1
|
Fellner M, Randall G, Bitac IRCG, Warrender AK, Sethi A, Jelinek R, Kass I. Similar but Distinct-Biochemical Characterization of the Staphylococcus aureus Serine Hydrolases FphH and FphI. Proteins 2025; 93:1009-1021. [PMID: 39726198 PMCID: PMC11971002 DOI: 10.1002/prot.26785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Staphylococcus aureus is a major cause of infections like bacteremia, pneumonia, and endocarditis. These infections are often linked to the ability of S. aureus to form biofilms. Several S. aureus serine hydrolases have previously been identified to be active during biofilm-forming conditions. Here, we present the biochemical characterization of two of these enzymes-fluorophosphonate binding hydrolase H and I (FphH, FphI). Cryogenic and room-temperature X-ray crystallography, enzymatic substrate profiling, small-angle X-ray scattering analysis, and molecular dynamics simulations provide new insights into similarities and differences between these two hydrolase_4 domain family members. We discover that these enzymes share an overall fold, including a flexible lid or cap region above the active site, which can be seen to be mobile in solution. Differences in the active site pocket and lid residues differentiate them and explain speed differences in their carboxyesterase substrate profile toward small unbranched carbon chain ester molecules. The first analysis of FphI is also compared to our previous knowledge of FphH and its association to stress conditions. These results enable the future precise targeting of Fph serine hydrolase family members with a long-term goal to significantly improve the health and wellbeing of individuals and populations worldwide.
Collapse
Affiliation(s)
- Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - George Randall
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ianah R. C. G. Bitac
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Annmaree K. Warrender
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Ashish Sethi
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Itamar Kass
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
2
|
Qaddourah M, Jayasinghe S. Bioinformatics Analysis Suggests That SE_1780 Protein From Staphylococcus Epidermidis May Be a Member of the Fph Family of Lipases. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001386. [PMID: 40027527 PMCID: PMC11871530 DOI: 10.17912/micropub.biology.001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
The Protein Data Bank entry for protein SE_1780 from Staphylococcus epidermidis lists the function as unknown. We leveraged the framework outlined in the Biochemistry Authentic Scientific Inquiry Laboratory and used bioinformatics tools to ascertain the function of the protein. Based on our analysis, we posit that SE_1780 is a lipase of the α/β hydrolase family with a proposed active site catalytic triad composed of Ser 144, Asp 235, and His 269. Further we identified the lipase FphD as having significant sequence identity to protein SE_1780 and suggest that the protein is a member of the Fph family of lipases from S. epidermidis .
Collapse
Affiliation(s)
- Maya Qaddourah
- Chemistry and Biochemistry, California State University San Marcos, San Marcos, California, United States
| | - Sajith Jayasinghe
- Chemistry and Biochemistry, California State University San Marcos, San Marcos, California, United States
| |
Collapse
|
3
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of Staphylococcus aureus Infections. J Am Chem Soc 2024; 146:6880-6892. [PMID: 38411555 DOI: 10.1021/jacs.3c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen that is responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here, we describe the development of oxadiazolone-based activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologues in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling, and mouse models of infection, we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes and validate FphE as a target for the development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ki Wan Park
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Nichole J Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
4
|
Fellner M, Walsh A, Dela Ahator S, Aftab N, Sutherland B, Tan EW, Bakker AT, Martin NI, van der Stelt M, Lentz CS. Biochemical and Cellular Characterization of the Function of Fluorophosphonate-Binding Hydrolase H (FphH) in Staphylococcus aureus Support a Role in Bacterial Stress Response. ACS Infect Dis 2023; 9:2119-2132. [PMID: 37824340 PMCID: PMC10644348 DOI: 10.1021/acsinfecdis.3c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 10/14/2023]
Abstract
The development of new treatment options for bacterial infections requires access to new targets for antibiotics and antivirulence strategies. Chemoproteomic approaches are powerful tools for profiling and identifying novel druggable target candidates, but their functions often remain uncharacterized. Previously, we used activity-based protein profiling in the opportunistic pathogen Staphylococcus aureus to identify active serine hydrolases termed fluorophosphonate-binding hydrolases (Fph). Here, we provide the first characterization of S. aureus FphH, a conserved, putative carboxylesterase (referred to as yvaK in Bacillus subtilis) at the molecular and cellular level. First, phenotypic characterization of fphH-deficient transposon mutants revealed phenotypes during growth under nutrient deprivation, biofilm formation, and intracellular survival. Biochemical and structural investigations revealed that FphH acts as an esterase and lipase based on a fold well suited to act on a small to long hydrophobic unbranched lipid group within its substrate and can be inhibited by active site-targeting oxadiazoles. Prompted by a previous observation that fphH expression was upregulated in response to fusidic acid, we found that FphH can deacetylate this ribosome-targeting antibiotic, but the lack of FphH function did not infer major changes in antibiotic susceptibility. In conclusion, our results indicate a functional role of this hydrolase in S. aureus stress responses, and hypothetical functions connecting FphH with components of the ribosome rescue system that are conserved in the same gene cluster across Bacillales are discussed. Our atomic characterization of FphH will facilitate the development of specific FphH inhibitors and probes to elucidate its physiological role and validity as a drug target.
Collapse
Affiliation(s)
- Matthias Fellner
- Biochemistry
Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Annabel Walsh
- Biochemistry
Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Stephen Dela Ahator
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Nadia Aftab
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ben Sutherland
- Department
of Chemistry, Division of Sciences, University
of Otago, Dunedin 9054, New Zealand
| | - Eng W. Tan
- Department
of Chemistry, Division of Sciences, University
of Otago, Dunedin 9054, New Zealand
| | - Alexander T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333
BE Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Christian S. Lentz
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
5
|
Silver L. Recent advances and challenges in antibacterial drug development: Editorial. ADMET AND DMPK 2022; 10:89-90. [PMID: 35350116 PMCID: PMC8957239 DOI: 10.5599/admet.1315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Editorial
Collapse
Affiliation(s)
- Lynn Silver
- LL Silver Consulting, New Jersey, United States;
| |
Collapse
|