1
|
Zuo S, Wang Z, Jiang X, Zhao Y, Wen P, Wang J, Li J, Tanaka M, Dan S, Zhang Y, Wang Z. Regulating tumor innervation by nanodrugs potentiates cancer immunochemotherapy and relieve chemotherapy-induced neuropathic pain. Biomaterials 2024; 309:122603. [PMID: 38713972 DOI: 10.1016/j.biomaterials.2024.122603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Sympathetic nerves play a pivotal role in promoting tumor growth through crosstalk with tumor and stromal cells. Chemotherapy exacerbates the infiltration of sympathetic nerves into tumors, thereby providing a rationale for inhibiting sympathetic innervation to enhance chemotherapy. Here, we discovered that doxorubicin increases the density and activity of sympathetic nerves in breast cancer mainly by upregulating the expression of nerve growth factors (NGFs) in cancer cells. To address this, we developed a combination therapy by co-encapsulating small interfering RNA (siRNA) and doxorubicin within breast cancer-targeted poly (lactic-co-glycolic acid) (PLGA) nanoparticles, aiming to suppress NGF expression post-chemotherapy. Incorporating NGF blockade into the nanoplatform for chemotherapy effectively mitigated the chemotherapy-induced proliferation of sympathetic nerves. This not only bolstered the tumoricidal activity of chemotherapy, but also amplified its stimulatory impact on the antitumor immune response by increasing the infiltration of immunostimulatory cells into tumors while concurrently reducing the frequency of immunosuppressive cells. Consequently, the combined nanodrug approach, when coupled with anti-PD-L1 treatment, exhibited a remarkable suppression of primary and deeply metastatic tumors with minimal systematic toxicity. Importantly, the nanoplatform relieved chemotherapy-induced peripheral neuropathic pain (CIPNP) by diminishing the expression of pain mediator NGFs. In summary, this research underscores the significant potential of NGF knockdown in enhancing immunochemotherapy outcomes and presents a nanoplatform for the highly efficient and low-toxicity treatment of breast cancer.
Collapse
Affiliation(s)
- Shuting Zuo
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Zhenyu Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Xiaoman Jiang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shao Dan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Yan Zhang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, PR China.
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| |
Collapse
|
2
|
Wang H, Huo R, He K, Cheng L, Zhang S, Yu M, Zhao W, Li H, Xue J. Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance. Cell Oncol (Dordr) 2024; 47:1-17. [PMID: 37610689 PMCID: PMC10899381 DOI: 10.1007/s13402-023-00857-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND In recent years, the significance of the nervous system in the tumor microenvironment has gained increasing attention. The bidirectional communication between nerves and cancer cells plays a critical role in tumor initiation and progression. Perineural invasion (PNI) occurs when tumor cells invade the nerve sheath and/or encircle more than 33% of the nerve circumference. PNI is a common feature in various malignancies and is associated with tumor invasion, metastasis, cancer-related pain, and unfavorable clinical outcomes. The colon and rectum are highly innervated organs, and accumulating studies support PNI as a histopathologic feature of colorectal cancer (CRC). Therefore, it is essential to investigate the role of nerves in CRC and comprehend the mechanisms of PNI to impede tumor progression and improve patient survival. CONCLUSION This review elucidates the clinical significance of PNI, summarizes the underlying cellular and molecular mechanisms, introduces various experimental models suitable for studying PNI, and discusses the therapeutic potential of targeting this phenomenon. By delving into the intricate interactions between nerves and tumor cells, we hope this review can provide valuable insights for the future development of CRC treatments.
Collapse
Affiliation(s)
- Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Li Cheng
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, P.R. China
| | - Wei Zhao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
3
|
Zhao YX, Yao MJ, Shen JW, Zhang WX, Zhou YX. Electroacupuncture attenuates nociceptive behaviors in a mouse model of cancer pain. Mol Pain 2024; 20:17448069241240692. [PMID: 38443317 PMCID: PMC11010748 DOI: 10.1177/17448069241240692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.
