1
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
2
|
Liimatta J, Curschellas E, Altinkilic EM, Naamneh Elzenaty R, Augsburger P, du Toit T, Voegel CD, Breault DT, Flück CE, Pignatti E. Adrenal Abcg1 Controls Cholesterol Flux and Steroidogenesis. Endocrinology 2024; 165:bqae014. [PMID: 38301271 PMCID: PMC10863561 DOI: 10.1210/endocr/bqae014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Cholesterol is the precursor of all steroids, but how cholesterol flux is controlled in steroidogenic tissues is poorly understood. The cholesterol exporter ABCG1 is an essential component of the reverse cholesterol pathway and its global inactivation results in neutral lipid redistribution to tissue macrophages. The function of ABCG1 in steroidogenic tissues, however, has not been explored. To model this, we inactivated Abcg1 in the mouse adrenal cortex, which led to an adrenal-specific increase in transcripts involved in cholesterol uptake and de novo synthesis. Abcg1 inactivation did not affect adrenal cholesterol content, zonation, or serum lipid profile. Instead, we observed a moderate increase in corticosterone production that was not recapitulated by the inactivation of the functionally similar cholesterol exporter Abca1. Altogether, our data imply that Abcg1 controls cholesterol uptake and biosynthesis and regulates glucocorticoid production in the adrenal cortex, introducing the possibility that ABCG1 variants may account for physiological or subclinical variation in stress response.
Collapse
Affiliation(s)
- Jani Liimatta
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, Kuopio 70200, Finland
| | - Evelyn Curschellas
- Department of Chemistry, Biochemistry and Pharmacy, Medical Faculty, University of Bern, Bern 3010, Switzerland
| | - Emre Murat Altinkilic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Rawda Naamneh Elzenaty
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Philipp Augsburger
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Therina du Toit
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Clarissa D Voegel
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Emanuele Pignatti
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
3
|
Matsuo M. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J Pharmacol Sci 2022; 148:197-203. [DOI: 10.1016/j.jphs.2021.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
|
4
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
5
|
Wang Y, Li Z, Bie X, Liu F, Yao Q, Liu Y, Zhang Z, Yang S, Luan Y, Jia J, Xu Y, Yang D, He Y, Zheng H. A Promoter Polymorphism (Rs57137919) of ABCG1 Gene Influence on Blood Lipoprotein in Chinese Han Population. Ann Vasc Surg 2020; 68:460-467. [PMID: 32339682 DOI: 10.1016/j.avsg.2020.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Adenosine triphosphate-binding cassette subfamily G member 1 (ABCG1) has the function of transporting free intracellular cholesterol to extracellular high-density lipoprotein (HDL) particles, which play a crucial role in atherosclerosis. The goal of this study is to examine the relationship between the polymorphisms of the ABCG1 gene promoter region and ischemic stroke. METHODS In the present study, a case-control association study was designed to identify 3 single-nucleotide polymorphisms (SNPs; rs5713919, rs1378577, and rs1893590), which were located in the promoter region of ABCG1 gene by kompetitive allele-specific polymerase chain reaction genotyping approach. The in vitro luciferase assay was done to estimate the effect of rs5713919 on gene expression. Finally, the relationships of 3 SNPs of ABCG1 gene with plasma lipids and lipoproteins were investigated in this Chinese cohort. RESULTS The correlation analysis between lipids and genotypes showed that the rs57137919 locus genotype was significantly associated with HDL cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels (P = 0.021 and P = 0.017, respectively), and the GA and AA genotypes had higher HDL-C levels than the GG genotype. CONCLUSIONS Our study provides evidence that ABCG1 promoter region polymorphism rs57137919 has an influence on plasma HDL-C and LDL-C levels in Chinese Han population.
Collapse
Affiliation(s)
- Yuanli Wang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Li
- Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Xiaoshuai Bie
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fuyong Liu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qihui Yao
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaojing Zhang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shangdong Yang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Luan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Jia
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Xu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongzhi Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying He
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Hong Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Anastasius M, Luquain-Costaz C, Kockx M, Jessup W, Kritharides L. A critical appraisal of the measurement of serum 'cholesterol efflux capacity' and its use as surrogate marker of risk of cardiovascular disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1257-1273. [PMID: 30305243 DOI: 10.1016/j.bbalip.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.
