1
|
Tan B, Tang W, Zeng Y, Liu J, Du X, Su H, Pang X, Liao L, Hu Q. Development of animal models with chronic kidney disease-mineral and bone disorder based on clinical characteristics and pathogenesis. Front Endocrinol (Lausanne) 2025; 16:1549562. [PMID: 40201764 PMCID: PMC11975589 DOI: 10.3389/fendo.2025.1549562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic complication of chronic kidney disease (CKD), resulting in high morbidity and mortality. However, effective treatment strategies are lacking. The pathogenesis of CKD-MBD is unclear but involves feedback mechanisms between calcium, phosphorus, parathyroid hormone, vitamin D and other factors, in addition to FGF23, Klotho, Wnt inhibitors, and activin A. Construction of a perfect animal model of CKD-MBD with clinical characteristics is important for in-depth study of disease development, pathological changes, targeted drug screening, and management of patients. Currently, the modeling methods of CKD-MBD include surgery, feeding and radiation. Additionally, the method of CKD-MBD modeling by surgical combined feeding is worth promoting because of short time, simplicity, and low mortality. Therefore, this review based on the pathogenesis and clinical features of CKD-MBD, combined with the current status of animal models, outlines the advantages and disadvantages of modeling methods, and provides a reference for further CKD-MBD research.
Collapse
Affiliation(s)
- Biyu Tan
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Yan Zeng
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Jian Liu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Xiaomei Du
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Xianlun Pang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Qiongdan Hu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| |
Collapse
|
2
|
Christodoulou M, Aspray TJ, Piec I, Fraser WD, Schoenmakers I. Alterations in regulators of the renal-bone axis, inflammation and iron status in older people with early renal impairment and the effect of vitamin D supplementation. Age Ageing 2024; 53:afae096. [PMID: 38770543 PMCID: PMC11106582 DOI: 10.1093/ageing/afae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
CONTEXT Chronic kidney disease (CKD) leads to alterations in fibroblast growth factor 23 (FGF23) and the renal-bone axis. This may be partly driven by altered inflammation and iron status. Vitamin D supplementation may reduce inflammation. OBJECTIVE AND METHODS Older adults with early CKD (estimated glomerular filtration rate (eGFR) 30-60 ml/min/1.73 m2; CKDG3a/b; n = 35) or normal renal function (eGFR >90 ml/min/1.73 m2; CKDG1; n = 35) received 12,000, 24,000 or 48,000 IU D3/month for 1 year. Markers of the renal-bone axis, inflammation and iron status were investigated pre- and post-supplementation. Predictors of c-terminal and intact FGF23 (cFGF23; iFGF23) were identified by univariate and multivariate regression. RESULTS Pre-supplementation, comparing CKDG3a/b to CKDG1, plasma cFGF23, iFGF23, PTH, sclerostin and TNFα were significantly higher and Klotho, 1,25-dihydroxyvitamin D and iron were lower. Post-supplementation, only cFGF23, 25(OH)D and IL6 differed between groups. The response to supplementation differed between eGFR groups. Only in the CKDG1 group, phosphate decreased, cFGF23, iFGF23 and procollagen type I N-propeptide increased. In the CKDG3a/b group, TNFα significantly decreased, and iron increased. Plasma 25(OH)D and IL10 increased, and carboxy-terminal collagen crosslinks decreased in both groups. In univariate models cFGF23 and iFGF23 were predicted by eGFR and regulators of calcium and phosphate metabolism at both time points; IL6 predicted cFGF23 (post-supplementation) and iFGF23 (pre-supplementation) in univariate models. Hepcidin predicted post-supplementation cFGF23 in multivariate models with eGFR. CONCLUSION Alterations in regulators of the renal-bone axis, inflammation and iron status were found in early CKD. The response to vitamin D3 supplementation differed between eGFR groups. Plasma IL6 predicted both cFGF23 and iFGF23 and hepcidin predicted cFGF23.