Collapse
Affiliation(s)
- Yu-Xue Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| | - Ming-Jiang Yao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Jian-Wu Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
- Urology Department of Xiyuan Hospital, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Xi Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| | - Yuan-Xi Zhou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| |
Collapse
|
4
|
Zhang T, He M, Zhang J, Tong Y, Chen T, Wang C, Pan W, Xiao Z. Mechanisms of primordial follicle activation and new pregnancy opportunity for premature ovarian failure patients. Front Physiol 2023; 14:1113684. [PMID: 36926197 PMCID: PMC10011087 DOI: 10.3389/fphys.2023.1113684] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Primordial follicles are the starting point of follicular development and the basic functional unit of female reproduction. Primordial follicles are formed around birth, and most of the primordial follicles then enter a dormant state. Since primordial follicles are limited in number and can't be renewed, dormant primordial follicles cannot be reversed once they enter the growing state. Thus, the orderly occurrence of primordial follicles selective activation directly affects the rate of follicle consumption and thus determines the length of female reproductive lifespan. Studies have found that appropriately inhibiting the activation rate of primordial follicles can effectively slow down the rate of follicle consumption, maintain fertility and delay ovarian aging. Based on the known mechanisms of primordial follicle activation, primordial follicle in vitro activation (IVA) technique has been clinically developed. IVA can help patients with premature ovarian failure, middle-aged infertile women, or infertile women due to gynecological surgery treatment to solve infertility problems. The study of the mechanism of selective activation of primordial follicles can contribute to the development of more efficient and safe IVA techniques. In this paper, recent mechanisms of primordial follicle activation and its clinical application are reviewed.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingjing Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Su X, Wang B, Zhou Z, Li Z, Tong S, Chen S, Zhang N, Liu S, Zhang M. A positive feedback loop of heparanase/syndecan1/nerve growth factor regulates cancer pain progression. Korean J Pain 2023; 36:60-71. [PMID: 36536517 PMCID: PMC9812689 DOI: 10.3344/kjp.22277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background The purpose of this research was to assess the role of heparanase (HPSE)/syndecan1 (SDC1)/nerve growth factor (NGF) on cancer pain from melanoma. Methods The influence of HPSE on the biological function of melanoma cells and cancer pain in a mouse model was evaluated. Immunohistochemical staining was used to analyze HPSE and SDC1. HPSE, NGF, and SDC1 were detected using western blot. Inflammatory factors were detected using ELISA assay. Results HPSE promoted melanoma cell viability, proliferation, migration, invasion, and tumor growth, as well as cancer pain, while SST0001 treatment reversed the promoting effect of HPSE. HPSE up-regulated NGF, and NGF feedback promoted HPSE. High expression of NGF reversed the inhibitory effect of HPSE down-regulation on melanoma cell phenotype deterioration, including cell viability, proliferation, migration, and invasion. SST0001 down-regulated SDC1 expression. SDC1 reversed the inhibitory effect of SST0001 on cancer pain. Conclusions The results showed that HPSE promoted melanoma development and cancer pain by interacting with NGF/SDC1. It provides new insights to better understand the role of HPSE in melanoma and also provides a new direction for cancer pain treatment.
Collapse
Affiliation(s)
- Xiaohu Su
- Department of Anesthesiology, Suqian First People’s Hospital, Suqian City, Jiangsu Province, China
| | - Bingwu Wang
- Cancer Institute, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Zhaoyun Zhou
- Department of Anesthesiology, Tai’an Central Hospital, Tai’an City, Shandong Province, China
| | - Zixian Li
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Song Tong
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Simin Chen
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Nan Zhang
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Su Liu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Maoyin Zhang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China,Correspondence: Maoyin Zhang Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Quanshan District, Xuzhou City, Jiangsu Province 221002, China, Tel: +86-18168777315, Fax: +86-0516-85805911, E-mail:
| |
Collapse
|
6
|
Vittorio S, Manelfi C, Gervasoni S, Beccari AR, Pedretti A, Vistoli G, Talarico C. Computational Insights into the Sequence-Activity Relationships of the NGF(1–14) Peptide by Molecular Dynamics Simulations. Cells 2022; 11:cells11182808. [PMID: 36139382 PMCID: PMC9497175 DOI: 10.3390/cells11182808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The Nerve Growth Factor (NGF) belongs to the neurothrophins protein family involved in the survival of neurons in the nervous system. The interaction of NGF with its high-affinity receptor TrkA mediates different cellular pathways related to Alzheimer’s disease, pain, ocular dysfunction, and cancer. Therefore, targeting NGF-TrkA interaction represents a valuable strategy for the development of new therapeutic agents. In recent years, experimental studies have revealed that peptides belonging to the N-terminal domain of NGF are able to partly mimic the biological activity of the whole protein paving the way towards the development of small peptides that can selectively target specific signaling pathways. Hence, understanding the molecular basis of the interaction between the N-terminal segment of NGF and TrkA is fundamental for the rational design of new peptides mimicking the NGF N-terminal domain. In this study, molecular dynamics simulation, binding free energy calculations and per-residue energy decomposition analysis were combined in order to explore the molecular recognition pattern between the experimentally active NGF(1–14) peptide and TrkA. The results highlighted the importance of His4, Arg9 and Glu11 as crucial residues for the stabilization of NGF(1–14)-TrkA interaction, thus suggesting useful insights for the structure-based design of new therapeutic peptides able to modulate NGF-TrkA interaction.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Andrea R. Beccari
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Carmine Talarico
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
- Correspondence:
| |
Collapse
|
7
|
Nerve growth factor orchestrates NGAL and matrix metalloproteinases activity to promote colorectal cancer metastasis. Clin Transl Oncol 2021; 24:34-47. [PMID: 34255268 DOI: 10.1007/s12094-021-02666-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one most cancer type of high incidence and high mortality rate. Metastasis play an important role in survival rate and life quality of colorectal cancer patients. Nerve growth factor (NGF) has been shown to be involved in the metastasis and deterioration in many cancers, but the detail mechanisms in promoting the metastasis of colorectal cancer remain unknown. In this study, we aimed to explore the mechanism of NGF promoting colorectal cancer metastasis to provide new insights for developing NGF anti-colorectal cancer drugs. METHODS We examined the expression of NGF in human colorectal cancer by immunohistochemical staining, and Western blot to evaluate the relationship between NGF and colorectal cancer metastasis. Using biochemical experiments including wound healing assay, transwell migration and invasion assay, RT-PCR, Western blot and ELISA to explore the relative mechanism of NGF promoting colorectal cancer cells metastasis in vivo. RESULTS Our results found that the high expression of NGF was related with high incidence of metastasis. The binding of NGF to TrkA phosphorylated TrkA, which activated MAPK/Erk signaling pathway increasing the expression NGAL to enhance the activity of MMP2 and MMP9, promoted colorectal cancer metastasis. CONCLUSION Our finding demonstrated that NGF increased NGAL expression to enhance MMPs activity to promoted colorectal cancer cell metastasis by TrkA-MAPK/Erk axis.