Collapse
Affiliation(s)
- Malcolm Anastasius
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Wendy Jessup
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia; Cardiology Department, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Critical Role of the Human ATP-Binding Cassette G1 Transporter in Cardiometabolic Diseases. Int J Mol Sci 2017; 18:ijms18091892. [PMID: 28869506 PMCID: PMC5618541 DOI: 10.3390/ijms18091892] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) is a member of the large family of ABC transporters which are involved in the active transport of many amphiphilic and lipophilic molecules including lipids, drugs or endogenous metabolites. It is now well established that ABCG1 promotes the export of lipids, including cholesterol, phospholipids, sphingomyelin and oxysterols, and plays a key role in the maintenance of tissue lipid homeostasis. Although ABCG1 was initially proposed to mediate cholesterol efflux from macrophages and then to protect against atherosclerosis and cardiovascular diseases (CVD), it becomes now clear that ABCG1 exerts a larger spectrum of actions which are of major importance in cardiometabolic diseases (CMD). Beyond a role in cellular lipid homeostasis, ABCG1 equally participates to glucose and lipid metabolism by controlling the secretion and activity of insulin and lipoprotein lipase. Moreover, there is now a growing body of evidence suggesting that modulation of ABCG1 expression might contribute to the development of diabetes and obesity, which are major risk factors of CVD. In order to provide the current understanding of the action of ABCG1 in CMD, we here reviewed major findings obtained from studies in mice together with data from the genetic and epigenetic analysis of ABCG1 in the context of CMD.
Collapse
|
8
|
Ikenaga M, Higaki Y, Saku K, Uehara Y. High-Density Lipoprotein Mimetics: a Therapeutic Tool for Atherosclerotic Diseases. J Atheroscler Thromb 2016; 23:385-94. [PMID: 26830201 DOI: 10.5551/jat.33720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clinical trials and epidemiological studies have revealed a negative correlation between serum high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular events. Currently, statin treatment is the standard therapy for cardiovascular diseases, reducing plasma low-density lipoprotein (LDL) cholesterol levels. However, more than half of the patients have not been able to receive the beneficial effects of this treatment.The reverse cholesterol transport pathway has several potential anti-atherogenic properties. An important approach to HDL-targeted therapy is the optimization of HDL cholesterol levels and function in the blood to enhance the removal of circulating cholesterol and to prevent or mitigate inflammation that causes atherosclerosis. Cholesteryl ester transfer protein inhibitors increase HDL cholesterol levels in humans, but whether they reduce the risk of atherosclerotic diseases is unknown. HDL therapies using HDL mimetics, including reconstituted HDL, apolipoprotein (Apo) A-IMilano, ApoA-I mimetic peptides, or full-length ApoA-I, are highly effective in animal models. In particular, the Fukuoka University ApoA-I-mimetic peptide (FAMP) effectively removes cholesterol via the ABCA1 transporter and acts as an anti-atherosclerotic agent by enhancing the biological functions of HDL without elevating HDL cholesterol levels.Our literature review suggests that HDL mimetics have significant atheroprotective potential and are a therapeutic tool for atherosclerotic diseases.
Collapse
|
9
|
Association of ATP-Binding Cassette Transporter G1 Polymorphisms with Risk of Ischemic Stroke in the Chinese Han Population. J Stroke Cerebrovasc Dis 2015; 24:1397-404. [PMID: 25890853 DOI: 10.1016/j.jstrokecerebrovasdis.2015.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The adenosine triphosphate (ATP)-binding cassette transporter G1 (ABCG1), a member of the superfamily of ATP-binding cassette transporters, is involved in the transport of cholesterol and phospholipids in macrophages. As such, ABCG1 plays a crucial role in the development of atherosclerosis in humans. In this study, we investigate the association between ABCG1 polymorphisms and the risk of developing ischemic stroke in a Chinese Han population. METHODS This case-control study included 389 ischemic stroke patients and 380 healthy subjects. ABCG1 rs1378577 and rs57137919 polymorphisms were analyzed by a polymerase chain reaction-ligation detection reaction. RESULTS We found that the genotypic distribution and allelic frequency of these polymorphisms were similar in patients and controls. In a subgroup with hypertriglyceridemia (144 patients and 115 controls), the frequency of rs1378577 GG genotype and G allele as well as rs57137919 AA genotype was lower in the patient group compared with that in the control group (P = .018, P = .035, and P = .023, respectively). Logistic regression analysis revealed a reduced risk of ischemic stroke in a recessive model for both rs1378577 and rs57137919. Subtype analyses demonstrated that rs1378577 TG and GG genotypes and the G allele were associated with reduced risk of atherothrombotic stroke (P = .030, P = .006, and P = .004, respectively), even after adjusting for confounding factors in a dominant model. CONCLUSIONS Data from the present study demonstrate that ABCG1 polymorphisms are associated with reduced risk of developing ischemic stroke in hypertriglyceridemic population and atherothrombotic stroke in this cohort of Chinese Han population.
