM group n = 45, control group n = 25) were included in this case-control study. Expression of genes in WNT signalling were searched in study groups with qRT-PCR array and qRT-PCR method. Data were analysed using PCR array data analysis software. RESULTS Statistically significant overexpression of RHOA, CSNK1A1, DVL2, FZD8 and LRP5 genes was detected in the GC and IM groups compared to the control group (p < 0.05). Statistically significant overexpression of RHOA, CSNK1A1, DVL2, FZD8 and LRP5 genes was observed in patients with metastatic GC compared to patients with GC without metastasis (p < 0.05). It was found that the RHOA, CSNK1A1, DVL2, FZD8 and LRP5 genes were statistically significantly over-expressed in diffuse GC patients compared to non-diffuse GC patients (p < 0.05). Statistically significant overexpression of RHOA, CSNK1A1, DVL2, FZD8 and LRP5 genes was detected in HP positive IM patients compared to HP negative IM patients (p < 0.05). CONCLUSION Overexpression of RHOA, CSNK1A1, DVL2, FZD8 and LRP5 genes in IM may suggest that these genes are important markers in the development of IM and inflammation with HP. In addition, these genes are linked to tumor burden in the GC group. Consequently, we can conclude that these genes are poor prognosis biomarkers for GC and have the potential to be used as markers for future treatment monitoring.
Collapse
Affiliation(s)
- Ufuk Demirci
- Department of Internal Medicine, Medical Faculty, Manisa Celal Bayar University, Manisa Turkey.
| | - Seda Orenay-Boyacioglu
- Department of Medical Genetics, Medical Faculty, Aydın Adnan Menderes University, Aydın, Turkey
| | - Elmas Kasap
- Department of Gastroenterology, Medical Faculty, Manisa Celal Bayar University, Manisa Turkey
| | - Emre Gerçeker
- Department of Gastroenterology, Gazi Hospital, Izmir Turkey
| | - Fahri Bilgiç
- Department of Internal Medicine, Medical Faculty, Manisa Celal Bayar University, Manisa Turkey
| | - Hakan Yüceyar
- Department of Gastroenterology, Medical Faculty, Manisa Celal Bayar University, Manisa Turkey
| | - Hatice Yildirim
- Department of Medical Biology, Medical Faculty, Manisa Celal Bayar University, Manisa Turkey
| | - Ahmed Ramiz Baykan
- Department of Gastroenterology, Erzurum Education and Research Hospital, Erzurum Turkey
| | - Ender Berat Ellidokuz
- Department of Gastroenterology, Medical Faculty, Dokuz Eylul University, Izmir Turkey
| | - Mehmet Korkmaz
- Department of Medical Biology, Medical Faculty, Manisa Celal Bayar University, Manisa Turkey
| |
Collapse
|
38
|
An Update of G-Protein-Coupled Receptor Signaling and Its Deregulation in Gastric Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030736. [PMID: 36765694 PMCID: PMC9913146 DOI: 10.3390/cancers15030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) belong to a cell surface receptor superfamily responding to a wide range of external signals. The binding of extracellular ligands to GPCRs activates a heterotrimeric G protein and triggers the production of numerous secondary messengers, which transduce the extracellular signals into cellular responses. GPCR signaling is crucial and imperative for maintaining normal tissue homeostasis. High-throughput sequencing analyses revealed the occurrence of the genetic aberrations of GPCRs and G proteins in multiple malignancies. The altered GPCRs/G proteins serve as valuable biomarkers for early diagnosis, prognostic prediction, and pharmacological targets. Furthermore, the dysregulation of GPCR signaling contributes to tumor initiation and development. In this review, we have summarized the research progress of GPCRs and highlighted their mechanisms in gastric cancer (GC). The aberrant activation of GPCRs promotes GC cell proliferation and metastasis, remodels the tumor microenvironment, and boosts immune escape. Through deep investigation, novel therapeutic strategies for targeting GPCR activation have been developed, and the final aim is to eliminate GPCR-driven gastric carcinogenesis.
