1
|
So TW, Choi HY, Xu H, Zhu J, Shi L, Ip JPK. Hippocampal dorsal CA1: Functional connectivity and role in HCN channelopathies in affective diseases and epilepsy. IBRO Neurosci Rep 2025; 18:644-656. [PMID: 40292082 PMCID: PMC12023878 DOI: 10.1016/j.ibneur.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
The hippocampus is a complex structure consisting of the dentate gyrus (DG), cornu ammonis (CA) and the subiculum. CA1 is further subdivided into the ventral (vCA1) and dorsal (dCA1) compartments, with dCA1 believed to be crucial in spatial learning and memory as well as cognitive processing. Although dCA1 was traditionally thought to be not likely relevant to affective diseases, recent studies suggest otherwise. In fact, it has been found that diseases including certain types of post-traumatic stress disorder (PTSD), depression and epilepsy may be attributed to channelopathies in dCA1, particularly that of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. However, it remains unclear how disruptions of HCN transcription, post-transcriptional modification and activation kinetics are related to changes of downstream structures along neural circuits. Their effect on behavioural changes and disease development, as well as the corresponding potential therapeutic strategies implicated in the findings have not been extensively studied as well. With the existing research gap and the significant clinical implications of dCA1 HCN channelopathies, the mechanisms of how defects of these channels result in brain disorders including PTSD, depression and temporal lobe epilepsy are worthy of further investigation. Therefore, in this review, we summarize the recent findings on the involvement of dCA1 HCN channelopathies in brain disorders after providing an outline on the neuroanatomy and functional connectivity of dCA1, and the features of HCN channels in that region. We also propose future directions of molecular and systems neuroscience studies, as well as the translational research on potential therapeutics that address the brain disorders related to dCA1 HCN channelopathies.
Collapse
Affiliation(s)
- Tsz Wei So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Yi Choi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoyu Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinwei Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Zhao L, Witter MP, Palomero-Gallagher N. Cyto-, gene, and multireceptor architecture of the early postnatal mouse hippocampal complex. Prog Neurobiol 2025; 245:102704. [PMID: 39709019 DOI: 10.1016/j.pneurobio.2024.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes. We provide a novel and comprehensive characterization of the cyto-, gene, and multireceptor architecture of the developing mouse hippocampal and subicular regions during the developmental period, which typically differs from that in the adult brain. High-density receptor expressions with distinct regional and laminar distributions were observed for AMPA, Kainate, mGluR2/3, GABAA, GABAA/BZ, α2, and A1 receptors during this specific period, whereas NMDA, GABAB, α1, M1, M2, M3, nicotinic α4β2, 5-HT1A, 5-HT2, D1 and D2/D3 receptors exhibited relatively low and homogeneous expressions. This specific balance of multiple receptors aligns with regional cytoarchitecture, neurotransmitter distributions, and gene expressions. Moreover, contrasting with previous findings, we detected a high α2 receptor density, with distinct regional and laminar distribution patterns. A non-covariation differentiation phenomenon between α2 receptor distributions and corresponding gene expressions is also demonstrated in this early developmental period. The multimodal data provides new insights into understanding the hippocampal development from the perspective of cell, gene, and multireceptor levels, and contributes important resources for further interdisciplinary analyses.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Psychology, School of Public Policy and Management, Nanchang University, Nanchang 330000, China; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Dusseldorf 40225, Germany
| |
Collapse
|
3
|
Kong E, Zabeh E, Liao Z, Mihaila TS, Wilson C, Santhirasegaran C, Peterka DS, Losonczy A, Geiller T. Recurrent Connectivity Shapes Spatial Coding in Hippocampal CA3 Subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622379. [PMID: 39574766 PMCID: PMC11581023 DOI: 10.1101/2024.11.07.622379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Stable and flexible neural representations of space in the hippocampus are crucial for navigating complex environments. However, how these distinct representations emerge from the underlying local circuit architecture remains unknown. Using two-photon imaging of CA3 subareas during active behavior, we reveal opposing coding strategies within specific CA3 subregions, with proximal neurons demonstrating stable and generalized representations and distal neurons showing dynamic and context-specific activity. We show in artificial neural network models that varying the recurrence level causes these differences in coding properties to emerge. We confirmed the contribution of recurrent connectivity to functional heterogeneity by characterizing the representational geometry of neural recordings and comparing it with theoretical predictions of neural manifold dimensionality. Our results indicate that local circuit organization, particularly recurrent connectivity among excitatory neurons, plays a key role in shaping complementary spatial representations within the hippocampus.