Collapse
|
10
|
Abstract
High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands,
| | | |
Collapse
|
11
|
Association between ABCG1 polymorphism rs1893590 and high-density lipoprotein (HDL) in an asymptomatic Brazilian population. Mol Biol Rep 2014; 42:745-54. [PMID: 25398214 DOI: 10.1007/s11033-014-3823-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
ATP binding cassette transporter G1 (ABCG1) promotes lipidation of nascent high-density lipoprotein (HDL) particles, acting as an intracellular transporter. SNP rs1893590 (c.-204A > C) of ABCG1 gene has been previously studied and reported as functional over plasma HDL-C and lipoprotein lipase activity. This study aimed to investigate the relationships of SNP rs1893590 with plasma lipids and lipoproteins in a large Brazilian population. Were selected 654 asymptomatic and normolipidemic volunteers from both genders. Clinical and anthropometrical data were taken and blood samples were drawn after 12 h fasting. Plasma lipids and lipoproteins, as well as HDL particle size and volume were determined. Genomic DNA was isolated for SNP rs1893590 detection by TaqMan(®) OpenArray(®) Real-Time PCR Plataform (Applied Biosystems). Mann-Whitney U, Chi square and two-way ANOVA were the used statistical tests. No significant differences were found in the comparison analyses between the allele groups for all studied parameters. Conversely, significant interactions were observed between SNP and age over plasma HDL-C, were volunteers under 60 years with AA genotype had increased HDL-C (p = 0.048). Similar results were observed in the group with body mass index (BMI) < 25 kg/m(2), where volunteers with AA genotype had higher HDL-C levels (p = 0.0034), plus an increased HDL particle size (p = 0.01). These findings indicate that SNP rs1893590 of ABCG1 has a significant impact over HDL-C under asymptomatic clinical conditions in an age and BMI dependent way.
Collapse
|
12
|
Guay SP, Brisson D, Lamarche B, Gaudet D, Bouchard L. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia. Epigenetics 2014; 9:718-29. [PMID: 24504152 DOI: 10.4161/epi.27981] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene polymorphisms associated so far with plasma lipid concentrations explain only a fraction of their heritability, which can reach up to 60%. Recent studies suggest that epigenetic modifications (DNA methylation) could contribute to explain part of this missing heritability. We therefore assessed whether the DNA methylation of key lipoprotein metabolism genes is associated with high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride levels in patients with familial hypercholesterolemia (FH). Untreated FH patients (61 men and 37 women) were recruited for the measurement of blood DNA methylation levels at the ABCG1, LIPC, PLTP and SCARB1 gene loci using bisulfite pyrosequencing. ABCG1, LIPC and PLTP DNA methylation was significantly associated with HDL-C, LDL-C and triglyceride levels in a sex-specific manner (all P<0.05). FH subjects with previous history of coronary artery disease (CAD) had higher LIPC DNA methylation levels compared with FH subjects without CAD (P = 0.02). Sex-specific multivariable linear regression models showed that new and previously reported epipolymorphisms (ABCG1-CpGC3, LIPC-CpGA2, mean PLTP-CpGC, LPL-CpGA3, CETP-CpGA2, and CETP-CpGB2) significantly contribute to variations in plasma lipid levels (all P<0.001 in men and P<0.02 in women), independently of traditional predictors such as age, waist circumference, blood pressure, fasting plasma lipids and glucose levels. These results suggest that epigenetic perturbations of key lipoprotein metabolism genes are associated with plasma lipid levels, contribute to the interindividual variability and might partially explain the missing heritability of plasma lipid levels, at least in FH.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Department of Biochemistry; Université de Sherbrooke; Sherbrooke, QC Canada; ECOGENE-21 and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