Collapse
|
39
|
Bakulina NV, Tikhonov SV, Okovityi SV, Lutaenko EA, Bolshakov AO, Prikhodko VA, Nekrasova AS. [Pharmacokinetics and pharmacodynamics of rebamipide. New possibilities of therapy: A review]. TERAPEVT ARKH 2023; 94:1431-1437. [PMID: 37167190 DOI: 10.26442/00403660.2022.12.202000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
The MedLine database contains 570 publications, including 71 randomized clinical trials and 6 meta-analyses on the rebamipide molecule in 2022. Indications for the use of rebamipide are gastric ulcer, chronic gastritis with hyperacidityin the acute stage, erosive gastritis, prevention of damage to the gastrointestinal mucosa while taking non-steroidal anti-inflammatory drugs, eradication of Helicobacter pylori. Currently trials are studying the efficacy and safety of the drug in gouty and rheumatoid arthritis, osteoarthritis, Sjögren's syndrome, bronchial asthma, vitiligo, atherosclerosis, diseases of the kidneys and liver; using in traumatology to accelerate bone regeneration; in ophthalmology to improve the regeneration of corneal epithelium; in oncology to reduce inflammatory changes in the oral mucosa after chemoradiotherapy. The review article is about the main pharmacokinetic and pharmacodynamic characteristics of rebamipide. A detailed understanding of pharmacodynamics and pharmacokinetics allows for individual selection of therapy based on the characteristics of the patient's body - gender, age, comorbidities; choose the optimal route of administration and dosing regimen; predict adverse effects and drug interactions; be determined with new clinical indications.
Collapse
Affiliation(s)
- N V Bakulina
- Mechnikov North-Western State Medical University
| | - S V Tikhonov
- Mechnikov North-Western State Medical University
| | - S V Okovityi
- Saint Petersburg State Chemical Pharmaceutical University
| | - E A Lutaenko
- Mechnikov North-Western State Medical University
| | | | - V A Prikhodko
- Saint Petersburg State Chemical Pharmaceutical University
| | | |
Collapse
|
40
|
Fukagawa K, Takahashi Y, Yamamichi N, Kageyama-Yahara N, Sakaguchi Y, Obata M, Cho R, Sakuma N, Nagao S, Miura Y, Tamura N, Ohki D, Mizutani H, Yakabi S, Minatsuki C, Niimi K, Tsuji Y, Yamamichi M, Shigi N, Tomida S, Abe H, Ushiku T, Koike K, Fujishiro M. Transcriptome analysis reveals the essential role of NK2 homeobox 1/thyroid transcription factor 1 (NKX2-1/TTF-1) in gastric adenocarcinoma of fundic-gland type. Gastric Cancer 2023; 26:44-54. [PMID: 36094595 DOI: 10.1007/s10120-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric adenocarcinoma of fundic-gland type (GA-FG) is a gastric malignancy with little relation to Helicobacter pylori. Clinical characteristics of GA-FG have been established, but molecular mechanisms leading to tumorigenesis have not yet been elucidated. METHODS We subjected three GA-FG tumors-normal mucosa pairs to microarray analysis. Network analysis was performed for the top 30 up-regulated gene transcripts, followed by immunohistochemical staining to confirm the gene expression analysis results. AGS and NUGC4 cells were transfected with the gene-encoding NK2 homeobox 1/thyroid transcription factor 1 (NKX2-1/TTF-1) to evaluate transcriptional changes in its target genes. RESULTS Comprehensive gene expression analysis identified 1410 up-regulated and 1395 down-regulated gene probes with ≥ two-fold difference in expression. Among the top 30 up-regulated genes in GA-FG, we identified transcription factor NKX2-1/TTF-1, a master regulator of lung/thyroid differentiation, together with surfactant protein B (SFTPB), SFTPC, and secretoglobin family 3A member 2(SCGB3A2), which are regulated by NKX2-1/TTF-1. Immunohistochemical analysis of 16 GA-FG specimens demonstrated significantly higher NKX2-1/TTF-1 and SFTPB levels, as compared to that in adjacent normal mucosa (P < 0.05), while SCGB3A2 levels did not differ (P = 0.341). Transduction of NKX2-1/TTF-1 into AGS and NUGC4 cells induced transactivation of SFTPB and SFTPC, indicating that NKX2-1/TTF-1 can function as normally in gastric cells as it can in the lung cells. CONCLUSIONS Our first transcriptome analysis of GA-FG indicates significant expression of NKX2-1/TTF1 in GA-FG. Immunohistochemistry and cell biology show ectopic expression and normal transactivation ability of NKX2-1/TTF-1, suggesting that it plays an essential role in GA-FG development.