Collapse
Affiliation(s)
| | - Terence J Aspray
- Freeman Hospital, Bone Clinic, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Isabelle Piec
- University of East Anglia, Norwich Medical School, Norwich, UK
| | - William D Fraser
- University of East Anglia, Norwich Medical School, Norwich, UK
- Clinical Biochemistry, Department of Laboratory Medicine and Department of Diabetes and Endocrinology, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Inez Schoenmakers
- University of East Anglia, Norwich Medical School, Norwich, UK
- MRC Human Nutrition Research, Cambridge, UK
| |
Collapse
|
3
|
Hu TL, Chen J, Shao SQ, Li LL, Lai C, Gao WN, Xu RF, Meng Y. Biomechanical and histomorphological analysis of the mandible in rats with chronic kidney disease. Sci Rep 2023; 13:21886. [PMID: 38081976 PMCID: PMC10713524 DOI: 10.1038/s41598-023-49152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to investigate the biomechanical and histomorphological features of mandibles in an adenine-induced chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model of CKD. A total of 14 Sprague-Dawley rats were randomized into the following two groups: control group and CKD group. At the end of the sixth week, all rats were euthanized, and serum was collected for biochemical marker tests. Macroscopic bone growth and biomechanical parameters were measured in the right hemimandible, while the left hemimandible was used for bone histomorphometric analysis. Compared to the control group, the CKD group showed a significant increase in serum creatinine, blood urea nitrogen, and serum parathyroid hormone at the end of the sixth week. The biomechanical structural properties significantly decreased in the CKD group compared to the control group. Bone histomorphometric analysis indicated that the trabecular bone volume of rats in the CKD group was significantly lower than that of the control group. In the CKD groups, the bone formation parameters of the trabecular bone were significantly increased, while the bone mineralization apposition rates of both the trabecular bone and periosteal cortical bone were significantly increased. The rat CKD model showed deteriorated structural mechanics, low trabecular bone volume, high trabecular bone formation, increased trabecular bone mineralization apposition rate, and increased cortical bone mineralization apposition rate, which met the characteristics of osteitis fibrosa, indicating that this model is a useful tool for the study of mandible diseases in CKD patients.
Collapse
Affiliation(s)
- Ta-la Hu
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Jun Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Shen-Quan Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Le-le Li
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Can Lai
- Graduate School, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Wu-Niri Gao
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Rui-Feng Xu
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Yan Meng
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
4
|
Wang Y, Chen K, Qiao ZX, Bao XR. Chronic Kidney Disease Induces Cognitive Impairment in the Early Stage. Curr Med Sci 2023; 43:988-997. [PMID: 37755634 DOI: 10.1007/s11596-023-2783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Previous research indicates a link between cognitive impairment and chronic kidney disease (CKD), but the underlying factors are not fully understood. This study aimed to investigate the progression of CKD-induced cognitive impairment and the involvement of cognition-related proteins by developing early- and late-stage CKD models in Sprague-Dawley rats. METHODS The Morris water maze test and the step-down passive avoidance task were performed to evaluate the cognitive abilities of the rats at 24 weeks after surgery. Histopathologic examinations were conducted to examine renal and hippocampal damage. Real-time PCR, Western blotting analysis, and immunohistochemical staining were carried out to determine the hippocampal expression of brain-derived neurotrophic factor (BDNF), choline acetyltransferase (ChAT), and synaptophysin (SYP). RESULTS Compared with the control rats, the rats with early-stage CKD exhibited mild renal damage, while