Collapse
|
8
|
Costa GMF, Rocha LPC, Siqueira SRDTD, Moreira PR, Almeida-Leite CM. No Association of Polymorphisms in Nav1.7 or Nerve Growth Factor Receptor Genes with Trigeminal Neuralgia. PAIN MEDICINE 2020; 20:1362-1369. [PMID: 30307573 DOI: 10.1093/pm/pny191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Trigeminal neuralgia is defined as a sudden severe shock-like pain within the distribution of the trigeminal nerve. Pain is a subjective experience that is influenced by gender, culture, environment, psychological traits, and genes. Sodium channels and nerve growth factor play important roles in the transmission of nociceptive signals and pain. The aim of this study was to investigate the occurrence of Nav1.7 sodium channel and nerve growth factor receptor TrkA gene polymorphisms (SCN9A/rs6746030 and NTRK1/rs633, respectively) in trigeminal neuralgia patients. METHODS Ninety-six subjects from pain specialty centers in the southeastern region of Brazil were divided into 2 groups: 48 with classical trigeminal neuralgia diagnosis and 48 controls. Pain was evaluated using the visual analog scale and multidimensional McGill Pain Questionnaire. Genomic DNA was obtained from oral swabs in all individuals and was analyzed by real-time polymerase chain reaction. RESULTS No association was observed between evaluated polymorphisms and trigeminal neuralgia. For allele analyses, patients and controls had similar frequencies for both genes. Genotype distribution or allele frequencies of polymorphisms analyzed here did not correlate to pain scores. CONCLUSIONS Although no association of evaluated polymorphisms and trigeminal neuralgia diagnosis or pain severity was observed, our data do not exclude the possibility that other genotypes affecting the expression of Nav1.7 or TrkA are associated with the disease. Further studies should investigate distinct genetic polymorphisms and epigenetic factors that may be important in expression of these molecules.
Collapse
Affiliation(s)
- Grazielle Mara Ferreira Costa
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Paulo C Rocha
- Programa de Pós-Graduação em Biologia Celular, Instituto de Ciências Biológicas (ICB), UFMG, Belo Horizonte, MG, Brazil
| | | | - Paula Rocha Moreira
- Programa de Pós-Graduação em Biologia Celular, Instituto de Ciências Biológicas (ICB), UFMG, Belo Horizonte, MG, Brazil.,Departamento de Morfologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Camila Megale Almeida-Leite
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Departamento de Morfologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Alkhadar H, Macluskey M, White S, Ellis I. Perineural invasion in oral squamous cell carcinoma: Incidence, prognostic impact and molecular insight. J Oral Pathol Med 2020; 49:994-1003. [PMID: 32533593 DOI: 10.1111/jop.13069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The objective of this study was to characterise the incidence and prognostic correlation of perineural invasion (PNI) in oral squamous cell carcinoma and determine whether nerve growth factor and its receptor tyrosine Kinase A expression could be used as biological markers for PNI. METHODS A retrospective review of pathology reports of 430 patients with oral squamous cell carcinoma who were treated from 1992 to 2014 in Tayside, Scotland, was carried out. The expression of nerve growth factor and tyrosine kinase A was assessed with immunohistochemistry in 132 tissue sections of oral squamous cell carcinoma. RESULTS Perineural invasion was identified in 17.4% of oral squamous cell carcinomas. High expression of nerve growth factor and tyrosine kinase A was seen in 84% and 92% of oral squamous cell carcinoma, respectively. Tumours with PNI expressed nerve growth factor and tyrosine kinase A with a greater frequency than tumours without PNI. PNI and high expression of nerve growth factor were significantly associated with pain. PNI was significantly associated with stage IV tumours and poor disease-specific survival. CONCLUSIONS A higher level of expression of nerve growth factor and tyrosine kinase A may predict PNI and therefore may be considered as biological markers for PNI in oral squamous cell carcinoma. PNI and nerve growth factor overexpression may contribute to the pain generation in oral cancer patients. PNI and nerve growth factor expression can predict the aggressiveness and prognosis of oral squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Huda Alkhadar
- Department of Oral Surgery, Medicine and Pathology, Dundee Dental School, University of Dundee, Dundee, UK
| | - Michaelina Macluskey
- Department of Oral Surgery, Medicine and Pathology, Dundee Dental School, University of Dundee, Dundee, UK
| | - Sharon White
- Department of Oral Surgery, Medicine and Pathology, Dundee Dental School, University of Dundee, Dundee, UK
| | - Ian Ellis
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee, UK
| |
Collapse
|
10
|
Agarwal M, Wangaryattawanich P, Rath TJ. Perineural Tumor Spread in Head and Neck Malignancies. Semin Roentgenol 2019; 54:258-275. [PMID: 31376866 DOI: 10.1053/j.ro.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohit Agarwal
- Radiology Department, Medical College of Wisconsin, Wauwatosa, WI.
