1
|
La Frazia S, Pauciullo S, Zulian V, Garbuglia AR. Viral Oncogenesis: Synergistic Role of Genome Integration and Persistence. Viruses 2024; 16:1965. [PMID: 39772271 PMCID: PMC11728759 DOI: 10.3390/v16121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production. This review focuses on the process of genome integration, which may occur at different stages of infection (e.g., HBV), during the chronic phase of infection (e.g., HPV, EBV), or as an essential part of the viral life cycle, as seen in retroviruses (HIV, HTLV-1). It also explores the close relationship between integration, persistence, and oncogenesis. Several models have been proposed to describe the genome integration process, including non-homologous recombination, looping, and microhomology models. Integration can occur either randomly or at specific genomic sites, often leading to genome destabilization. In some cases, integration results in the loss of genomic regions or impairs the regulation of oncogene and/or oncosuppressor expression, contributing to tumor development.
Collapse
Affiliation(s)
- Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| |
Collapse
|
2
|
Ahmed K, Jha S. Oncoviruses: How do they hijack their host and current treatment regimes. Biochim Biophys Acta Rev Cancer 2023; 1878:188960. [PMID: 37507056 DOI: 10.1016/j.bbcan.2023.188960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Viruses have the ability to modulate the cellular machinery of their host to ensure their survival. While humans encounter numerous viruses daily, only a select few can lead to disease progression. Some of these viruses can amplify cancer-related traits, particularly when coupled with factors like immunosuppression and co-carcinogens. The global burden of cancer development resulting from viral infections is approximately 12%, and it arises as an unfortunate consequence of persistent infections that cause chronic inflammation, genomic instability from viral genome integration, and dysregulation of tumor suppressor genes and host oncogenes involved in normal cell growth. This review provides an in-depth discussion of oncoviruses and their strategies for hijacking the host's cellular machinery to induce cancer. It delves into how viral oncogenes drive tumorigenesis by targeting key cell signaling pathways. Additionally, the review discusses current therapeutic approaches that have been approved or are undergoing clinical trials to combat malignancies induced by oncoviruses. Understanding the intricate interactions between viruses and host cells can lead to the development of more effective treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sudhakar Jha
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
3
|
Liu W, Lu JY, Wang YJ, Xu XX, Chen YC, Yu SX, Xiang XW, Chen XZ, Jiu Y, Gao H, Sheng M, Chen ZJ, Hu X, Li D, Maiuri P, Huang X, Ying T, Xu GL, Pang DW, Zhang ZL, Liu B, Liu YJ. Vaccinia virus induces EMT-like transformation and RhoA-mediated mesenchymal migration. J Med Virol 2023; 95:e29041. [PMID: 37621182 DOI: 10.1002/jmv.29041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Jia-Yin Lu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xin-Xin Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xiao-Wei Xiang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xue-Zhu Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hai Gao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Mengyao Sheng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyao Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, College of Life Sciences, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, College of Life Sciences, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Xinxin Huang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, Frontiers Science Center for Cell Responses, College of Chemistry, Nankai University, Tianjin, China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Baohong Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
4
|
White MC, Wu X, Damania B. Oncogenic viruses, cancer biology, and innate immunity. Curr Opin Immunol 2022; 78:102253. [PMID: 36240666 DOI: 10.1016/j.coi.2022.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Malignancies that arise as a result of viral infection account for roughly 15% of cancer cases worldwide. The innate immune system is the body's first line of defense against oncogenic viral infection and is also involved in the response against viral-driven tumors. In this review, we discuss research advances made over the last five years elucidating how the innate immune system recognizes and responds to oncogenic viruses, how these viruses have evolved to escape this immune pressure, and ways that innate immunity can inform the development of novel therapeutics against oncogenic viral infection and their associated cancers.