| | - Diane Brisson
- ECOGENE-21 and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada; Department of Medicine; Université de Montréal; Montréal, QC Canada
| | - Benoit Lamarche
- Institute of Nutrition and Functional Foods; Université Laval; Québec, QC Canada
| | - Daniel Gaudet
- ECOGENE-21 and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada; Department of Medicine; Université de Montréal; Montréal, QC Canada
| | - Luigi Bouchard
- Department of Biochemistry; Université de Sherbrooke; Sherbrooke, QC Canada; ECOGENE-21 and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
| |
Collapse
|
13
|
Affiliation(s)
- Federico Oldoni
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J. Sinke
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Olivier M, Tanck MW, Out R, Villard EF, Lammers B, Bouchareychas L, Frisdal E, Superville A, Van Berkel T, Kastelein JJ, Eck MV, Jukema JW, Chapman MJ, Dallinga-Thie GM, Guerin M, Le Goff W. Human ATP-binding cassette G1 controls macrophage lipoprotein lipase bioavailability and promotes foam cell formation. Arterioscler Thromb Vasc Biol 2012; 32:2223-31. [PMID: 22772754 DOI: 10.1161/atvbaha.111.243519] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The physiological function of the ATP-binding cassette G1 (ABCG1) transporter in humans is not yet elucidated, as no genetic disease caused by ABCG1 mutations has been documented. The goal of our study was, therefore, to investigate the potential role(s) of ABCG1 in lipid metabolism in humans. METHODS AND RESULTS Here we report that among the 104 polymorphisms present in the ABCG1 gene, the analysis of the frequent functional rs1893590 and rs1378577 single nucleotide polymorphisms located in the regulatory region of ABCG1 in the Regression Growth Evaluation Statin Study population revealed that both ABCG1 single nucleotide polymorphisms were significantly associated with plasma lipoprotein lipase (LPL) activity. Moreover, we observed that plasma LPL activity was modestly reduced in Abcg1(-/-) mice as compared with control mice. Adipose tissue and skeletal muscle are the major tissues accounting for levels and activity of plasma LPL in the body. However, beyond its lipolytic action in the plasma compartment, LPL was also described to act locally at the cellular level. Thus, macrophage LPL was reported to promote foam cell formation and atherosclerosis in vivo. Analysis of the relationship between ABCG1 and LPL in macrophages revealed that the knockdown of ABCG1 expression (ABCG1 knockdown) in primary cultures of human monocyte-derived macrophages using small interfering RNAs led to a marked reduction of both the secretion and activity of LPL. Indeed, LPL was trapped at the cell surface of ABCG1 knockdown human monocyte-derived macrophages, likely in cholesterol-rich domains, thereby reducing the bioavailability and activity of LPL. As a consequence, LPL-mediated lipid accumulation in human macrophage foam cells in the presence of triglyceride-rich lipoproteins was abolished when ABCG1 expression was repressed. CONCLUSIONS We presently report that ABCG1 controls LPL activity and promotes lipid accumulation in human macrophages in the presence of triglyceride-rich lipoproteins, thereby suggesting a potential deleterious role of macrophage ABCG1 in metabolic situations associated with high levels of circulating triglyceride-rich lipoproteins together with the presence of macrophages in the arterial wall.