Collapse
Affiliation(s)
- Eunji Kong
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Erfan Zabeh
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Tiberiu S Mihaila
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Caroline Wilson
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Charan Santhirasegaran
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Tristan Geiller
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
McKiernan EC, Herrera-Valdez MA, Marrone DF. A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity. PLoS One 2024; 19:e0308809. [PMID: 39231135 PMCID: PMC11373847 DOI: 10.1371/journal.pone.0308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Marco A Herrera-Valdez
- Laboratorio de Dinámica, Biofísica y Fisiología de Sistemas, Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
- McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
5
|
Santoro B, Srinivas KV, Reyes I, Tian C, Masurkar AV. Cell type-specific impact of aging and Alzheimer disease on hippocampal CA1 perforant path input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609952. [PMID: 39253428 PMCID: PMC11383042 DOI: 10.1101/2024.08.27.609952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The perforant path (PP) carries direct inputs from entorhinal cortex to CA1 pyramidal neurons (PNs), with an impact dependent on PN position across transverse (CA1a-CA1c) and radial (superficial/deep) axes. It remains unclear how aging and Alzheimer disease (AD) affect PP input, despite its critical role in memory and early AD. Applying ex vivo recordings and two-photon microscopy in slices from mice up to 30 months old, we interrogated PP responses across PN subpopulations and compared them to Schaffer collateral and intrinsic excitability changes. We found that aging uniquely impacts PP excitatory responses, abolishing transverse and radial differences via a mechanism independent of presynaptic and membrane excitability change. This is amplified in aged 3xTg-AD mice, with further weakening of PP inputs to CA1a superficial PNs associated with distal dendritic spine loss. This demonstrates a unique feature of aging-related circuit dysfunction, with mechanistic implications related to memory impairment and synaptic vulnerability.
Collapse
|
6
|
Park EH, Jo YS, Kim EJ, Park EH, Lee KJ, Rhyu IJ, Kim HT, Choi JS. Heterogenous effect of early adulthood stress on cognitive aging and synaptic function in the dentate gyrus. Front Mol Neurosci 2024; 17:1344141. [PMID: 38638601 PMCID: PMC11024304 DOI: 10.3389/fnmol.2024.1344141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive aging widely varies among individuals due to different stress experiences throughout the lifespan and vulnerability of neurocognitive mechanisms. To understand the heterogeneity of cognitive aging, we investigated the effect of early adulthood stress (EAS) on three different hippocampus-dependent memory tasks: the novel object recognition test (assessing recognition memory: RM), the paired association test (assessing episodic-like memory: EM), and trace fear conditioning (assessing trace memory: TM). Two-month-old rats were exposed to chronic mild stress for 6 weeks and underwent behavioral testing either 2 weeks or 20 months later. The results show that stress and aging impaired different types of memory tasks to varying degrees. RM is affected by combined effect of stress and aging. EM became less precise in EAS animals. TM, especially the contextual memory, showed impairment in aging although EAS attenuated the aging effect, perhaps due to its engagement in emotional memory systems. To further explore the neural underpinnings of these multi-faceted effects, we measured long-term potentiation (LTP), neural density, and synaptic density in the dentate gyrus (DG). Both stress and aging reduced LTP. Additionally, the synaptic density per neuron showed a further reduction in the stress aged group. In summary, EAS modulates different forms of memory functions perhaps due to their substantial or partial dependence on the functional integrity of the hippocampus. The current results suggest that lasting alterations in hippocampal circuits following EAS could potentially generate remote effects on individual variability in cognitive aging, as demonstrated by performance in multiple types of memory.
Collapse
Affiliation(s)
- Eun Hye Park
- School of Psychology, Korea University, Seoul, Republic of Korea
- Department of Psychology, New York University, New York, NY, United States
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Eun Joo Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Eui Ho Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kea Joo Lee
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Taek Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Tzilivaki A, Tukker JJ, Maier N, Poirazi P, Sammons RP, Schmitz D. Hippocampal GABAergic interneurons and memory. Neuron 2023; 111:3154-3175. [PMID: 37467748 PMCID: PMC10593603 DOI: 10.1016/j.neuron.2023.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
One of the most captivating questions in neuroscience revolves around the brain's ability to efficiently and durably capture and store information. It must process continuous input from sensory organs while also encoding memories that can persist throughout a lifetime. What are the cellular-, subcellular-, and network-level mechanisms that underlie this remarkable capacity for long-term information storage? Furthermore, what contributions do distinct types of GABAergic interneurons make to this process? As the hippocampus plays a pivotal role in memory, our review focuses on three aspects: (1) delineation of hippocampal interneuron types and their connectivity, (2) interneuron plasticity, and (3) activity patterns of interneurons during memory-related rhythms, including the role of long-range interneurons and disinhibition. We explore how these three elements, together showcasing the remarkable diversity of inhibitory circuits, shape the processing of memories in the hippocampus.