| | | | - Tanya J Rath
- University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA.
| |
Collapse
|
11
|
Meco D, Di Francesco AM, Melotti L, Ruggiero A, Riccardi R. Ectopic nerve growth factor prevents proliferation in glioma cells by senescence induction. J Cell Physiol 2019; 234:6820-6830. [PMID: 30417351 DOI: 10.1002/jcp.27430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The neurotrophin nerve growth factor (NGF) affects survival, regulation and differentiation of both central and peripheral nervous system neurons. NGF exerts its effects primarily through tropomyosin receptor kinase A (TrkA), inducing a cascade of tyrosine kinase-initiated responses. In spite of its importance, the general behavior of NGF looks contradictory: its effects can be both stimulatory and inhibitory. The present study aims to explore the molecular mechanisms induced by NGF in glioma cancer cells. METHODS The effects of NGF were investigated in high grade glioma and low grade pediatric glioma (PLGG) cell lines through comparative studies. In particular, we investigated TrkA-mediated cellular pathways, molecular signaling, proliferation, cell cycle and cellular senescence. RESULTS We found that exposure of PLGG cells to NGF produced stable growth arrest with the features of a senescence phenotype but without the expression of anti-poly(ADP-ribose) polymerase cleavage, a marker of apoptosis. Moreover, NGF treatment promoted the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), signal transducer and activator of transcription 3 (STAT3), and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling. In addition, K252a, a TrkA inhibitor, significantly reduced the phosphorylation of the aforementioned signaling pathways, suggesting that NGF-activated ERK1/2 and AKT signaling take place downstream of TrkA-neurotrophin interaction. CONCLUSIONS These findings provide the first evidence that NGF can induce senescence of PLGG cells in a receptor-mediated fashion, thus supporting the hypothesis that in the clinical setting NGF might be beneficial to pediatric glioma patients.
Collapse
Affiliation(s)
- Daniela Meco
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | | | | | - Antonio Ruggiero
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Riccardi
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| |
Collapse
|
12
|
Miladinovic T, Ungard RG, Linher-Melville K, Popovic S, Singh G. Functional effects of TrkA inhibition on system x C--mediated glutamate release and cancer-induced bone pain. Mol Pain 2018; 14:1744806918776467. [PMID: 29761734 PMCID: PMC5956640 DOI: 10.1177/1744806918776467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells release the signalling molecule glutamate via the system xC− antiporter, which is upregulated to exchange extracellular cystine for intracellular glutamate to protect against oxidative stress. Here, we demonstrate that this antiporter is functionally influenced by the actions of the neurotrophin nerve growth factor on its cognate receptor tyrosine kinase, TrkA, and that inhibiting this complex may reduce cancer-induced bone pain via its downstream actions on xCT, the functional subunit of system xC−. We have characterized the effects of the selective TrkA inhibitor AG879 on system xC− activity in murine 4T1 and human MDA-MB-231 mammary carcinoma cells, as well as its effects on nociception in our validated immunocompetent mouse model of cancer-induced bone pain, in which BALB/c mice are intrafemorally inoculated with 4T1 murine carcinoma cells. AG879 decreased functional system xC− activity, as measured by cystine uptake and glutamate release, and inhibited nociceptive and physiologically relevant responses in tumour-bearing animals. Cumulatively, these data suggest that the activation of TrkA by nerve growth factor may have functional implications on system xC−-mediated cancer pain. System xC−-mediated TrkA activation therefore presents a promising target for therapeutic intervention in cancer pain treatment.