those with late-stage CKD showed significantly increased serum creatinine levels as well as apparent renal and brain damage. The rats with early-stage CKD also demonstrated significantly impaired learning abilities and memory compared with the control rats, with further deterioration observed in the rats with late-stage CKD. Additionally, we observed a significant downregulation of cognition-related proteins in the hippocampus of rats with early-stage CKD, which was further exacerbated with declining renal function as well as worsening brain and renal damage in rats with late-stage CKD. CONCLUSION These results suggest the importance of early screening to identify CKD-induced cognitive dysfunction promptly. In addition, the downregulation of cognition-related proteins may play a role in the progression of cognitive dysfunction.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Kai Chen
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zi-Xuan Qiao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xiao-Rong Bao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
5
|
Zhang X, Li T, Wang L, Li Y, Ruan T, Guo X, Wang Q, Meng X. Relative comparison of chronic kidney disease-mineral and bone disorder rat models. Front Physiol 2023; 14:1083725. [PMID: 36818435 PMCID: PMC9936098 DOI: 10.3389/fphys.2023.1083725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Objective: The aim of this study is to establish a suitable animal model of chronic kidney disease-mineral and bone disorder (CKD-MBD) by comparing CKD-MBD rat models induced by 5/6 Nx, AN, and UUO, accompanied by a low-calcium and high-phosphorus diet. Methods: Sprague‒Dawley rats were randomly divided into four groups: control group, 5/6 nephrectomy (5/6 Nx) group, Adriamycin nephropathy (AN) group, and unilateral ureteral obstruction (UUO) group. Serum biochemical indices were measured to evaluate renal function, mineral and bone metabolism, the severity of CKD-MBD, and the status of bone transformation. Hematoxylin-eosin staining (HE) and Masson's trichrome (Masson) staining were used for histopathological analysis of the kidney. Goldner's trichrome (Goldner) and tartrate-resistant acid phosphatase (TRAP) staining were utilized to observe bone mineralization and osteoclasts in the femur, respectively. Micro-CT images were applied to study the structure of the femur. The expression levels of osterix and cathepsin K in the femur were measured by immunohistochemistry (IHC) to confirm the status of bone transformation. Results: The levels of serum creatinine (Scr) and blood urea nitrogen (BUN) in the 5/6 Nx and AN group rats were significantly higher than those in the control rats, and this change was accompanied by marked changes in the levels of calcium (Ca), phosphate (Pi), intact parathyroid hormone (i-PTH), fibroblast growth factor 23 (FGF23), osteocalcin (OC), and cross-linked C-telopeptide of type 1 collagen (CTX-1); UUO group rats exhibited slight and inconsistent variations in the levels of Scr, BUN, Ca, Pi, i-PTH, FGF23, OC, and CTX-1 in serum. Histopathological analysis of the kidney showed that the UUO group rats suffered serious fibrosis and 5/6 Nx group rats exhibited severe focal calcification. Histopathological analysis of the femur showed that the AN group rats had minimal bone mineralization and that the 5/6 Nx group rats had overactive osteoclasts. Micro-CT revealed that the AN model had the most severe bone destruction and that the 5/6 Nx model had the least severe bone loss among the three models. The expression of cathepsin K in the femur was significantly increased in all models, while the expression of osterix in the femur was only significantly increased in the 5/6 Nx model. Conclusion: 5/6 Nx, AN, and UUO accompanied by a low-calcium and high-phosphorus diet successfully induced CKD-MBD in rats. The 5/6 NX model presented the progression of high-turnover bone disease, with consistency between biochemical indices in serum and histomorphometric analysis of the femur, and the AN and UUO models developed a severe deterioration in bone quantity and severe bone resorption; however, the changes in biochemical indices were subtle in the UUO model, and liver injury was obvious in the AN model.