Collapse
Affiliation(s)
- Kazushi Fukagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yu Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Natsuko Kageyama-Yahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yoshiki Sakaguchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Miho Obata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Rina Cho
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Nobuyuki Sakuma
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Sayaka Nagao
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yuko Miura
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Naoki Tamura
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Daisuke Ohki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroya Mizutani
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Seiichi Yakabi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Chihiro Minatsuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Keiko Niimi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yosuke Tsuji
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Mitsue Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Narumi Shigi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Okayama, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Setagaya-Ku, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
41
|
Differentially Expressed Genes and Signaling Pathways Potentially Involved in Primary Resistance to Chemo-Immunotherapy in Advanced-Stage Gastric Cancer Patients. Int J Mol Sci 2022; 24:ijms24010001. [PMID: 36613445 PMCID: PMC9820415 DOI: 10.3390/ijms24010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, the combination of chemotherapy plus nivolumab (chemo-immunotherapy) has become the standard of care for advanced-stage gastric cancer (GC) patients. However, despite its efficacy, up to 40% of patients do not respond to these treatments. Our study sought to identify variations in gene expression associated with primary resistance to chemo-immunotherapy. Diagnostic endoscopic biopsies were retrospectively obtained from advanced GC patients previously categorized as responders (R) or non-responders (NR). Thirty-four tumor biopsies (R: n = 16, NR: n = 18) were analyzed by 3′ massive analysis of cDNA ends (3′MACE). We found >30 differentially expressed genes between R and NRs. Subsequent pathway enrichment analyses demonstrated that angiogenesis and the Wnt-β-catenin signaling pathway were enriched in NRs. Concomitantly, we performed next generation sequencing (NGS) analyses in a subset of four NR patients that confirmed alterations in genes that belonged to the Wnt/β-catenin and the phosphoinositide 3-kinase (PI3K) pathways. We speculate that angiogenesis, the Wnt, and the PI3K pathways might offer actionable targets. We also discuss therapeutic alternatives for chemo-immunotherapy-resistant advanced-stage GC patients.
Collapse
|
42
|
Alteration of Cellular Energy Metabolism through LPAR2-Axin2 Axis in Gastric Cancer. Biomolecules 2022; 12:biom12121805. [PMID: 36551233 PMCID: PMC9775664 DOI: 10.3390/biom12121805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA), a multifunctional endogenous phospholipid, plays a vital role in cellular homeostasis and the malignant behavior of cancer cells through G-protein-coupled receptors. However, the role of LPA in β-catenin-mediated gastric cancer is unknown. Here, we have noted the high expression of LPAR2 in human gastric cancer tissues, and that LPA treatment significantly increased the proliferation, migration, and invasion of human gastric cancer cells. Results from our biochemical experiments showed that an LPA exposure increased the expression of β-catenin and its nuclear localization, increased the phosphorylation of glycogen synthase kinase 3β (GSK-3β), decreased the expression of Axin2, and increased the expression of the target genes of the β-catenin signaling pathway. The LPA2 receptor (LPAR2) antagonist significantly reduced the LPA-induced nuclear localization of β-catenin, the primary signaling event. The knockdown of LPAR2 in the gastric cancer cell lines robustly reduced the LPA-induced β-catenin activity. An LPA exposure increased the ATP production by both oxidative phosphorylation and glycolysis, and this effect was abrogated with the addition of an LPAR2 antagonist and XAV393, which stabilizes the Axin and inhibits the β-catenin signaling pathway. Based on our findings, the possibility that LPA contributes to gastric cancer initiation and progression through the β-catenin signaling pathway as well as by the dysregulation of the energy metabolism via the LPAR2 receptor and Axin2, respectively, provides a novel insight into the mechanism of and possible therapeutic targets of gastric cancer.