Collapse
Affiliation(s)
- Tanya Miladinovic
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robert G Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katja Linher-Melville
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Snezana Popovic
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Aarão TLDS, de Sousa JR, Falcão ASC, Falcão LFM, Quaresma JAS. Nerve Growth Factor and Pathogenesis of Leprosy: Review and Update. Front Immunol 2018; 9:939. [PMID: 29867937 PMCID: PMC5949531 DOI: 10.3389/fimmu.2018.00939] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of proteins that regulate different aspects of biological development and neural function and are of great importance in neuroplasticity. This group of proteins has multiple functions in neuronal cells, as well as in other cellular populations. Nerve growth factor (NGF) is a neurotrophin that is endogenously produced during development and maturation by multiple cell types, including neurons, Schwann cells, oligodendrocytes, lymphocytes, mast cells, macrophages, keratinocytes, and fibroblasts. These cells produce proNGF, which is transformed by proteolytic cleavage into the biologically active NGF in the endoplasmic reticulum. The present review describes the role of NGF in the pathogenesis of leprosy and its correlations with different clinical forms of the disease and with the phenomena of regeneration and neural injury observed during infection. We discuss the involvement of NGF in the induction of neural damage and the pathophysiology of pain associated with peripheral neuropathy in leprosy. We also discuss the roles of immune factors in the evolution of this pathological process. Finally, we highlight avenues of investigation for future research to broaden our understanding of the role of NGF in the pathogenesis of leprosy. Our analysis of the literature indicates that NGF plays an important role in the evolution and outcome of Mycobacterium leprae infection. The findings described here highlight an important area of investigation, as leprosy is one of the main causes of infection in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Juarez Antônio Simões Quaresma
- Center of Health and Biological Sciences, State University of Para, Belem, Brazil.,Tropical Medicine Center, Federal University of Para, Belem, Brazil.,Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
14
|
Crispoltoni L, Stabile AM, Pistilli A, Venturelli M, Cerulli G, Fonte C, Smania N, Schena F, Rende M. Changes in Plasma β-NGF and Its Receptors Expression on Peripheral Blood Monocytes During Alzheimer's Disease Progression. J Alzheimers Dis 2018; 55:1005-1017. [PMID: 27802234 DOI: 10.3233/jad-160625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is characterized by the deposition of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles, and by neuroinflammation. During the pathogenesis of AD, monocyte-macrophage lineage cells become increasingly ineffective in clearing Aβ deposits, less able to differentiate, and shift toward pro-inflammatory processes. Beta-nerve growth factor (β-NGF) and its receptors, TrKA and p75NTR, produce several biological responses, including cell apoptosis and survival, and inflammation. In the central nervous system, the involvement of these receptors in several critical hallmarks of AD is well known, but their role in circulating monocytes during the progression of dementia is unclear. We investigated the relationship between plasma β-NGF concentration and TrkA/p75NTR receptor expression in monocytes of patients with mild cognitive impairment (MCI), mild AD, and severe AD. We observed that plasma β-NGF concentration was increased with a higher expression of TrKA, but not of p75NTR, in monocytes from patients with MCI and mild AD, whereas β-NGF concentration and TrKA expression were decreased and p75NTR expression was increased, associated with caspase 3-mediated apoptosis, in patients with severe AD. In our study, we show evidence of variation in plasmatic β-NGF and monocytic TrkA/p75NTR receptor expression during the progression of dementia. These novel findings add evidence to support the hypothesis for the involvement of β-NGF and its receptors on monocytes during AD progression.
Collapse
Affiliation(s)
- Lucia Crispoltoni
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Anna Maria Stabile
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Alessandra Pistilli
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| | - Massimo Venturelli
- Section of Movement Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuliano Cerulli
- The Nicola Cerulli Institute of Translational Research for the Musculoskeletal System - LPMRI, Biology and Degenerative Medicine Division, Arezzo, Italy.,Istituto di Clinica Ortopedica e Traumatologica, Università Cattolica del Sacro Cuore-Policlinico Universitario Agostino Gemelli, Roma, Italy
| | - Cristina Fonte
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Section of Movement Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mario Rende
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, Italy
| |
Collapse
|
15
|
Characterization of a pectin from Lonicera japonica Thunb. and its inhibition effect on Aβ42 aggregation and promotion of neuritogenesis. Int J Biol Macromol 2018; 107:112-120. [DOI: 10.1016/j.ijbiomac.2017.08.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
|
16
|
Osipov AV, Terpinskaya TI, Kuznetsova TE, Ryzhkovskaya EL, Lukashevich VS, Rudnichenko JA, Ulashchyk VS, Starkov VG, Utkin YN. Cobra Venom Factor and Ketoprofen Abolish the Antitumor Effect of Nerve Growth Factor from Cobra Venom. Toxins (Basel) 2017; 9:274. [PMID: 28878143 PMCID: PMC5618207 DOI: 10.3390/toxins9090274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/07/2023] Open
Abstract
We showed recently that nerve growth factor (NGF) from cobra venom inhibited the growth of Ehrlich ascites carcinoma (EAC) inoculated subcutaneously in mice. Here, we studied the influence of anti-complementary cobra venom factor (CVF) and the non-steroidal anti-inflammatory drug ketoprofen on the antitumor NGF effect, as well as on NGF-induced changes in EAC histological patterns, the activity of lactate and succinate dehydrogenases in tumor cells and the serum level of some cytokines. NGF, CVF and ketoprofen reduced the tumor volume by approximately 72%, 68% and 30%, respectively. The antitumor effect of NGF was accompanied by an increase in the lymphocytic infiltration of the tumor tissue, the level of interleukin 1β and tumor necrosis factor α in the serum, as well as the activity of lactate and succinate dehydrogenases in tumor cells. Simultaneous administration of NGF with either CVF or ketoprofen abolished the antitumor effect and reduced all other effects of NGF, whereas NGF itself significantly decreased the antitumor action of both CVF and ketoprofen. Thus, the antitumor effect of NGF critically depended on the status of the immune system and was abolished by the disturbance of the complement system; the disturbance of the inflammatory response canceled the antitumor effect as well.