Collapse
Affiliation(s)
- Xiaoqiong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chongqing, China
| | - Ting Li
- School of Pharmacy, Chongqing University of Medical Sciences, Chongqing, China
| | - Lijuan Wang
- Department of Pathology, Chongqing Hospital of Traditional Chinese Medicine, The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional, Chongqing, China
| | - Yanhui Li
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing Hospital of Traditional Chinese Medicine, The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chongqing, China
| | - Taoren Ruan
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chongqing, China
| | - Xiaohong Guo
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chongqing, China
| | - Qin Wang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chongqing, China,Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing Hospital of Traditional Chinese Medicine, The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chongqing, China,*Correspondence: Qin Wang, ; Xianli Meng,
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Qin Wang, ; Xianli Meng,
| |
Collapse
|
6
|
Liu BH, Chong FL, Yuan CC, Liu YL, Yang HM, Wang WW, Fang QJ, Wu W, Wang MZ, Tu Y, Wan ZY, Wan YG, Wu GW. Fucoidan Ameliorates Renal Injury-Related Calcium-Phosphorus Metabolic Disorder and Bone Abnormality in the CKD-MBD Model Rats by Targeting FGF23-Klotho Signaling Axis. Front Pharmacol 2021; 11:586725. [PMID: 33708111 PMCID: PMC7941278 DOI: 10.3389/fphar.2020.586725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Recently, chronic kidney disease (CKD)-mineral and bone disorder (MBD) has become one of common complications occurring in CKD patients. Therefore, development of a new treatment for CKD-MBD is very important in the clinic. In China, Fucoidan (FPS), a natural compound of Laminaria japonica has been frequently used to improve renal dysfunction in CKD. However, it remains elusive whether FPS can ameliorate CKD-MBD. FGF23-Klotho signaling axis is reported to be useful for regulating mineral and bone metabolic disorder in CKD-MBD. This study thereby aimed to clarify therapeutic effects of FPS in the CKD-MBD model rats and its underlying mechanisms in vivo and in vitro, compared to Calcitriol (CTR). Methods: All male rats were divided into four groups: Sham, CKD-MBD, FPS and CTR. The CKD-MBD rat models were induced by adenine administration and uninephrectomy, and received either FPS or CTR or vehicle after induction of renal injury for 21 days. The changes in parameters related to renal dysfunction and renal tubulointerstitial damage, calcium-phosphorus metabolic disorder and bone lesion were analyzed, respectively. Furthermore, at sacrifice, the kidneys and bone were isolated for histomorphometry, immunohistochemistry and Western blot. In vitro, the murine NRK-52E cells were used to investigate regulative actions of FPS or CTR on FGF23-Klotho signaling axis, ERK1/2-SGK1-NHERF-1-NaPi-2a pathway and Klotho deficiency. Results: Using the modified CKD-MBD rat model and the cultured NRK-52E cells, we indicated that FPS and CTR alleviated renal dysfunction and renal tubulointerstitial damage, improved calcium-phosphorus metabolic disorder and bone lesion, and regulated FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. In addition, using the shRNA-Klotho plasmid-transfected cells, we also detected, FPS accurately activated ERK1/2-SGK1-NHERF-1-NaPi-2a pathway through Klotho loss reversal. Conclusion: In this study, we emphatically demonstrated that FPS, a natural anti-renal dysfunction drug, similar to CTR, improves renal injury-related calcium-phosphorus metabolic disorder and bone abnormality in the CKD-MBD model rats. More importantly, we firstly found that beneficial effects in vivo and in vitro of FPS on phosphorus reabsorption are closely associated with regulation of FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. This study provided pharmacological evidences that FPS directly contributes to the treatment of CKD-MBD.
Collapse
Affiliation(s)
- Bu-Hui Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nephrology Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fee-Lan Chong
- The School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| | - Can-Can Yuan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hai-Ming Yang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Wen Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mei-Zi Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Yue Wan
- Department of Social Work, Meiji Gakuin University, Tokyo, Japan
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guo-Wen Wu
- Jilin Province Huinan Chonglong Bio-Pharmacy Co., Ltd., Huinan, China
| |
Collapse
|
7
|
OGT knockdown counteracts high phosphate-induced vascular calcification in chronic kidney disease through autophagy activation by downregulating YAP. Life Sci 2020; 261:118121. [PMID: 32693242 DOI: 10.1016/j.lfs.2020.118121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
AIMS Pathological vascular calcification (VC), a major risk factor for cardiovascular mortality, is a highly prevalent finding in patients with chronic kidney disease (CKD). We previously analyzed several pathways protecting against high phosphate-induced VC through induction of autophagy. Here, we explored how O-GlcNAc transferase (OGT) affected high phosphate-induced VC of CKD though mediation of autophagy. MAIN METHODS In the rats with CKD induced by 5/6 nephrectomy, the VC process was accelerated by a high phosphate diet. The calcification of vascular smooth muscle cells (VSMCs) was induced by high phosphate treatment. We then experimentally tested the effect of OGT on high phosphate-induced VC by conducting loss-of-function experiments. Co-immunoprecipitation and GST pull-down assays were performed to evaluate interaction between OGT and Yes-associated protein (YAP). In mechanistic studies of this pathway, we measured autophagy protein expression and autophagosome formation, as well as calcium deposition and calcium content in VSMCs and in vivo in response to altered expression of OGT and/or YAP. KEY FINDINGS OGT was up-regulated in high phosphate-induced VC models in vitro and in vivo. High phosphate-induced calcification in the rat aorta and VSMCs were suppressed by OGT silencing. OGT promoted the glycosylation of YAP to enhance its stability. Importantly, over-expressing YAP reduced autophagy and OGT expedited high phosphate-induced VC by inhibiting autophagy through upregulation of YAP. SIGNIFICANCE OGT silencing downregulated YAP to induce autophagy activation, thus suppressing high phosphate-induced VC, which highlighted a promising preventive target against high phosphate-induced VC in CKD.