Collapse
|
43
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Gao Q, Chen Y, Yue L, Li Z, Wang M. Knockdown of TMEM132A restrains the malignant phenotype of gastric cancer cells via inhibiting Wnt signaling. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:343-357. [PMID: 36441075 DOI: 10.1080/15257770.2022.2148692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmembrane protein 132 A (TMEM132A) has been recently reported to be a novel regulator of the Wnt signaling pathway, which is a cancer-associated cascade. However, the role of TMEM132A in cancer is not well characterized. Here, we used bioinformatics analysis to analyze the differential expression of TMEM132A in gastric cancer (GC) tissues and determine its diagnostic and prognostic value. Results showed that TMEM132A expression was upregulated in GC tissues. TMEM132A was also found to have diagnostic and prognostic roles in patient with GC. Furthermore, as evaluated by in vitro assays, knockdown of TMEM132A restrained cell proliferation, migration, and invasion of GC cells, while overexpression of TMEM132A exerted opposite effects. However, the effects of TMEM132A silencing and overexpression on GC cells were reversed by treatment with LiCl and ICG-001 (the Wnt signaling activator and inhibitor), respectively. In addition, in vivo assays showed that knockdown of TMEM132A suppressed GC tumorigenesis. Hence, our results provide new insights into the oncogenic role of TMEM132A in regulating GC cell proliferation, migration, and invasion, as well as its prognostic and therapeutic roles in patients with GC. These data highlight the diagnostic, prognostic, and therapeutic potential of TMEM132A in GC.
Collapse
Affiliation(s)
- Qianqian Gao
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Yufang Chen
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Lingping Yue
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Ziyan Li
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Meihua Wang
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| |
Collapse
|
45
|
Lan WH, Lin TY, Yeh JA, Feng CL, Hsu JT, Lin HJ, Kuo CJ, Lai CH. Mechanism Underlying Metformin Action and Its Potential to Reduce Gastric Cancer Risk. Int J Mol Sci 2022; 23:14163. [PMID: 36430639 PMCID: PMC9695469 DOI: 10.3390/ijms232214163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus is associated with a high risk of developing gastric cancer (GC). Metformin, which is conventionally used to treat type 2 diabetes, induces AMP-activated protein kinase signaling and suppresses gluconeogenesis. Recent studies have reported that metformin is associated with beneficial effects in cancer prevention and treatment owing to its anti-tumor effects. This makes metformin a potential medication for GC therapy. However, contradicting reports have emerged regarding the efficacy of metformin in reducing the risk of GC. This review summarizes the impact of metformin on mitigating GC risk by analyzing clinical databases. The mechanism underlying the anti-tumor effect of metformin on GC is also discussed.