Collapse
|
15
|
Draper DW, Gowdy KM, Madenspacher JH, Wilson RH, Whitehead GS, Nakano H, Pandiri AR, Foley JF, Remaley AT, Cook DN, Fessler MB. ATP binding cassette transporter G1 deletion induces IL-17-dependent dysregulation of pulmonary adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2012; 188:5327-36. [PMID: 22539789 DOI: 10.4049/jimmunol.1101605] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mice with genetic deletion of the cholesterol transporter ATP binding cassette G1 (ABCG1) have pulmonary lipidosis and enhanced innate immune responses in the airway. Whether ABCG1 regulates adaptive immune responses to the environment is unknown. To this end, Abcg1(+/+) and Abcg1(-/-) mice were sensitized to OVA via the airway using low-dose LPS as an adjuvant, and then challenged with OVA aerosol. Naive Abcg1(-/-) mice displayed increased B cells, CD4(+) T cells, CD8(+) T cells, and dendritic cells (DCs) in lung and lung-draining mediastinal lymph nodes, with lung CD11b(+) DCs displaying increased CD80 and CD86. Upon allergen sensitization and challenge, the Abcg1(-/-) airway, compared with Abcg1(+/+), displayed reduced Th2 responses (IL-4, IL-5, eosinophils), increased neutrophils and IL-17, but equivalent airway hyperresponsiveness. Reduced Th2 responses were also found using standard i.p. OVA sensitization with aluminum hydroxide adjuvant. Mediastinal lymph nodes from airway-sensitized Abcg1(-/-) mice produced reduced IL-5 upon ex vivo OVA challenge. Abcg1(-/-) CD4(+) T cells displayed normal ex vivo differentiation, whereas Abcg1(-/-) DCs were found paradoxically to promote Th2 polarization. Th17 cells, IL-17(+) γδT cells, and IL-17(+) neutrophils were all increased in Abcg1(-/-) lungs, suggesting Th17 and non-Th17 sources of IL-17 excess. Neutralization of IL-17 prior to challenge normalized eosinophils and reduced neutrophilia in the Abcg1(-/-) airway. We conclude that Abcg1(-/-) mice display IL-17-mediated suppression of eosinophilia and enhancement of neutrophilia in the airway following allergen sensitization and challenge. These findings identify ABCG1 as a novel integrator of cholesterol homeostasis and adaptive immune programs.
Collapse
Affiliation(s)
- David W Draper
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kerr ID, Haider AJ, Gelissen IC. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol 2012; 164:1767-79. [PMID: 21175590 DOI: 10.1111/j.1476-5381.2010.01177.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Along with many other mammalian ATP-binding cassette (ABC) transporters, members of the ABCG group are involved in the regulated transport of hydrophobic compounds across cellular membranes. In humans, five ABCG family members have been identified, encoding proteins ranging from 638 to 678 amino acids in length. All five have been the subject of intensive investigation to better understand their physiological roles, expression patterns, interactions with substrates and inhibitors, and regulation at both the transcript and protein level. The principal substrates for at least four of the ABCG proteins are endogenous and dietary lipids, with ABCG1 implicated in particular in the export of cholesterol, and ABCG5 and G8 forming a functional heterodimer responsible for plant sterol elimination from the body. ABCG2 has a much broader substrate specificity and its ability to transport numerous diverse pharmaceuticals has implications for the absorption, distribution, metabolism, excretion and toxicity (ADMETOx) profile of these compounds. ABCG2 is one of at least three so-called multidrug resistant ABC transporters expressed in humans, and its activity is associated with decreased efficacy of anti-cancer agents in several carcinomas. In addition to its role in cancer, ABCG2 also plays a role in the normal physiological transport of urate and haem, the implications of which are described. We summarize here data on all five human ABCG transporters and provide a current perspective on their roles in human health and disease.
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham.
