1
|
Amichot M, Bertrand C, Chauvel B, Corio-Costet MF, Martin-Laurent F, Le Perchec S, Mamy L. Natural products for biocontrol: review of their fate in the environment and impacts on biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2857-2892. [PMID: 38630402 DOI: 10.1007/s11356-024-33256-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/04/2024] [Indexed: 02/19/2025]
Abstract
Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.
Collapse
Affiliation(s)
- Marcel Amichot
- UMR ISA, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Cédric Bertrand
- Université de Perpignan Via Domitia, CRIOBE UAR 3278 CNRS-EPHE-UPVD, Centre de Phytopharmacie, 66860, Perpignan, France
| | - Bruno Chauvel
- INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, 21000, Dijon, France
| | | | - Fabrice Martin-Laurent
- INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, 21000, Dijon, France
| | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| |
Collapse
|
2
|
Integrated Approach for Quality Assessment of Technosols in Experimental Mesocosms. SUSTAINABILITY 2021. [DOI: 10.3390/su13169101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The assessment of Technosols quality in urban environments is pivotal for the maintenance of ecosystems impacted by human activities. The study was performed on Technosols constructed in experimental mesocosms in the suburban area of Naples (Southern Italy) to highlight changes in the main soil properties over eight years and to identify the most suitable indices at quality monitoring. In this study, several chemical, biological, and integrated indices were analysed to evaluate the mineral accumulation, potential ecological risk, edaphon activity, fertility, and the overall soil quality. The Technosols showed alkaline pH, nitrogen ranged from 24.5 to 39.5 g kg−1, high organic matter contents above 40 g kg−1, and there were no evident processes of soil compaction. Heavy metals (Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) did not exceed the thresholds defined by the Italian law for urban soils, despite their volcanic components. During eight years, the chemical indices depicted changes in the elements balance and increase in ecological risk; the biological indices indicated a reduction in the fungal fraction (fivefold) and in the resources utilisation and carbon storage. The soil quality index with all parameters highlighted the reduction in the soil quality (from 0.78 to 0.65) due to the decrease of the chemical quality, the increase of microbial stress conditions, and changes of the microbial composition, underlining the importance of integrating chemical and biological information for monitoring Technosols.
Collapse
|