Collapse
Affiliation(s)
- Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Panayiota Poirazi
- Foundation for Research and Technology Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), N. Plastira 100, Heraklion, Crete, Greece
| | - Rosanna P Sammons
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstrasse. 13, 10115 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
8
|
Singh M, Zhao Y, Gastaldi VD, Wojcik SM, Curto Y, Kawaguchi R, Merino RM, Garcia-Agudo LF, Taschenberger H, Brose N, Geschwind D, Nave KA, Ehrenreich H. Erythropoietin re-wires cognition-associated transcriptional networks. Nat Commun 2023; 14:4777. [PMID: 37604818 PMCID: PMC10442354 DOI: 10.1038/s41467-023-40332-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
Recombinant human erythropoietin (rhEPO) has potent procognitive effects, likely hematopoiesis-independent, but underlying mechanisms and physiological role of brain-expressed EPO remained obscure. Here, we provide transcriptional hippocampal profiling of male mice treated with rhEPO. Based on ~108,000 single nuclei, we unmask multiple pyramidal lineages with their comprehensive molecular signatures. By temporal profiling and gene regulatory analysis, we build developmental trajectory of CA1 pyramidal neurons derived from multiple predecessor lineages and elucidate gene regulatory networks underlying their fate determination. With EPO as 'tool', we discover populations of newly differentiating pyramidal neurons, overpopulating to ~200% upon rhEPO with upregulation of genes crucial for neurodifferentiation, dendrite growth, synaptogenesis, memory formation, and cognition. Using a Cre-based approach to visually distinguish pre-existing from newly formed pyramidal neurons for patch-clamp recordings, we learn that rhEPO treatment differentially affects excitatory and inhibitory inputs. Our findings provide mechanistic insight into how EPO modulates neuronal functions and networks.
Collapse
Affiliation(s)
- Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| | - Ying Zhao
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Vinicius Daguano Gastaldi
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Yasmina Curto
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ricardo M Merino
- Max Planck Institute for Dynamics and Self-Organization and Campus Institute for Dynamics of Biological Networks, Georg-August-University, Göttingen, Germany
| | | | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| |
Collapse
|
9
|
Vancura B, Geiller T, Grosmark A, Zhao V, Losonczy A. Inhibitory control of sharp-wave ripple duration during learning in hippocampal recurrent networks. Nat Neurosci 2023; 26:788-797. [PMID: 37081295 PMCID: PMC10209669 DOI: 10.1038/s41593-023-01306-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
Recurrent excitatory connections in hippocampal regions CA3 and CA2 are thought to play a key role in the generation of sharp-wave ripples (SWRs), electrophysiological oscillations tightly linked with learning and memory consolidation. However, it remains unknown how defined populations of inhibitory interneurons regulate these events during behavior. Here, we use large-scale, three-dimensional calcium imaging and retrospective molecular identification in the mouse hippocampus to characterize molecularly identified CA3 and CA2 interneuron activity during SWR-associated memory consolidation and spatial navigation. We describe subtype- and region-specific responses during behaviorally distinct brain states and find that SWRs are preceded by decreased cholecystokinin-expressing interneuron activity and followed by increased parvalbumin-expressing basket cell activity. The magnitude of these dynamics correlates with both SWR duration and behavior during hippocampal-dependent learning. Together these results assign subtype- and region-specific roles for inhibitory circuits in coordinating operations and learning-related plasticity in hippocampal recurrent circuits.
Collapse
Affiliation(s)
- Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Andres Grosmark
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- University of Connecticut Medical School, Farmington, CT, USA
| | - Vivian Zhao
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Geiller T, Priestley JB, Losonczy A. A local circuit-basis for spatial navigation and memory processes in hippocampal area CA1. Curr Opin Neurobiol 2023; 79:102701. [PMID: 36878147 PMCID: PMC10020891 DOI: 10.1016/j.conb.2023.102701] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
The hippocampus is a multi-stage neural circuit that is critical for memory formation. Its distinct anatomy has long inspired theories that rely on local interactions between neurons within each subregion in order to perform serial operations important for memory encoding and storage. These local computations have received less attention in CA1 area, the primary output node of the hippocampus, where excitatory neurons are thought to be only very sparsely interconnected. However, recent findings have demonstrated the power of local circuitry in CA1, with evidence for strong functional interactions among excitatory neurons, regulation by diverse inhibitory microcircuits, and novel plasticity rules that can profoundly reshape the hippocampal ensemble code. Here we review how these properties expand the dynamical repertoire of CA1 beyond the confines of feedforward processing, and what implications they have for hippocampo-cortical functions in memory formation.