Collapse
Affiliation(s)
- Wen-Hsi Lan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Yu Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jia-Ai Yeh
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Lung Feng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan
- Department of Internal Medicine, Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40402, Taiwan
| | - Jun-Te Hsu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Hwai-Jeng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang-Ho Hospital, New Taipei 23562, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Jung Kuo
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Internal Medicine, Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40402, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
46
|
Knockdown of Mediator Complex Subunit 27 Suppresses Gastric Cancer Cell Metastasis and Angiogenesis Via Wnt/β-catenin Pathway. Tissue Cell 2022; 79:101973. [DOI: 10.1016/j.tice.2022.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
47
|
Flanagan DJ, Woodcock SA, Phillips C, Eagle C, Sansom OJ. Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition. Pharmacol Ther 2022; 238:108179. [PMID: 35358569 PMCID: PMC9531712 DOI: 10.1016/j.pharmthera.2022.108179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Gastrointestinal cancers are responsible for more cancer deaths than any other system of the body. This review summarises how Wnt pathway dysregulation contributes to the development of the most common gastrointestinal cancers, with a particular focus on the nature and frequency of upstream pathway aberrations. Tumors with upstream aberrations maintain a dependency on the presence of functional Wnt ligand, and are predicted to be tractable to inhibitors of Porcupine, an enzyme that plays a key role in Wnt secretion. We summarise available pre-clinical efficacy data from Porcupine inhibitors in vitro and in vivo, as well as potential toxicities and the data from early phase clinical trials. We appraise the rationale for biomarker-defined targeted approaches, as well as outlining future opportunities for combination with other therapeutics.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK; Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | | | | | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
48
|
Gasper W, Rossi F, Ligorio M, Ghersi D. Variant calling enhances the identification of cancer cells in single-cell RNA sequencing data. PLoS Comput Biol 2022; 18:e1010576. [PMID: 36191033 PMCID: PMC9560611 DOI: 10.1371/journal.pcbi.1010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Single-cell RNA-sequencing is an invaluable research tool that allows for the investigation of gene expression in heterogeneous cancer cell populations in ways that bulk RNA-seq cannot. However, normal (i.e., non tumor) cells in cancer samples have the potential to confound the downstream analysis of single-cell RNA-seq data. Existing methods for identifying cancer and normal cells include copy number variation inference, marker-gene expression analysis, and expression-based clustering. This work aims to extend the existing approaches for identifying cancer cells in single-cell RNA-seq samples by incorporating variant calling and the identification of putative driver alterations. We found that putative driver alterations can be detected in single-cell RNA-seq data obtained with full-length transcript technologies and noticed that a subset of cells in tumor samples are enriched for putative driver alterations as compared to normal cells. Furthermore, we show that the number of putative driver alterations and inferred copy number variation are not correlated in all samples. Taken together, our findings suggest that augmenting existing cancer-cell filtering methods with variant calling and analysis can increase the number of tumor cells that can be confidently included in downstream analyses of single-cell full-length transcript RNA-seq datasets.
Collapse
Affiliation(s)
- William Gasper
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Francesca Rossi
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Matteo Ligorio
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| |
Collapse
|
49
|
Wang Q, Qi C, Min P, Wang Y, Ye F, Xia T, Zhang Y, Du J. MICAL2 contributes to gastric cancer cell migration via Cdc42-dependent activation of E-cadherin/β-catenin signaling pathway. Cell Commun Signal 2022; 20:136. [PMID: 36064550 PMCID: PMC9442994 DOI: 10.1186/s12964-022-00952-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gastric cancer is a common and lethal human malignancy worldwide and cancer cell metastasis is the leading cause of cancer-related mortality. MICAL2, a flavoprotein monooxygenase, is an important regulator of epithelial-to-mesenchymal transition. The aim of this study was to explore the effects of MICAL2 on gastric cancer cell migration and determine the underlying molecular mechanisms. Methods Cell migration was examined by wound healing and transwell assays. Changes in E-cadherin/β-catenin signaling were determined by qPCR and analysis of cytoplasmic and nuclear protein fractions. E-cadherin/β-catenin binding was determined by co-immunoprecipitation assays. Cdc42 activity was examined by pulldown assay. Results MICAL2 was highly expressed in gastric cancer tissues. The knockdown of MICAL2 significantly attenuated migratory ability and β-catenin nuclear translocation in gastric cancer cells while LiCl treatment, an inhibitor of GSK3β, reversed these MICAL2 knockdown-induced effects. Meanwhile, E-cadherin expression was markedly enhanced in MICAL2-depleted cells. MICAL2 knockdown led to a significant attenuation of E-cadherin ubiquitination and degradation in a Cdc42-dependent manner, then enhanced E-cadherin/β-catenin binding, and reduced β-catenin nuclear translocation. Conclusions Together, our results indicated that MICAL2 promotes E-cadherin ubiquitination and degradation, leading to enhanced β-catenin signaling via the disruption of the E-cadherin/β-catenin complex and, consequently, the promotion of gastric cell migration. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00952-x.