Collapse
Affiliation(s)
- Maria C White
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xinjun Wu
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
6
|
Aguayo F, Boccardo E, Corvalán A, Calaf GM, Blanco R. Interplay between Epstein-Barr virus infection and environmental xenobiotic exposure in cancer. Infect Agent Cancer 2021; 16:50. [PMID: 34193233 PMCID: PMC8243497 DOI: 10.1186/s13027-021-00391-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is a herpesvirus associated with lymphoid and epithelial malignancies. Both B cells and epithelial cells are susceptible and permissive to EBV infection. However, considering that 90% of the human population is persistently EBV-infected, with a minority of them developing cancer, additional factors are necessary for tumor development. Xenobiotics such as tobacco smoke (TS) components, pollutants, pesticides, and food chemicals have been suggested as cofactors involved in EBV-associated cancers. In this review, the suggested mechanisms by which xenobiotics cooperate with EBV for carcinogenesis are discussed. Additionally, a model is proposed in which xenobiotics, which promote oxidative stress (OS) and DNA damage, regulate EBV replication, promoting either the maintenance of viral genomes or lytic activation, ultimately leading to cancer. Interactions between EBV and xenobiotics represent an opportunity to identify mechanisms by which this virus is involved in carcinogenesis and may, in turn, suggest both prevention and control strategies for EBV-associated cancers.
Collapse
Affiliation(s)
| | - Enrique Boccardo
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alejandro Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, 1000000, Arica, Chile.,Center for Radiological Research, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Zhao J, Guo Z, Wang Q, Si T, Pei S, Qu H, Shang L, Yang Y, Wang L. HPV infection associated DNA damage correlated with cervical precancerous lesions and cancer in the highest area of cervical cancer mortality, Longnan, China. Cancer Manag Res 2019; 11:7197-7210. [PMID: 31534369 PMCID: PMC6681565 DOI: 10.2147/cmar.s201415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives This study was to assess whether human papillomavirus (HPV) resulting in genetic instability is one reason for the high incidence and mortality of cervical cancer in Longnan. Methods Between 2012 and 2016, a total of 346 samples from Longnan were collected and divided into four groups: cervicitis group (n=57), cervical intraepithelial neoplasia I group (CIN I, n=63), CIN II/III group (n=79) and invasive squamous cell carcinoma group (SCC, n=147). HPV E6/E7 mRNA was detected by Quantivirus® HPV E6/E7 RNA 3.0 assay (bDNA). The markers of DNA damage response (DDR) – ataxia telangiectasia mutated (ATM) pSer1981, H2AX pSer139 (γH2AX), Chk2 pThr68 and P53 – were analyzed by immunohistochemistry. Results The activation of ATM, γH2AX, Chk2 and P53 was increased with increasing severity of cervical lesion. A significant difference of ATM expression in simple infection was also shown accompanied by the cervical lesion. The expression of γH2AX between HPV16+ and HPV16- specimens, γH2AX and P53 between HPV58+ and HPV58- groups had statistical significance. The expression and copy number of HPV E6/7 mRNA increases with the cervical lesion severity. A significant difference was shown for P53 expression between HPV E6/7 mRNA+ and mRNA- specimens. A close correlation with CHK2 expression for HPV E6/7 mRNA+ and HPV16 E6/7 mRNA+ specimens and γH2AX and CHK2 expression for SCC specimens was shown between low and high viral load groups. Conclusions DDR, HPV genotypes and HPV E6/E7 oncogene expression correlated with the level of dysplasia of cervical lesions. HPV infection resulted in genetic instability may be one reason for the high incidence and mortality in Longnan.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Zhong Guo
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Qiang Wang
- Department of Pathology, No. 1 Hospital of Longnan City, Longnan 746000, People's Republic of China
| | - Tianbin Si
- Department of Gynecology and Oncology, Gansu Provincial Cancer Hospital, Lanzhou 730050, People's Republic of China
| | - Shuyan Pei
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Hongmei Qu
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Lina Shang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Yuqing Yang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Lili Wang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| |
Collapse
|
8
|
|
9
|
Marcello MA, Malandrino P, Almeida JFM, Martins MB, Cunha LL, Bufalo NE, Pellegriti G, Ward LS. The influence of the environment on the development of thyroid tumors: a new appraisal. Endocr Relat Cancer 2014; 21:T235-54. [PMID: 24948559 DOI: 10.1530/erc-14-0131] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most epidemiological studies concerning differentiated thyroid cancers (DTC) indicate an increasing incidence over the last two decades. This increase might be partially explained by the better access to health services worldwide, but clinicopathological analyses do not fully support this hypothesis, indicating that there are carcinogenetic factors behind this noticeable increasing incidence. Although we have undoubtedly understood the biology and molecular pathways underlying thyroid carcinogenesis in a better way, we have made very little progresses in identifying a risk profile for DTC, and our knowledge of risk factors is very similar to what we knew 30-40 years ago. In addition to ionizing radiation exposure, the most documented and established risk factor for DTC, we also investigated the role of other factors, including eating habits, tobacco smoking, living in a volcanic area, xenobiotics, and viruses, which could be involved in thyroid carcinogenesis, thus, contributing to the increase in DTC incidence rates observed.