Collapse
Affiliation(s)
- Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA. https://twitter.com/tgeiller
| | - James B Priestley
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, 10027, USA. https://twitter.com/jamespriestley4
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
11
|
Ma J, Wang R, Chen Y, Wang Z, Dong Y. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. J Neuroinflammation 2023; 20:23. [PMID: 36737776 PMCID: PMC9896737 DOI: 10.1186/s12974-023-02693-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays an important role in the development of depression. The aim of this study was to investigate the effects of 5-HT on cognitive function, learning and memory induced by chronic unforeseeable mild stress stimulation (CUMS) in female mice. CUMS mice and TPH2 KO mice were used in the study. Lactococcus lactis E001-B-8 fungus powder was orally administered to mice with CUMS. METHODS We used the open field test, Morris water maze, tail suspension test and sucrose preference test to examine learning-related behaviours. In addition, AB-PAS staining, immunofluorescence, ELISA, qPCR, Western blotting and microbial sequencing were employed to address our hypotheses. RESULTS The effect of CUMS was more obvious in female mice than in male mice. Compared with female CUMS mice, extracellular serotonin levels in TPH2 KO CUMS mice were significantly reduced, and cognitive dysfunction was aggravated. Increased hippocampal autophagy levels, decreased neurotransmitter levels, reduced oxidative stress damage, increased neuroinflammatory responses and disrupted gut flora were observed. Moreover, L. lactis E001-B-8 significantly improved the cognitive behaviour of mice. CONCLUSIONS These results strongly suggest that L. lactis E001-B-8 but not FLX can alleviate rodent depressive and anxiety-like behaviours in response to CUMS, which is associated with the improvement of 5-HT metabolism and modulation of the gut microbiome composition.
Collapse
Affiliation(s)
- Junxing Ma
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Yao W, Wang B, Wu Y, Wang J, Xu Z, Meng F, Wang P. Rapid Determination of Methamphetamine and Cocaine in Saliva by Portable Surface Plasmon Resonance (SPR). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2080839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, China
| | - Fanwei Meng
- Hangzhou Neoline Technology, Hangzhou, China
| | | |
Collapse
|
13
|
Dudok B, Szoboszlay M, Paul A, Klein PM, Liao Z, Hwaun E, Szabo GG, Geiller T, Vancura B, Wang BS, McKenzie S, Homidan J, Klaver LMF, English DF, Huang ZJ, Buzsáki G, Losonczy A, Soltesz I. Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior. Neuron 2021; 109:3838-3850.e8. [PMID: 34648750 PMCID: PMC8639676 DOI: 10.1016/j.neuron.2021.09.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
The axon initial segment of hippocampal pyramidal cells is a key subcellular compartment for action potential generation, under GABAergic control by the "chandelier" or axo-axonic cells (AACs). Although AACs are the only cellular source of GABA targeting the initial segment, their in vivo activity patterns and influence over pyramidal cell dynamics are not well understood. We achieved cell-type-specific genetic access to AACs in mice and show that AACs in the hippocampal area CA1 are synchronously activated by episodes of locomotion or whisking during rest. Bidirectional intervention experiments in head-restrained mice performing a random foraging task revealed that AACs inhibit CA1 pyramidal cells, indicating that the effect of GABA on the initial segments in the hippocampus is inhibitory in vivo. Finally, optogenetic inhibition of AACs at specific track locations induced remapping of pyramidal cell place fields. These results demonstrate brain-state-specific dynamics of a critical inhibitory controller of cortical circuits.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA; NYU Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Jesslyn Homidan
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel F English
- NYU Neuroscience Institute, New York University, New York, NY 10016, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - György Buzsáki
- NYU Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Examining the transition of novel information toward familiarity. Neuropsychologia 2021; 161:107993. [PMID: 34411595 DOI: 10.1016/j.neuropsychologia.2021.107993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/23/2022]
Abstract
Throughout their lives, humans encounter multiple instances of new information that can be inconsistent with prior knowledge (novel). Over time, the once-novel information becomes integrated into their established knowledge base, shifting from novelty to familiarity. In this study, we investigated the processes by which the first steps of this transition take place. We hypothesized that the neural representations of initially novel items gradually change over the course of repeated presentations, expressing a shift toward familiarity. We further assumed that this shift could be traced by examining neural patterns using fMRI. In two experiments, while being scanned, participants read noun-adjective word pairs that were either consistent or inconsistent with their prior knowledge. Stimuli were repeated 3-6 times within the scans. Employing mass univariate and multivariate similarity analyses, we showed that the neural representations associated with the initial presentation of familiar versus novel objects differed in lateral frontal and temporal regions, the medial prefrontal cortex, and the medial temporal lobe. Importantly, the neural representations of novel stimuli gradually changed throughout repetitions until they became indistinguishable from their respective familiar items. We interpret these findings as indicating that an early phase of familiarization can be completed within a few repetitions. This initial familiarization can then serve as the prerequisite to the integration of novel items into existing knowledge. Future empirical and theoretical works can build on the current findings to develop a comprehensive model of the transition from novelty to familiarity.