| | | | | |
Collapse
|
17
|
Schou J, Frikke-Schmidt R, Kardassis D, Thymiakou E, Nordestgaard BG, Jensen G, Grande P, Tybjærg-Hansen A. Genetic variation in ABCG1 and risk of myocardial infarction and ischemic heart disease. Arterioscler Thromb Vasc Biol 2011; 32:506-15. [PMID: 22155456 DOI: 10.1161/atvbaha.111.234872] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ATP binding cassette transporter G1 (ABCG1) facilitates cholesterol efflux from macrophages to mature high-density lipoprotein particles. Whether genetic variation in ABCG1 affects risk of atherosclerosis in humans remains to be determined. METHODS AND RESULTS We resequenced the core promoter and coding regions of ABCG1 in 380 individuals from the general population. Next, we genotyped 10 237 individuals from the Copenhagen City Heart Study for the identified variants and determined the effect on lipid and lipoprotein levels and on risk of myocardial infarction (MI) and ischemic heart disease (IHD). g.-376C>T, g.-311T>A, and Ser630Leu predicted risk of MI in the Copenhagen City Heart Study, with hazard ratios of 2.2 (95% confidence interval: 1.2-4.3), 1.7 (1.0-2.9), and 7.5 (1.9-30), respectively. These results were confirmed for g.-376C>T in a case-control study comprising 4983 independently ascertained IHD cases and 7489 controls. Expression levels of ABCG1 mRNA were decreased by approximately 40% in g.-376C>T heterozygotes versus noncarriers (probability values: 0.005-0.009). Finally, in vitro specificity protein 1 (Sp1) bound specifically to a putative Sp1 binding site at position -382 to -373 in the ABCG1 promoter, and the presence of the -376 T allele reduced binding and transactivation of the promoter by Sp1. CONCLUSIONS This is the first report of a functional variant in ABCG1 that associates with increased risk of MI and IHD in the general population.
Collapse
Affiliation(s)
- Jesper Schou
- Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Wang X, Li X, Zhang YB, Zhang F, Sun L, Lin J, Wang DM, Wang LY. Genome-wide linkage scan of a pedigree with familial hypercholesterolemia suggests susceptibility loci on chromosomes 3q25-26 and 21q22. PLoS One 2011; 6:e24838. [PMID: 22022364 PMCID: PMC3194805 DOI: 10.1371/journal.pone.0024838] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 08/22/2011] [Indexed: 11/25/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is a heritable disorder that can increase the risk of premature coronary heart disease. Studies suggest there are substantial genetic heterogeneities for different populations. Here we tried to identify novel susceptibility loci for FH in a Chinese pedigree. Methodology/Principal Findings We performed a SNP-based genome-wide linkage scan with the Chinese FH pedigree. Two suggestive linkage loci not previously reported were identified on chromosomes 3q25.1-26.1 (NPL = 9.01, nominal P<0.00001, and simulated occurrence per genome scan = 1.08) and 21q22.3 (NPL = 8.95, nominal P<0.00001, and simulated occurrence per genome scan = 1.26). In the interaction analysis with a trimmed version of the pedigree, we obtained a significantly increased joint LOD score (2.70) compared with that obtained when assuming the two loci uncorrelated, suggesting that more than one locus was involved in this pedigree. Exon screening of two candidate genes ABCG1 and LSS from one of the suggestive region 21q22 didn't report any causative mutations. Conclusions/Significances These results confirm complex etiologies and suggest new genetic casual factors for the FH disorder. Further study of the two candidate regions is advocated.
Collapse
Affiliation(s)
- Xu Wang
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, People's Republic of China
| | - Xin Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yong-Biao Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Feng Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Liyuan Sun
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, People's Republic of China
| | - Jie Lin
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, People's Republic of China
| | - Duen-Mei Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lu-Ya Wang
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, People's Republic of China
- * E-mail: (L-YW)
| |
Collapse
|
20
|