Collapse
Affiliation(s)
- M A Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - P Malandrino
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - J F M Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - M B Martins
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L L Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - N E Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - G Pellegriti
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L S Ward
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
11
|
Abstract
Constitutive expression of interferons (IFNs) and activation of their signaling pathways have pivotal roles in host responses to malignant cells in the tumor microenvironment. IFNs are induced by the innate immune system and in tumors through stimulation of Toll-like receptors (TLRs) and through other signaling pathways in response to specific cytokines. Although in the oncologic context IFNs have been thought of more as exogenous pharmaceuticals, the autocrine and paracrine actions of endogenous IFNs probably have even more critical effects on neoplastic disease outcomes. Through high-affinity cell surface receptors, IFNs modulate transcriptional signaling, leading to regulation of more than 2,000 genes with varying patterns of temporal expression. Induction of the gene products by both unphosphorylated and phosphorylated STAT1 after ligand binding results in alterations in tumor cell survival, inhibition of angiogenesis, and augmentation of actions of T, natural killer (NK), and dendritic cells. The interferon-stimulated gene (ISG) signature can be a favorable biomarker of immune response but, in a seemingly paradoxical finding, a specific subset of the full ISG signature indicates an unfavorable response to DNA-damaging interventions such as radiation. IFNs in the tumor microenvironment thus can alter the emergence, progression, and regression of malignancies.
Collapse
Affiliation(s)
- Hyeonjoo Cheon
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH.
| | - Ernest C Borden
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH
| | - George R Stark
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH
| |
Collapse
|
12
|
Alvisi G, Palù G. Reprogramming the host: Modification of cell functions upon viral infection. World J Virol 2013; 2:16-17. [PMID: 24175226 PMCID: PMC3785044 DOI: 10.5501/wjv.v2.i2.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 02/05/2023] Open
Abstract
Viruses and their hosts have co-evolved for million years. In order to successfully replicate their genome, viruses need to usurp the biosynthetic machinery of the host cell. Depending on the complexity and the nature of the genome, replication might involve or not a relatively large subset of viral products, in addition to a number of host cell factors, and take place in several subcellular compartments, including the nucleus, the cytoplasm, as well as virus-induced, rearranged membranes. Therefore viruses need to ensure the correct subcellular localization of their effectors and to be capable of disguising from the cellular defensive mechanisms. In addition, viruses are capable of exploiting host cell activities, by modulating their post-translational modification apparatus, resulting in profound modifications in the function of cellular and viral products. Not surprisingly infection of host cells by these parasites can lead to alterations of cellular differentiation and growing properties, with important pathogenic consequences. In the present hot topic highlight entitled “Reprogramming the host: modification of cell functions upon viral infection”, a number of leading virologists and cell biologist thoroughly describe recent advances in our understanding of how viruses modulate cellular functions to achieve successful replication and propagation at the expenses of human cells.
Collapse
|