Collapse
|
15
|
Steubler V, Erdinger S, Back MK, Ludewig S, Fässler D, Richter M, Han K, Slomianka L, Amrein I, von Engelhardt J, Wolfer DP, Korte M, Müller UC. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J 2021; 40:e107471. [PMID: 34008862 PMCID: PMC8204861 DOI: 10.15252/embj.2020107471] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long-term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism-like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.
Collapse
Affiliation(s)
- Vicky Steubler
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Susanne Erdinger
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Michaela K Back
- Institute of PathophysiologyFocus Program Translational Neuroscience (FTN)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Susann Ludewig
- Division of Cellular NeurobiologyZoological Institute, TU BraunschweigBraunschweigGermany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration GroupBraunschweigGermany
| | - Dominique Fässler
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Max Richter
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Kang Han
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Lutz Slomianka
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Irmgard Amrein
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Jakob von Engelhardt
- Institute of PathophysiologyFocus Program Translational Neuroscience (FTN)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - David P Wolfer
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
- Institute of Human Movement SciencesETH ZurichZurichSwitzerland
| | - Martin Korte
- Division of Cellular NeurobiologyZoological Institute, TU BraunschweigBraunschweigGermany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration GroupBraunschweigGermany
| | - Ulrike C Müller
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
16
|
Masurkar AV, Tian C, Warren R, Reyes I, Lowes DC, Brann DH, Siegelbaum SA. Postsynaptic integrative properties of dorsal CA1 pyramidal neuron subpopulations. J Neurophysiol 2020; 123:980-992. [PMID: 31967926 PMCID: PMC7099474 DOI: 10.1152/jn.00397.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/22/2022] Open
Abstract
The population activity of CA1 pyramidal neurons (PNs) segregates along anatomical axes with different behaviors, suggesting that CA1 PNs are functionally subspecialized based on somatic location. In dorsal CA1, spatial encoding is biased toward CA2 (CA1c) and in deep layers of the radial axis. In contrast, nonspatial coding peaks toward subiculum (CA1a) and in superficial layers. While preferential innervation by spatial vs. nonspatial input from entorhinal cortex (EC) may contribute to this specialization, it cannot fully explain the range of in vivo responses. Differences in intrinsic properties thus may play a critical role in modulating such synaptic input differences. In this study we examined the postsynaptic integrative properties of dorsal CA1 PNs in six subpopulations along the transverse (CA1c, CA1b, CA1a) and radial (deep, superficial) axes. Our results suggest that active and passive properties of deep and superficial neurons evolve over the transverse axis to promote the functional specialization of CA1c vs. CA1a as dictated by their cortical input. We also find that CA1b is not merely an intermediate mix of its neighbors, but uniquely balances low excitability with superior input integration of its mixed input, as may be required for its proposed role in sequence encoding. Thus synaptic input and intrinsic properties combine to functionally compartmentalize CA1 processing into at least three transverse axis regions defined by the processing schemes of their composite radial axis subpopulations.NEW & NOTEWORTHY There is increasing interest in CA1 pyramidal neuron heterogeneity and the functional relevance of this diversity. We find that active and passive properties evolve over the transverse and radial axes in dorsal CA1 to promote the functional specialization of CA1c and CA1a for spatial and nonspatial memory, respectively. Furthermore, CA1b is not a mean of its neighbors, but features low excitability and superior integrative capabilities, relevant to its role in nonspatial sequence encoding.
Collapse
Affiliation(s)
- Arjun V Masurkar
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, New York
| | - Chengju Tian
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, New York
| | - Richard Warren
- Department of Neuroscience, Columbia University, New York, New York
| | - Isabel Reyes
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, New York
| | - Daniel C Lowes
- Department of Neuroscience, Columbia University, New York, New York
| | - David H Brann
- Department of Neuroscience, Columbia University, New York, New York
| | - Steven A Siegelbaum
- Department of Neuroscience, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
- Kavli Institute for Brain Science, Columbia University, New York, New York
| |
Collapse
|
17
|
Zhou H, Wang X, Lin J, Zhao Z, Chang C. Distribution of Cadherin in the Parahippocampal Area of Developing Domestic Chicken Embryos. Exp Neurobiol 2020; 29:11-26. [PMID: 32122105 PMCID: PMC7075654 DOI: 10.5607/en.2020.29.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal formation is important in spatial learning and memory. Members of the cadherin superfamily are observed in the neural system with diverse spatial and temporal expression patterns and are involved in many biological processes. To date, the avian hippocampal formation is not well understood. In this study, we examined the expression of cadherin mRNA in chicken and mouse brains to investigate the morphological and cytoarchitectural bases of hippocampal formation. Profiles of the spatiotemporal expression of cadherin mRNAs in the developing chicken embryonic parahippocampal area (APH) are provided, and layer-specific expression and spatiotemporal expression were observed in different subdivisions of the APH. That fact that some cadherins (Cdh2, Cdh8, Pcdh8 and Pcdh10) showed conserved regional expression both in the hippocampus and entorhinal cortex of mice and the hippocampal formation of chickens partially confirmed the structural homology proposed by previous scientists. This study indicates that some cadherins can be used as special markers of the avian hippocampal formation.