Abellán R, Mansego ML, Martínez-Hervás S, Morcillo S, Pineda-Alonso M, Carmena R, Real JT, Redon J, Rojo-Martínez G, Martín-Escudero JC, Chaves FJ. Dietary polyunsaturated fatty acids may increase plasma LDL-cholesterol and plasma cholesterol concentrations in carriers of an ABCG1 gene single nucleotide polymorphism: study in two Spanish populations. Atherosclerosis 2011; 219:900-6. [PMID: 21978921 DOI: 10.1016/j.atherosclerosis.2011.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/05/2011] [Accepted: 09/10/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND ABCG1 mediates cellular cholesterol transport, but there is very little known about the influence of ABCG1 polymorphisms on human plasma lipoprotein cholesterol concentrations or on the interactions of these polymorphisms with diet. OBJECTIVE Our objective was to investigate whether interactions between PUFA intake and ABCG1 polymorphisms modulate associations with plasma total cholesterol (TC), LDL- and HDL-cholesterol in two Spanish populations. METHODS We grounded our investigation on two general population-based studies: the Hortega study (population A) and the Pizarra study (population B). Participants included 1178 individuals (50.0% women, age range 21-85 years) and 763 individuals (66% women, age range 23-73 years) from populations A and B, respectively, without lipid lowering drugs. Subjects were genotyped for ABCG1 variants. Biochemical measurements were taken by standard procedures. Dietary intakes were estimated with a validated questionnaire. RESULTS In population A, the A allele homozygotes of SNP rs4148102 had higher TC and LDLc concentrations in subjects on a high PUFA diet than did the carriers of the G allele (242.1 ± 38.9 vs. 198.0 ± 36.0mg/dL, p = 0.003, and 149.8 ± 37.9 vs. 111.4 ± 32.1mg/dL, p = 0.005, respectively), and significant gene-diet interactions were observed (p=0.020 and p = 0.013, respectively). In population B, similar differences in TC and LDLc concentrations were also found in association with this SNP under a high PUFA diet (253.2±24.9 vs. 197.7 ± 39.9 mg/dL, p = 0.009, and 171.8 ± 20.5 vs. 120.4 ± 34.2mg/dL, p = 0.004, respectively), but the gene-diet interactions observed were not significant (p = 0.379 and p = 0.422, respectively). In the pooled populations, differences in the TC and LDLc concentrations increased (246.8 ± 32.9 vs. 198.0 ± 37.5, p = 6 × 10(-5), and 159.0±32.6 vs. 114.3 ± 33.1, p = 3 × 10(-5), respectively), and significant gene-diet interactions were maintained (p = 0.006 and p = 0.003, respectively). CONCLUSION In two Spanish populations, the ABCG1 polymorphism rs4148102 was associated with variations in plasma lipoprotein cholesterol concentrations in subjects with high PUFA intakes. Carriers of the AA genotype consuming high PUFA diet showed higher plasma LDLc concentrations.
Collapse
Affiliation(s)
- Rosario Abellán
- Fundación Investigación Clínico de Valencia, Instituto de Investigación Sanitaria INCLIVA, Avda Blasco Ibáñez 17, 46010 Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu Y, Wang W, Zhang L, Qi LP, Li LY, Chen LF, Fang Q, Dang AM, Yan XW. A polymorphism in the ABCG1 promoter is functionally associated with coronary artery disease in a Chinese Han population. Atherosclerosis 2011; 219:648-54. [PMID: 21722899 DOI: 10.1016/j.atherosclerosis.2011.05.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/09/2011] [Accepted: 05/22/2011] [Indexed: 01/02/2023]
Abstract
OBJECTIVE In this study, we examine the association of single nucleotide polymorphisms (SNPs) of the human ATP binding cassette transporter G1 (ABCG1) gene with atherosclerotic coronary artery disease (CAD) in a Chinese Han population. METHODS 1021 patients with CAD and 1013 unaffected control subjects were enrolled. PCR-based ligation detection reaction (PCR-LDR) method was used to genotype four SNPs of ABCG1, three (rs2234714, rs2234715 and rs57137919) in the promoter region and one (rs1044317) in the 3'-untranslated region (UTR). RESULTS The human ABCG1 -367G>A polymorphism (rs57137919) showed a significantly decreased risk for CAD and myocardial infarction (MI) in a dominant model (adjusted OR = 0.73, p = 0.033 for CAD, and adjusted OR = 0.65, p = 0.014 for MI, respectively). The rs57137919 also showed an association with angiographic severity of CAD (multi-vessel vs. single-vessel CAD, adjusted OR = 0.40, p = 0.005). The findings were further supported by luciferase reporter assay, in which the polymorphism impaired reporter gene expression. The ABCG1 -768G>A polymorphism (rs2234714) showed an association with CAD in a recessive model (adjusted OR = 0.64, p = 0.015), but did not demonstrate a functional influence on reporter gene expression in the luciferase reporter assay. CONCLUSIONS The SNP rs57137919 in the ABCG1 promoter region is functionally associated with a reduced risk of CAD in a Chinese Han population.
