1
|
Balasubramanian M, Girija S. Overexpression of AtMYB12 transcription factor simultaneously enhances quercetin-dependent metabolites in radish callus. Heliyon 2024; 10:e27053. [PMID: 38660267 PMCID: PMC11039974 DOI: 10.1016/j.heliyon.2024.e27053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/10/2024] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
The study aimed to enhance quercetin production in radish by optimizing Agrobacterium tumefaciens-mediated in-planta transformation. This protocol involved infecting radish seed embryo axis with A. tumefaciens EHA105 strain carrying the 35S::AtMYB12. Radish seeds were infected with the Agrobacterium suspension (0.8 OD600) for 30 min, followed by sonication for 60 s and vacuum infiltration for 90 s at 100 mm Hg. A 3-day co-cultivation in Murashige and Skoog medium with 150 μM acetosyringone yielded a transformation efficiency of 59.6% and a transgenic callus induction rate of 32.3%. Transgenic plant and callus lines were confirmed by GUS histochemical assay, PCR, and qRT-PCR. The transgenic lines showed an increased expression of flavonoid pathway genes (AtMYB12, CHS, F3H, and FLS) and antioxidant genes (GPX, APX, CAT, and SOD) compared to WT plants. Overexpression of AtMYB12 in transgenic callus increased enzyme activity of phenylalanine ammonia lyase, catalase, and ascorbate peroxidase. In half-strength MS medium with 116.8 mM sucrose, the highest growth index (7.63) was achieved after 20 days. In AtMYB12 overexpressed callus lines, phenolic content (357.31 mg g-1 dry weight), flavonoid content (463 mg g-1 dry weight), and quercetin content (48.24 mg g-1 dry weight) increased significantly by 9.41-fold. Micro-wounding, sonication, and vacuum infiltration improved in-planta transformation in radishes. These high-quercetin-content transgenic callus lines hold promise as valuable sources of flavonoids.
Collapse
Affiliation(s)
- Muthusamy Balasubramanian
- Metabolic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shanmugam Girija
- Metabolic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| |
Collapse
|
2
|
Nosaki S, Hoshikawa K, Ezura H, Miura K. Transient protein expression systems in plants and their applications. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:297-304. [PMID: 34782815 PMCID: PMC8562577 DOI: 10.5511/plantbiotechnology.21.0610a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 06/01/2023]
Abstract
The production of recombinant proteins is important in academic research to identify protein functions. Moreover, recombinant enzymes are used in the food and chemical industries, and high-quality proteins are required for diagnostic, therapeutic, and pharmaceutical applications. Though many recombinant proteins are produced by microbial or mammalian cell-based expression systems, plants have been promoted as alternative, cost-effective, scalable, safe, and sustainable expression systems. The development and improvement of transient expression systems have significantly reduced the period of protein production and increased the yield of recombinant proteins in plants. In this review, we consider the importance of plant-based expression systems for recombinant protein production and as genetic engineering tools.
Collapse
Affiliation(s)
- Shohei Nosaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ken Hoshikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
3
|
Abstract
Transient protein expression in plant cells is less time consuming than the production of whole transgenic plants. For transient expression, agroinfiltration is a simple and effective method to deliver transgenes into plant cells. After an Agrobacterium infection, recombinant proteins can be produced in plant cells from 3 to 10days. To increase protein yield, a deconstructed viral vector has been used. This chapter provides a detailed description of the transient expression of recombinant proteins in a well-developed host strain of Nicotiana benthamiana. This study also describes the necessary steps for the extraction of soluble proteins from agroinfiltrated leaves.