Collapse
Affiliation(s)
- He Zhou
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China.,Department of General and Visceral Surgery, Goethe-University Hospital, Frankfurt am Main 60596, Germany
| | - XiaoFan Wang
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China
| | - JunTang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453000, China
| | - Ze Zhao
- School of Law, Shanghai University of Finance and Economics, Shanghai 200000, China
| | - Cheng Chang
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China.,Birth Defect Prevention Key Laboratory, National Health Commission of the People's Republic of China, Zhengzhou 450000, China.,Center of Cerebral Palsy Surgical Research and Treatment, ZhengZhou University, Zhengzhou 450000, China
| |
Collapse
|
18
|
Merino-Serrais P, Tapia-González S, DeFelipe J. Calbindin immunostaining in the CA1 hippocampal pyramidal cell layer of the human and mouse: A comparative study. J Chem Neuroanat 2020; 104:101745. [PMID: 31945411 DOI: 10.1016/j.jchemneu.2020.101745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/04/2020] [Accepted: 01/10/2020] [Indexed: 01/30/2023]
Abstract
Immunostaining for calbindin (CB) is commonly used to label particular populations of neurons. Recently, it has been shown that the CA1 pyramidal cells in the mouse can be subdivided along the radial axis into superficial and deep pyramidal cells and that this segregation in the radial axis may represent a general principle of structural and functional organization of the hippocampus. One of the most widely used markers of the superficial pyramidal cells is CB. However, this laminar segregation of pyramidal cells has not been reported in the human CA1 using CB immunostaining. The problem is that the different pattern of CB immunostaining observed in the mouse compared to the human could be explained by technical features, of which one of the most important is the postmortem time (PT) delay typical of the brain tissue obtained from humans. In the present study, we have studied the influences of PT delays and fixation procedures and we found that the clear differences found between the CA1 of the human and mouse do not depend on the fixation, but represent actual species-specific differences. These remarkable differences between species should be taken into consideration when making interpretations in translational studies from mouse to human brains.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Silvia Tapia-González
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
| |
Collapse
|
19
|
Wang L, He Z, Zhu Z, Yuan W, Cai W, Li L, Zhang J, Hou W, Yang Y, Zhang X, Guo Q, Wang X, Lian Z, Tai F. The serotonin system in the hippocampus CA3 involves in effects of CSDS on social recognition in adult female mandarin voles (Microtus mandarinus). Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109704. [PMID: 31330217 DOI: 10.1016/j.pnpbp.2019.109704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Chronic social defeat stress (CSDS) exacerbated the development of stress-related psychiatric disorders, and the social recognition dysfunction is the core feature of many psychiatric disorders. However, the effects of CSDS on female social recognition and the underlying neural mechanisms remain unclear. Using highly aggressive adult female mandarin voles (Microtus mandarinus) as animal model, the aim of this work is to investigate the effects of CSDS on social recognition in adult female rodents and the neurobiological mechanisms underlying these effects. Our results indicate the CSDS disrupted the normal social recognition in adult female voles. Meanwhile, defeated voles exhibited increased neural activity in the DG, CA1 and CA3 of the hippocampus. Furthermore, CSDS reduced levels of serotonin (5-HT) and serotonin 1A receptors (5-HT1AR) in the CA3. We also discovered that microinjection of 8-OH-DPAT into the CA3 effectively reversed the social recognition deficits induced by CSDS, and an infusion of WAY-100635 into the CA3 of control female voles impaired social recognition. Moreover, targeted activation of the 5-HT neuron projection from the DRN to CA3 by long-term administration of CNO significantly prevented the CSDS induced social recognition deficits. Taken together, our study demonstrated that CSDS induced social recognition deficits in adult female voles, and these effects were mediated by the action of 5-HT on the 5-HT1AR in the hippocampus CA3. The projection from the DRN to CA3 may be involved in social recognition deficits induced by CSDS.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xia Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
20
|
Cembrowski MS, Spruston N. Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nat Rev Neurosci 2019; 20:193-204. [PMID: 30778192 DOI: 10.1038/s41583-019-0125-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanistic operation of brain regions is often interpreted by partitioning constituent neurons into 'cell types'. Historically, such cell types were broadly defined by their correspondence to gross features of the nervous system (such as cytoarchitecture). Modern-day neuroscientific techniques, enabling a more nuanced examination of neuronal properties, have illustrated a wealth of heterogeneity within these classical cell types. Here, we review the extent of this within-cell-type heterogeneity in one of the simplest cortical regions of the mammalian brain, the rodent hippocampus. We focus on the mounting evidence that the classical CA3, CA1 and subiculum pyramidal cell types all exhibit prominent and spatially patterned within-cell-type heterogeneity, and suggest these cell types provide a model system for exploring the organization and function of such heterogeneity. Given that the hippocampus is structurally simple and evolutionarily ancient, within-cell-type heterogeneity is likely to be a general and crucial feature of the mammalian brain.