Collapse
|
8
|
Tanaka S, Nakano T, Hiyamuta H, Taniguchi M, Tokumoto M, Masutani K, Ooboshi H, Tsuruya K, Kitazono T. Impact of Multivascular Disease on Cardiovascular Mortality and Morbidity in Patients Receiving Hemodialysis: Ten-Year Outcomes of the Q-Cohort Study. J Atheroscler Thromb 2020; 28:385-395. [PMID: 32684556 PMCID: PMC8147568 DOI: 10.5551/jat.54098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Multivascular disease, indicating concurrent arteriosclerotic lesions in a number of different vascular beds, is an independent risk factor for recurrent ischemic events in the general population. However, the impact of multivascular disease on the risk of developing cardiovascular disease has not been fully evaluated in patients receiving hemodialysis. METHODS A total of 3,504 hemodialysis patients were prospectively followed for 10 years. In this study, multivascular disease was defined as the coexistence of coronary artery disease and stroke. We examined the relationship between multivascular disease and the occurrence of composite cardiovascular endpoint, consisting of cardiovascular death, nonfatal coronary artery disease, nonfatal stroke, and peripheral artery disease. RESULTS The proportion of participants with multivascular disease was 5.7% (n=200) at baseline. During follow-up (median, 106.6 months; interquartile range, 50.1-121.8 months), 1,311 patients experienced the composite endpoint, which was defined as at least one of the following: cardiovascular death (n=620), nonfatal coronary artery disease (n=318), nonfatal stroke (n=340), and peripheral artery disease (n=257). Compared with the group with no history of cardiovascular disease, the risk of experiencing the composite endpoint increased significantly with higher numbers of injured vascular beds in patients with single vascular disease (hazard ratio, 1.68; 95% confidence interval, 1.49-1.89) and in those with multivascular disease (hazard ratio, 2.11; 95% confidence interval, 1.71-2.60). In a multivariable analysis, multivascular disease was an independent predictor of cardiovascular events, in addition to diabetes, aging, and hypertension. CONCLUSIONS This study clearly demonstrated that multivascular disease was a powerful predictor for cardiovascular mortality and morbidity in patients receiving hemodialysis.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | - Hiroto Hiyamuta
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | | | | | - Kosuke Masutani
- Department of Nephrology and Rheumatology, Faculty of Medicine, Fukuoka University
| | | | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
9
|
Wang L, Tang R, Zhang Y, Liu Z, Chen S, Song K, Guo Y, Zhang L, Wang X, Wang X, Liu H, Zhang X, Liu BC. A Rat Model with Multivalve Calcification Induced by Subtotal Nephrectomy and High-Phosphorus Diet. KIDNEY DISEASES 2020; 6:346-354. [PMID: 33490114 DOI: 10.1159/000506013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/18/2020] [Indexed: 01/10/2023]
Abstract
Background Chronic kidney disease (CKD) with known valve calcification (VC) places individuals at high risk of cardiovascular disease. The study of VC in CKD is challenging due to the lack of a suitable research model. Here, we established a rat model of multivalve calcification induced by subtotal nephrectomy and a high-phosphate (HP) diet and analyzed the valve characteristics. Methods We established a CKD model in Sprague-Dawley rats by performing 5/6 nephrectomy (5/6Nx) followed by feeding with chow containing different phosphate concentrations for 8, 12, or 16 weeks. The rats were divided into 4 groups: sham+normal phosphate (NP, 0.9% P), sham+high phosphate (HP, 2.0% P), 5/6Nx+NP, and 5/6Nx+HP. Serum creatinine (Scr), blood urea nitrogen (BUN), parathyroid hormone (PTH), calcium, phosphorus, and 24-h urine protein levels were investigated. Pathological examinations included histological characterization, safranin staining, Alcian blue staining, and von Kossa staining at different time points. Using nanoanalytical electron microscopy, we examined valves from rats in the 5/6Nx+HP and sham+HP groups and detected spherical particles using energy-dispersive spectroscopy (EDS) to observe microscopic changes in the valves. In addition, the calcified tissues were analyzed for phase and crystallization properties using an X-ray powder diffractometer. Results The rats in the 5/6Nx+HP and 5/6Nx+NP