Collapse
Affiliation(s)
- Alexey V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia.
| | - Tatiana I Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Tatiana E Kuznetsova
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Elena L Ryzhkovskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Vladimir S Lukashevich
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Julia A Rudnichenko
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Vladimir S Ulashchyk
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia.
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia.
| |
Collapse
|
17
|
Vitale G, Dicitore A, Pepe D, Gentilini D, Grassi ES, Borghi MO, Gelmini G, Cantone MC, Gaudenzi G, Misso G, Di Blasio AM, Hofland LJ, Caraglia M, Persani L. Synergistic activity of everolimus and 5-aza-2'-deoxycytidine in medullary thyroid carcinoma cell lines. Mol Oncol 2017; 11:1007-1022. [PMID: 28453190 PMCID: PMC5537710 DOI: 10.1002/1878-0261.12070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Medullary thyroid cancer (MTC) is a tumor highly resistant to chemo‐ and radiotherapy. Drug resistance can be induced by epigenetic changes such as aberrant DNA methylation. To overcome drug resistance, we explored a promising approach based on the use of 5‐aza‐2′‐deoxycytidine (AZA), a demethylating agent, in combination with the mTOR inhibitor everolimus in MTC cells (MZ‐CRC‐1 and TT). This combined treatment showed a strong synergistic antiproliferative activity through the induction of apoptosis. The effect of everolimus and/or AZA on genome‐wide expression profiling was evaluated by Illumina BeadChip in MZ‐CRC‐1 cells. An innovative bioinformatic pipeline identified four potential molecular pathways implicated in the synergy between AZA and everolimus: PI3K‐Akt signaling, the neurotrophin pathway, ECM/receptor interaction, and focal adhesion. Among these, the neurotrophin signaling pathway was most directly involved in apoptosis, through the overexpression of NGFR and Bax genes. The increased expression of genes involved in the NGFR‐MAPK10‐TP53‐Bax/Bcl2 pathway during incubation with AZA plus everolimus was validated by western blotting in MZ‐CRC‐1 cells. Interestingly, addition of a neutralizing anti‐NGFR antibody inhibited the synergistic cytotoxic activity between AZA and everolimus. These results open a new therapeutic scenario for MTC and potentially other neuroendocrine tumors, where therapy with mTOR inhibitors is currently approved.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | | | - Davide Gentilini
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Elisa S Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Maria O Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Experimental Laboratory of Immuno-rheumatologic Researches, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giulia Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Maria C Cantone
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Anna M Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Leo J Hofland
- Section Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
18
|
Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev 2016; 32:85-96. [PMID: 27618303 DOI: 10.1016/j.cytogfr.2016.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
Abstract
The psychiatric disorders are one of the most disabling illnesses in the world and represent a major problem for public health. These disorders are characterized by neuroanatomical or biochemical changes and it has been suggested that such changes may be due to inadequate neurodevelopment. Diverse alterations in the gene expression and/or serum level of specific growth factors have been implicated in the etiology, symptoms and progression of some psychiatric disorders. Herein, we summarize the latest information regarding the role of brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), fibroblast growth factor (FGF), Insulin-like growth factor (IGF-1), neuroregulin-1 (NGR-1), erythropoietin (EPO), vascular growth factor (VEGF), transforming growth factor beta (TGF-β), nerve growth factor (NGF) and others cytokines in the pathogenesis of schizophrenia, depression, bipolar and anxiety disorders. Focusing on the role of these growth factors and their relationship with the main impairments (cognitive, emotional and social) of these pathologies. Some of these signaling molecules may be suitable biological markers for diagnosis and prognosis in cognitive, mood and social disabilities across different mental disorders.
Collapse
|
19
|
Miyagi M, Ishikawa T, Kamoda H, Suzuki M, Inoue G, Sakuma Y, Oikawa Y, Uchida K, Suzuki T, Takahashi K, Takaso M, Ohtori S. The efficacy of nerve growth factor antibody in a mouse model of neuropathic cancer pain. Exp Anim 2016; 65:337-343. [PMID: 27194075 PMCID: PMC5111836 DOI: 10.1538/expanim.16-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuropathic cancer pain is caused by tumors compressing the spinal nerve roots and is
usually difficult to treat. The aim of current study was to determine the influence of NGF
antibody on pain-related markers and behavior in a mouse model of neuropathic cancer pain.
Twenty mice were used to model neuropathic cancer pain by applying murine sarcoma cells to
their left sciatic nerve. Ten mice were sham operated. Two weeks after surgery, the murine
sarcoma-affected mice were allocated randomly into treatment groups receiving either
sterile saline (saline group) or an anti-nerve growth factor antibody (anti-NGF group).