Collapse
Affiliation(s)
- Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
21
|
Enhancing effect of aerobic training on learning and memory performance in rats after long-term treatment with Lacosamide via BDNF-TrkB signaling pathway. Behav Brain Res 2019; 370:111963. [PMID: 31116960 DOI: 10.1016/j.bbr.2019.111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 11/22/2022]
Abstract
Aerobic training has a neuroprotective effect, reduces the risk of developing neurodegenerative diseases and facilitates functional recovery. The present study assesses the effect of aerobic training on cognitive functions, hippocampal BDNF/TrkB ligand receptor system expression and serum levels of BDNF and corticosterone in intact rats after chronic treatment with Lacosamide (LCM). Male Wistar rats were randomly divided into two groups. One group was exercised on a treadmill (Ex) and the other one was sedentary (Sed). Half of the rats from each group received saline (veh) while the other half - LCM. The rats underwent a month-long training and LCM treatment before being subjected to one active and two passive avoidance tests. Both trained groups increased significantly the number of avoidances compared with the sedentary animals during the learning session and on memory retention tests, while the number of avoidances of the LCM-treated rats was significantly lower in comparison with the saline-treated animals. Both passive avoidance tests revealed that trained animals spent more time in the lighted compartment or caused longer stay on the platform than did the sedentary rats during acquisition and short- and long-term memory retention tests. Aerobic training increased BDNF and TrkB hippocampal immunoreactivity. We found no significant difference between BDNF serum levels but corticosterone levels of the Sed-LCM rats were lower than those of the Sed-veh animals. Our results show that aerobic training increases the hippocampal BDNF/TrkB expression suggesting a role in preventing the negative effect of Lacosamide on cognitive functions in rats.
Collapse
|
22
|
Hartzell AL, Martyniuk KM, Brigidi GS, Heinz DA, Djaja NA, Payne A, Bloodgood BL. NPAS4 recruits CCK basket cell synapses and enhances cannabinoid-sensitive inhibition in the mouse hippocampus. eLife 2018; 7:35927. [PMID: 30052197 PMCID: PMC6105310 DOI: 10.7554/elife.35927] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022] Open
Abstract
Experience-dependent expression of immediate-early gene transcription factors (IEG-TFs) can transiently change the transcriptome of active neurons and initiate persistent changes in cellular function. However, the impact of IEG-TFs on circuit connectivity and function is poorly understood. We investigate the specificity with which the IEG-TF NPAS4 governs experience-dependent changes in inhibitory synaptic input onto CA1 pyramidal neurons (PNs). We show that novel sensory experience selectively enhances somatic inhibition mediated by cholecystokinin-expressing basket cells (CCKBCs) in an NPAS4-dependent manner. NPAS4 specifically increases the number of synapses made onto PNs by individual CCKBCs without altering synaptic properties. Additionally, we find that sensory experience-driven NPAS4 expression enhances depolarization-induced suppression of inhibition (DSI), a short-term form of cannabinoid-mediated plasticity expressed at CCKBC synapses. Our results indicate that CCKBC inputs are a major target of the NPAS4-dependent transcriptional program in PNs and that NPAS4 is an important regulator of plasticity mediated by endogenous cannabinoids.
Collapse
Affiliation(s)
- Andrea L Hartzell
- Neuroscience Graduate Program, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States.,Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Kelly M Martyniuk
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - G Stefano Brigidi
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Daniel A Heinz
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States.,Biological Sciences Graduate Program, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Nathalie A Djaja
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Anja Payne
- Neuroscience Graduate Program, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States.,Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Brenda L Bloodgood
- Neuroscience Graduate Program, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States.,Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| |
Collapse
|
23
|
Pietrelli A, Matković L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A. Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats. Neurobiol Learn Mem 2018; 155:528-542. [PMID: 29800645 DOI: 10.1016/j.nlm.2018.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
Abstract
Aerobic exercise (AE) benefits brain health and behavior. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known to mediate and shape cognitive processes. Both systems share some actions: BDNF is involved in the maturation and function of 5-HT neurons. In turn, 5-HT is involved in neuroplasticity phenomena mediated by BDNF and stimulated by exercise. The aim of this work was to study the long-term effects of AE on BDNF- 5-HT systems and cognitive function in rats at different ages. A lifelong moderate-intensity aerobic training program was designed, in which aerobically exercised (E) and sedentary control (C) rats were studied at middle (8 months) and old age (18 months) by means of biochemical, immunohistochemical and behavioral assays. The levels and expression of BDNF, 5-HT, serotonin transporter (SERT) and 5-HT1A receptor were determined in selected brain areas involved in memory and learning. Immunopositive cells to neuronal nuclear protein (NeuN) in the hippocampus CA1 area were also quantified. The cognitive function was evaluated by the object recognition test (ORT). Results indicate that AE enhanced spatial and non-spatial memory systems, modulated by age. This outcome temporarily correlated with a significant upregulation of cortical, hippocampal and striatal BDNF levels in parallel with an increase in the number of hippocampal CA1-mature neurons. AE also increased brain and raphe 5-HT levels, as well as the expression of SERT and 5-HT1A receptor in the cortex and hippocampus. Old AE rats showed a highly conserved response, indicating a remarkable protective effect of exercise on both systems. In summary, lifelong AE positively affects BDNF-5-HT systems, improves cognitive function and protects the brain against the deleterious effects of sedentary life and aging.