groups presented with increased levels of Scr, BUN, and 24-h urine protein compared with those of the rats in the sham+HP and sham+NP groups. High levels of PTH were observed, and hematoxylin and eosin staining and immunohistochemistry for proliferating cell nuclear antigen showed parathyroid hyperplasia in rats in the 5/6Nx+HP group but not in the 5/6Nx+NP group. In rats in the 5/6Nx+HP group, extracellular matrix glycosylation was observed in the aortic valve in the 12th week and the mitral valve in the 16th week. In the 16th week, chondrocytes appeared in the aortic valve, as confirmed by immunofluorescence and Western blotting. Calcified particles mainly composed of phosphorus and calcium were observed in both the aortic and mitral valves by transmission electron microscopy and scanning electron microscopy (SEM). The main mineral component of the calcified aortic valve particles was hydroxyapatite [Ca5(PO4)3(OH)], as shown by X-ray diffraction. However, there were no obvious differences in heart function between rats in the 5/6Nx+HP and sham+HP groups. Conclusions Our findings demonstrate that multivalve calcification is involved in CKD following 16-week HP and that hydroxyapatite [Ca5(PO4)3(OH)] is the main component of the calcified aortic valve particles of rats in the 5/6Nx+HP group.
Collapse
Affiliation(s)
- Liting Wang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Nephrology, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, School of Medicine, Southeast University, Nanjing, China
| | - Rining Tang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Nephrology, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, School of Medicine, Southeast University, Nanjing, China
| | - Yuxia Zhang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Nephrology, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, School of Medicine, Southeast University, Nanjing, China
| | - Zixiao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Sijie Chen
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Nephrology, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, School of Medicine, Southeast University, Nanjing, China
| | - Kaiyun Song
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Nephrology, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, School of Medicine, Southeast University, Nanjing, China
| | - Yu Guo
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Nephrology, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, School of Medicine, Southeast University, Nanjing, China
| | - Li Zhang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaochen Wang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaobin Wang
- Experimental Animal Centers School of Medicine, Southeast University, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Watanabe A, Koizumi T, Horikawa T, Sano Y, Uki H, Miyajima K, Kemuriyama N, Anzai R, Iwata H, Anzai T, Nakagawa K, Nakae D. Impact of altered dietary calcium-phosphorus ratio caused by high-phosphorus diets in a rat chronic kidney disease (CKD) model created by partial ligation of the renal arteries. J Toxicol Pathol 2020; 33:77-86. [PMID: 32425340 PMCID: PMC7218233 DOI: 10.1293/tox.2019-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022] Open
Abstract
This study aimed to establish a rat chronic kidney disease (CKD) model by studying the effects of a high-phosphorus diet in rats that had undergone partial ligation of the renal arteries (RL). Separate groups of 10-week-old male Slc:Sprague-Dawley rats underwent RL and were fed diets with varying phosphorous levels for a period of 48 days. A marked suppression of body weight gain necessitating humane euthanization occurred on day 28 in rats that had undergone RL and were given high-phosphorus feed. By contrast, the group of intact animals on a high-phosphorus feed exhibited a slightly decreased body weight gain from day 21 and survived until scheduled euthanization. In rats with RL, hematological, blood biochemical, and histopathological analyses demonstrated the presence of CKD-like conditions, particularly in the group that were fed a high-phosphorus diet. Hyperphosphatemia and hypocalcemia were induced by a high-phosphorus diet in both the RL and intact groups, both of which had high levels of FGF23 and parathyroid hormone in the blood. Rats with RL on a high-phosphorus diet showed decreased hematopoiesis by the hematopoietic cell area being narrower in the medullary cavity, proliferation of mesenchymal cells and osteoblasts/osteoclasts, and expansion of the osteoid area, a furthermore generalized vascular lesions, such as calcification, were observed. These findings demonstrate that the partial ligation of the renal arteries combined with a calcium–phosphorus imbalance induced by a high-phosphorus diet serves as an animal model for CKD-like conditions accompanied by bone lesions, helping to elucidate this clinical condition and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Atsushi Watanabe