Three weeks after surgery (a week after treatment), the pain-related behavior of mice was
evaluated using a CatWalk system. Subsequently, bilateral dorsal root ganglia (DRGs) from
the L4–L6 levels and spinal cords at L4–L6 levels were resected. DRGs were immunostained
for calcitonin gene-related peptide (CGRP) and activating transcription factor 3 (ATF-3),
and spinal cords were immunostained for ionized calcium-binding adaptor molecule-1
(iba-1). Mechanical allodynia was observed in mice from the saline group and was improved
in mice from the anti-NGF group. CGRP and ATF-3-immunoreactivity in DRGs and microglia
expression in the spinal dorsal horn were upregulated in the saline group compared with
the sham group, and they were suppressed in the anti-NGF group compared with the saline
group (P<0.05). These findings suggest that anti-NGF therapy might be
valuable for treating neuropathic cancer pain.
Collapse
Affiliation(s)
- Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara city, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hirose M, Kuroda Y, Murata E. NGF/TrkA Signaling as a Therapeutic Target for Pain. Pain Pract 2015; 16:175-82. [PMID: 26452158 DOI: 10.1111/papr.12342] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
Abstract
Nerve growth factor (NGF) was first discovered approximately 60 years ago by Rita Levi-Montalcini as a protein that induces the growth of nerves. It is now known that NGF is also associated with Alzheimer's disease and intractable pain, and hence, it, along with its high-affinity receptor, tropomyosin receptor kinase (Trk) A, is considered to be 1 of the new targets for therapies being developed to treat these diseases. Anti-NGF antibody and TrkA inhibitors are known drugs that suppress NGF/TrkA signaling, and many drugs of these classes have been developed thus far. Interestingly, local anesthetics also possess TrkA inhibitory effects. This manuscript describes the development of an analgesic that suppresses NGF/TrkA signaling, which is anticipated to be 1 of the new methods to treat intractable pain.
Collapse
Affiliation(s)
- Munetaka Hirose
- Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Yoshihiro Kuroda
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Eri Murata
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
21
|
Sahay AS, Sundrani DP, Wagh GN, Mehendale SS, Joshi SR. Neurotrophin levels in different regions of the placenta and their association with birth outcome and blood pressure. Placenta 2015; 36:938-43. [PMID: 26138363 DOI: 10.1016/j.placenta.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/22/2015] [Accepted: 06/14/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Our recent study in preeclampsia indicates differential oxidative stress in various regions of the placenta. Oxidative stress is known to influence neurotrophin levels. We therefore hypothesize that placental regional differences in oxidative stress will also lead to differences in neurotrophin levels. METHODS The current study examines the levels of neurotrophins, brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in different regions of the placenta in 50 normotensive control women and 47 women with preeclampsia (21 delivering at term and 26 delivering preterm). Placentae were collected from four different regions: central maternal (CM), central fetal (CF), peripheral maternal (PM) and peripheral fetal (PF). RESULTS BDNF levels were higher in CF region as compared to CM (p < 0.01), PM (p < 0.01) and PF (p < 0.05) regions of the placenta in the control group. There was no regional change in NGF levels in any of the groups. Analysis between groups indicated higher NGF levels in CM (p < 0.01), PM (p < 0.05) and PF (p < 0.01) regions of preterm preeclampsia group as compared to control. Negative association of NGF levels in CM, CF and PM regions with baby weight and in CF, PM and PF regions with baby length was observed. NGF levels in all four regions were positively associated with systolic blood pressure. DISCUSSION Our data indicates regional differences in levels of BDNF only in normotensive control but not in preeclampsia group. Higher NGF levels in preterm preeclampsia may be a response to increased oxidative stress. This may have implications for altered placental development in preeclampsia.
Collapse
Affiliation(s)
- A S Sahay
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | - D P Sundrani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | - G N Wagh
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - S S Mehendale
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - S R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India.