Collapse
Affiliation(s)
- Qianwen Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Chenxiang Qi
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Pengxiang Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yueyuan Wang
- Experimental Teaching Center of Basic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Fengwen Ye
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Tianxiang Xia
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
50
|
Phillips C, Bhamra I, Eagle C, Flanagan E, Armer R, Jones CD, Bingham M, Calcraft P, Edmenson Cook A, Thompson B, Woodcock SA. The Wnt Pathway Inhibitor RXC004 Blocks Tumor Growth and Reverses Immune Evasion in Wnt Ligand-dependent Cancer Models. CANCER RESEARCH COMMUNICATIONS 2022; 2:914-928. [PMID: 36922934 PMCID: PMC10010340 DOI: 10.1158/2767-9764.crc-21-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Wnt signaling is implicated in the etiology of gastrointestinal tract cancers. Targeting Wnt signaling is challenging due to on-target toxicity concerns and lack of druggable pathway components. We describe the discovery and characterization of RXC004, a potent and selective inhibitor of the membrane-bound o-acyl transferase Porcupine, essential for Wnt ligand secretion. Absorption, distribution, metabolism, and excretion and safety pharmacology studies were conducted with RXC004 in vitro, and pharmacokinetic exposure assessed in vivo. RXC004 effects on proliferation and tumor metabolism were explored in genetically defined colorectal and pancreatic cancer models in vitro and in vivo. RXC004 effects on immune evasion were assessed in B16F10 immune "cold" and CT26 immune "hot" murine syngeneic models, and in human cell cocultures. RXC004 showed a promising pharmacokinetic profile, inhibited Wnt ligand palmitoylation, secretion, and pathway activation, and demonstrated potent antiproliferative effects in Wnt ligand-dependent (RNF43-mutant or RSPO3-fusion) colorectal and pancreatic cell lines. Reduced tumor growth and increased cancer cell differentiation were observed in SNU-1411 (RSPO3-fusion), AsPC1 and HPAF-II (both RNF43-mutant) xenograft models, with a therapeutic window versus Wnt homeostatic functions. Additional effects of RXC004 on tumor cell metabolism were confirmed in vitro and in vivo by glucose uptake and 18fluorodeoxyglucose-PET, respectively. RXC004 stimulated host tumor immunity; reducing resident myeloid-derived suppressor cells within B16F10 tumors and synergizing with anti-programmed cell death protein-1 (PD-1) to increase CD8+/regulatory T cell ratios within CT26 tumors. Moreover, RXC004 reversed the immunosuppressive effects of HPAF-II cells cocultured with human peripheral blood mononuclear cells, confirming the multiple anticancer mechanisms of this compound, which has progressed into phase II clinical trials. Significance Wnt pathway dysregulation drives many gastrointestinal cancers; however, there are no approved therapies that target the pathway. RXC004 has demonstrated the potential to block both tumor growth and tumor immune evasion in a genetically defined, clinically actionable subpopulation of Wnt ligand-dependent gastrointestinal cancers. The clinical utility of RXC004, and other Porcupine inhibitors, in such Wnt ligand-dependent cancers is currently being assessed in patient trials.
Collapse
Affiliation(s)
| | - Inder Bhamra
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Catherine Eagle
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Eimear Flanagan
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Richard Armer
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | | | - Matilda Bingham
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Concept Life Sciences Ltd, Manchester, United Kingdom
| | - Peter Calcraft
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Analytical Development, Flu-BPD, AstraZeneca PLC, Manchester, United Kingdom
| | - Alicia Edmenson Cook
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Oncology Cell Therapy, GlaxoSmithKline PLC, London, United Kingdom
| | - Ben Thompson
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,In Vitro, RxCelerate Ltd, Cambridge, United Kingdom
| | | |
Collapse
|