Collapse
Affiliation(s)
- Yan Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yamashita M, Tamasawa N, Matsuki K, Tanabe J, Murakami H, Matsui J, Suda T. Insulin suppresses HDL-mediated cholesterol efflux from macrophages through inhibition of neutral cholesteryl ester hydrolase and ATP-binding cassette transporter G1 expressions. J Atheroscler Thromb 2010; 17:1183-9. [PMID: 20733269 DOI: 10.5551/jat.4721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS We studied the effect of insulin on HDL-mediated cholesterol efflux from macrophages. The potential involvement of cholesteryl ester hydrolysis and membrane cholesterol transport was also addressed. METHODS Human monocyte-derived THP-1 cells were developed into macrophages. Cholesterol efflux was measured by incubating macrophages, labeled with [³H]-cholesterol, with HDL for 24 h. The cells were treated with insulin (0-500 nM) for 30 min prior to the addition of HDL. To investigate the molecular mechanisms of the effect of insulin, the expressions of neutral cholesteryl ester hydrolase (nCEH) and ATP-binding cassette transporter (ABC) G1 were analyzed. RESULTS Insulin inhibited, in a concentration-dependent manner, HDL-mediated cholesterol efflux from macrophages. Insulin also inhibited the enzyme activity of nCEH and its mRNA and protein expression in cells. Insulin also suppressed the expressions of mRNA and protein for ABCG1. CONCLUSIONS Insulin inhibits HDL-mediated cholesterol efflux from macrophages, which may result from the suppression of nCEH and ABCG1 expressions. Our findings show part of the potential molecular mechanism of atherogenesis in type 2 diabetes with hyperinsulinemia.
Collapse
Affiliation(s)
- Maki Yamashita
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Association of selected ABC gene family single nucleotide polymorphisms with postprandial lipoproteins: Results from the population-based Hortega study. Atherosclerosis 2010; 211:203-9. [DOI: 10.1016/j.atherosclerosis.2010.01.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/14/2009] [Accepted: 01/19/2010] [Indexed: 12/19/2022]
|
24
|
Draper DW, Madenspacher JH, Dixon D, King DH, Remaley AT, Fessler MB. ATP-binding cassette transporter G1 deficiency dysregulates host defense in the lung. Am J Respir Crit Care Med 2010; 182:404-12. [PMID: 20395559 DOI: 10.1164/rccm.200910-1580oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Mice with genetic deletion of the cholesterol efflux transporter, ATP-binding cassette (ABC) G1, have pulmonary lipidosis and chronic pulmonary inflammation. Whether ABCG1 regulates host defense is unknown. OBJECTIVES To determine whether ABCG1 regulates pulmonary innate immunity and host defense, and to investigate the underlying molecular/cellular mechanisms. METHODS Abcg1(+/+) and Abcg1(-/-) mice were challenged with intrapulmonary lipopolysaccharide (LPS) or Klebsiella pneumoniae, intravenous K. pneumoniae, or intraperitoneal LPS. Phenotypic responses were profiled. Bone marrow chimeras and in vitro assays were used to differentiate and characterize the role of hematopoietic versus nonhematopoietic ABCG1 in host defense. MEASUREMENTS AND MAIN RESULTS Unexposed Abcg1(-/-) mice had normal numbers of circulating neutrophils, but increased neutrophil recruitment to the airspace and lung parenchyma, and increased airspace cytokines and chemokines in the steady state. After intrapulmonary LPS or K. pneumoniae, Abcg1(-/-) mice displayed exaggerated further neutrophil recruitment to and degranulation in the airspace, and elevated airspace cytokine/chemokine induction. Alveolar macrophage ABCG1 was critical, as ABCG1 deficiency in hematopoietic cells was sufficient to enhance responses in vivo, and Abcg1(-/-) alveolar macrophages adopted a "foam cell" phenotype, and were hyperresponsive ex vivo. Pulmonary compartmentalization and clearance of K. pneumoniae were increased in Abcg1(-/-) mice, indicating enhanced host defense. By contrast, Abcg1(+/+) and Abcg1(-/-) mice had equivalent responses to intravenous K. pneumoniae and intraperitoneal LPS, suggesting that ABCG1 regulates innate immunity in a tissue-selective manner. CONCLUSIONS Abcg1(-/-) mice have an enhanced pulmonary host defense response driven predominantly by hematopoietic cells.
Collapse
Affiliation(s)
- David W Draper
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|