| |
Collapse
|
22
|
Mazzio E, Georges B, McTier O, Soliman KFA. Neurotrophic Effects of Mu Bie Zi (Momordica cochinchinensis) Seed Elucidated by High-Throughput Screening of Natural Products for NGF Mimetic Effects in PC-12 Cells. Neurochem Res 2015; 40:2102-12. [PMID: 25862192 DOI: 10.1007/s11064-015-1560-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/22/2022]
Abstract
Post-mitotic central nervous system (CNS) neurons have limited capacity for regeneration, creating a challenge in the development of effective therapeutics for spinal cord injury or neurodegenerative diseases. Furthermore, therapeutic use of human neurotrophic agents such as nerve growth factor (NGF) are limited due to hampered transport across the blood brain barrier (BBB) and a large number of peripheral side effects (e.g. neuro-inflammatory pain/tissue degeneration etc.). Therefore, there is a continued need for discovery of small molecule NGF mimetics that can penetrate the BBB and initiate CNS neuronal outgrowth/regeneration. In the current study, we conduct an exploratory high-through-put (HTP) screening of 1144 predominantly natural/herb products (947 natural herbs/plants/spices, 29 polyphenolics and 168 synthetic drugs) for ability to induce neurite outgrowth in PC12 dopaminergic cells grown on rat tail collagen, over 7 days. The data indicate a remarkably rare event-low hit ratio with only 1/1144 tested substances (<111.25 µg/mL) being capable of inducing neurite outgrowth in a dose dependent manner, identified as; Mu Bie Zi, Momordica cochinchinensis seed extract (MCS). To quantify the neurotrophic effects of MCS, 36 images (n = 6) (average of 340 cells per image), were numerically assessed for neurite length, neurite count/cell and min/max neurite length in microns (µm) using Image J software. The data show neurite elongation from 0.07 ± 0.02 µm (controls) to 5.5 ± 0.62 µm (NGF 0.5 μg/mL) and 3.39 ± 0.45 µm (138 μg/mL) in MCS, where the average maximum length per group extended from 3.58 ± 0.42 µm (controls) to 41.93 ± 3.14 µm (NGF) and 40.20 ± 2.72 µm (MCS). Imaging analysis using immunocytochemistry (ICC) confirmed that NGF and MCS had similar influence on 3-D orientation/expression of 160/200 kD neurofilament, tubulin and F-actin. These latent changes were associated with early rise in phosphorylated extracellular signal-regulated kinase (ERK) p-Erk1 (T202/Y204)/p-Erk2 (T185/Y187) at 60 min with mild changes in pAKT peaking at 5 min, and no indication of pMEK involvement. These findings demonstrate a remarkable infrequency of natural products or polyphenolic constituents to exert neurotrophic effects at low concentrations, and elucidate a unique property of MCS extract to do so. Future research will be required to delineate in depth mechanism of action of MCS, constituents responsible and potential for therapeutic application in CNS degenerative disease or injury.
Collapse
Affiliation(s)
- E Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104, Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA
| | - B Georges
- Department of Biology, Florida A&M University, Tallahassee, FL, 32307, USA
| | - O McTier
- Department of Biology, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104, Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
23
|
Pistilli A, Rende M, Crispoltoni L, Montagnoli C, Stabile AM. LY294002 induces in vitro apoptosis and overexpression of p75NTR in human uterine leiomyosarcoma HTB 114 cells. Growth Factors 2015; 33:376-83. [PMID: 26653825 DOI: 10.3109/08977194.2015.1118096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Uterine leiomyosarcoma is a severe neoplasia resistant to conventional therapies. In previous studies, we have shown that human SK-UT-1 (ATCC HTB114) uterine leiomyosarcoma cell line secretes nerve growth factor (NGF) and expresses its receptors tyrosine kinase A receptor (TrKA) and low affinity nerve growth factor receptor (p75NTR). Furthermore, we have demonstrated that direct chemical inhibition or IgG neutralization of TrKA receptor induce apoptosis through p75NTR. In the present study, HTB114 cells were exposed to the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 with and without β-NGF: apoptosis, cell cycle, activation of caspase-3 and protein kinase B (AKT) and TrKA/p75NTR phenotypic expression were evaluated. According to the type of exposure, LY294002 not only induced a relevant increase in apoptosis, but also produced a novel and unexpected phenotypic modulation of the NGF receptors with a downregulation of TrKA and an upregulation of p75NTR. This latter increase enhanced HTB114 apoptosis. Our study confirms that the interference on NGF transduction is a promising therapeutical approach in uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Alessandra Pistilli
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Mario Rende
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Lucia Crispoltoni
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Claudia Montagnoli
- b Biology and Degenerative Medicine Division, The Nicola Cerulli Institute of Translational Research for the Musculoskeletal System - LPMRI , Arezzo , Italy
| | - Anna Maria Stabile
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| |
Collapse
|
24
|
Hua B, Gao Y, Kong X, Yang L, Hou W, Bao Y. New insights of nociceptor sensitization in bone cancer pain. Expert Opin Ther Targets 2014; 19:227-43. [PMID: 25547644 DOI: 10.1517/14728222.2014.980815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Numerous studies have shown that an intact CNS is required for the conscious perception of cancer-induced bone pain (CIBP) and that changes in the CNS are clearly evident. Accordingly, the blockage of nociceptive stimulus into the CNS can effectively relieve or markedly attenuate CIBP, revealing the clinical implication of the blockage of ongoing peripheral inputs for the control of CIBP. AREAS COVERED In this review, the heterogeneity and excitability of nociceptors in bone are covered. Furthermore, their role in initiating and maintaining CIBP is also described. EXPERT OPINION Developing mechanistic therapies to treat CIBP is a challenge, but they have the potential to fundamentally change our ability to effectively block/relieve CIBP and increase the functional status and quality of life of patients with bone metastasis. Further studies are desperately needed at both the preclinical and clinical levels to determine whether the targets as mentioned in this review are viable and feasible for patient populations.
Collapse
Affiliation(s)
- Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Department of Oncology , Beixiange 5, Xicheng District, Beijing 100053 , China +86 10 88001221 ; +86 10 88001340 ;
| | | | | | | | | | | |
Collapse
|