Collapse
Affiliation(s)
- Shohei Nosaki
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenji Miura
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
4
|
Yuan S, Kawasaki S, Abdellatif IMY, Nishida K, Kondo A, Ariizumi T, Ezura H, Miura K. Efficient base editing in tomato using a highly expressed transient system. PLANT CELL REPORTS 2021; 40:667-676. [PMID: 33550455 DOI: 10.1007/s00299-021-02662-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Base editing in tomatoes was achieved by transient expression. The Solanaceae plants, particularly the tomato (Solanum lycopersicum), is of huge economic value worldwide. The tomato is a unique model plant for studying the functions of genes related to fruit ripening. Deeper understanding of tomatoes is of great importance for both plant research and the economy. Genome editing technology, such as CRISPR/Cas9, has been used for functional genetic research. However, some challenges, such as low transformation efficiency, remain with this technology. Moreover, the foreign Cas9 and gRNA expression cassettes must be removed to obtain null-segregants In this study, we used a high-level transient expression system to improve the base editing technology. A high-level transient expression system has been established previously using geminiviral replication and a double terminator. The pBYR2HS vector was used for this transient expression system. nCas9-CDA and sgRNA-SlHWS were introduced into this vector, and the protein and RNA were then transiently expressed in tomato tissues by agroinfiltration. The homozygous mutant produced by base editing was obtained in the next generation with an efficiency of about 18%. nCas9-free next-generation plants were 71%. All the homozygous base-edited plants in next generation are nCas9-free. These findings show that the high-level transient expression system is useful for base editing in tomatoes.
Collapse
Affiliation(s)
- Shaoze Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Shunsuke Kawasaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Islam M Y Abdellatif
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
5
|
Transient Gene Expression: an Approach for Recombinant Vaccine Production. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
6
|
Savadogo EH, Shiomi Y, Yasuda J, Akino T, Yamaguchi M, Yoshida H, Umegawachi T, Tanaka R, Suong DNA, Miura K, Yazaki K, Kitajima S. Gene expression of PLAT and ATS3 proteins increases plant resistance to insects. PLANTA 2021; 253:37. [PMID: 33464406 DOI: 10.1007/s00425-020-03530-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Genes of the PLAT protein family, including PLAT and ATS3 subfamilies of higher plants and homologs of liverwort, are involved in plant defense against insects. Laticifer cells in plants contain large amounts of anti-microbe or anti-insect proteins and are involved in plant defense against biotic stresses. We previously found that PLAT proteins accumulate in laticifers of fig tree (Ficus carica) at comparable levels to those of chitinases, and the transcript level of ATS3, another PLAT domain-containing protein, is highest in the transcriptome of laticifers of Euphorbia tirucalli. In this study, we investigated whether the PLAT domain-containing proteins are involved in defense against insects. Larvae of the lepidopteran Spodoptera litura showed retarded growth when fed with Nicotiana benthamiana leaves expressing F. carica PLAT or E. tirucalli ATS3 genes, introduced by agroinfiltration using expression vector pBYR2HS. Transcriptome analysis of these leaves indicated that ethylene and jasmonate signaling were activated, leading to increased expression of genes for PR-1, β-1,3-glucanase, PR5 and trypsin inhibitors, suggesting an indirect mechanism of PLAT- and ATS3-induced resistance in the host plant. Direct cytotoxicity of PLAT and ATS3 to insects was also possible because heterologous expression of the corresponding genes in Drosophila melanogaster caused apoptosis-mediated cell death in this insect. Larval growth retardation of S. litura occurred when they were fed radish sprouts, a good host for agroinfiltration, expressing any of nine homologous genes of dicotyledon Arabidopsis thaliana, monocotyledon Brachypodium distachyon, conifer Picea sitchensis and liverwort Marchantia polymorpha. Of these nine genes, the heterologous expression of A. thaliana AT5G62200 and AT5G62210 caused significant increases in larval death. These results indicated that the PLAT protein family has largely conserved anti-insect activity in the plant kingdom (249 words).
Collapse
Affiliation(s)
- Eric Hyrmeya Savadogo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yui Shiomi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Junko Yasuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Toshiharu Akino
- The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takanari Umegawachi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryo Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Dang Ngoc Anh Suong
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan.
- The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|