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo 156-8502, Japan.,Medical Technology & Material Laboratory, Medical Products Development Division, Asahi Kasei Medical Co., Ltd., 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Toshinori Koizumi
- Medical Technology & Material Laboratory, Medical Products Development Division, Asahi Kasei Medical Co., Ltd., 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Takumi Horikawa
- Medical Technology & Material Laboratory, Medical Products Development Division, Asahi Kasei Medical Co., Ltd., 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Yusuke Sano
- Medical Technology & Material Laboratory, Medical Products Development Division, Asahi Kasei Medical Co., Ltd., 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Haruka Uki
- Medical Technology & Material Laboratory, Medical Products Development Division, Asahi Kasei Medical Co., Ltd., 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Katsuhiro Miyajima
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo 156-8502, Japan.,Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences and Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo 156-8502, Japan
| | - Noriko Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences and Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo 156-8502, Japan
| | - Reo Anzai
- Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| | - Hijiri Iwata
- Luna Path LLC Laboratory of Toxicologic Pathology, 3-5-1 Aoihigashi, Naka-ku, Hamamatsu-shi 433-8114, Japan
| | - Takayuki Anzai
- Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenshi Nakagawa
- Ina Research Inc., 2148-188 Nishiminowa, Ina-shi, Nagano-ken 399-4501, Japan
| | - Dai Nakae
- Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo 156-8502, Japan.,Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences and Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
11
|
Ma X, He L. The intervention effect of zuogui pill on chronic kidney disease-mineral and bone disorder regulatory factor. Biomed Pharmacother 2018; 106:54-60. [PMID: 29957466 DOI: 10.1016/j.biopha.2018.06.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) play a critical role in the pathogenesis of cardiovascular complications in patients with chronic kidney disease (CKD). Zuogui pill as a traditional Chinese herbal drug has been used for nourish kidney essence improve bone malnutrition of renal bone disease by regulating the metabolism of calcium and phosphorus and participating in osteoblast metabolism. In the present study, 5/6 nephrectomy rat model was used to reveal the mechanism of zuogui pill in treatment of CKD-MBD. Compared with sham rats, the levels of serum phosphorus, PTH, iPTH and creatinine were significantly decreased, while the serum calcium level was significantly increased, and the Cbfa1 protein level was significantly decreased and FGF23 protein level was significantly increased by Zuogui pill treatment. Compared with model rats, the BMD of rat was significantly increased by Zuogui pill treatment. Histological analysis revealed that the kidney injury of rats with CKD was significantly reduced by zuogui pill treatment. Compared with model rats, the CYP27B1 mRNA level was significantly increased, and the PTH mRNA level and NaPiIIa protein level were significantly decreased in the kidney by zuogui pill treatment. We inferred that zuogui pill exhibited potential therapeutic effects on CKD-MBD in the rats by regulating bone metabolism and nourish kidney.
Collapse
Affiliation(s)
- Xiaohong Ma
- Chenxinghai Hospital of Zhongshan City, No. 18 Zhuyuan Road, Xiaolan Town, Zhongshan, Guangdong, 528415, China.
| | - Liqun He
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine and Pharmacology, No. 185 Pu'an Road, Huangpu District, Shanghai, 200021, China
| |
Collapse
|