Collapse
Affiliation(s)
- A Pietrelli
- Universidad de Ciencias Empresariales y Sociales (UCES), Departamento de Investigación en Ciencia Básica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina.
| | - L Matković
- Universidad de Ciencias Empresariales y Sociales (UCES), Departamento de Investigación en Ciencia Básica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - M Vacotto
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina
| | - J J Lopez-Costa
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Buenos Aires, Argentina
| | - N Basso
- CONICET-Universidad de Buenos Aires, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires, Argentina
| | - A Brusco
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Buenos Aires, Argentina
| |
Collapse
|
24
|
Duncan KD, Schlichting ML. Hippocampal representations as a function of time, subregion, and brain state. Neurobiol Learn Mem 2018. [PMID: 29535044 DOI: 10.1016/j.nlm.2018.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How does the hippocampus represent interrelated experiences in memory? We review prominent yet seemingly contradictory theoretical perspectives, which propose that the hippocampus distorts experiential representations to either emphasize their distinctiveness or highlight common elements. These fundamentally different kinds of memory representations may be instantiated in the brain via conjunctive separated codes and adaptively differentiated codes on the one hand, or integrated relational codes on the other. After reviewing empirical support for these different coding schemes within the hippocampus, we outline two organizing principles which may explain the conflicting findings in the literature. First focusing on where the memories are formed and stored, we argue that distinct hippocampal regions represent experiences at multiple levels of abstraction and may transmit them to distinct cortical networks. Then focusing on when memories are formed, we identify several factors that can open and maintain specialized time windows, during which the very same hippocampal network is biased toward one coding scheme over the others. Specifically, we discuss evidence for (1) excitability-mediated integration windows, maintained by persistently elevated CREB levels following encoding of a specific memory, (2) fleeting cholinergically-mediated windows favoring memory separation, and (3) sustained dopaminergically-mediated windows favoring memory integration. By presenting a broad overview of different hippocampal coding schemes across species, we hope to inspire future empirical and modeling research to consider how factors surrounding memory formation shape the representations in which they are stored.
Collapse
Affiliation(s)
- Katherine D Duncan
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada.
| | | |
Collapse
|
25
|
Abstract
The discovery of place cells provided fundamental insight into the neural basis by which the hippocampus encodes spatial memories and supports navigation and prompted the development of computational models to explain the emergence of their spatial selectively. Many such works posit that input from entorhinal grid cells is critical to the formation of place fields, a prediction that has received mixed experimental support. Potentially reconciling seemingly conflicting findings is recent work indicating that subpopulations of pyramidal neurons are functionally distinct and may be driven to varying degrees by different inputs. Additionally, new studies have demonstrated that hippocampal principal neurons encode a myriad of features extending beyond current position. Here, we highlight recent evidence for how extensive heterogeneity in connectivity and genetic expression could interact with membrane biophysics to enable place cells to encode a diverse range of stimuli. These recent findings highlight the need for more computational models that integrate these heterogeneous features of hippocampal principal neurons.
Collapse
Affiliation(s)
- Caitlin S Mallory
- Department of Neurobiology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, United States
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, United States.
| |
Collapse
|
26
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
27
|
McKiernan EC, Marrone DF. CA1 pyramidal cells have diverse biophysical properties, affected by development, experience, and aging. PeerJ 2017; 5:e3836. [PMID: 28948109 PMCID: PMC5609525 DOI: 10.7717/peerj.3836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/31/2017] [Indexed: 12/04/2022] Open
Abstract
Neuron types (e.g., pyramidal cells) within one area of the brain are often considered homogeneous, despite variability in their biophysical properties. Here we review literature demonstrating variability in the electrical activity of CA1 hippocampal pyramidal cells (PCs), including responses to somatic current injection, synaptic stimulation, and spontaneous network-related activity. In addition, we describe how responses of CA1 PCs vary with development, experience, and aging, and some of the underlying ionic currents responsible. Finally, we suggest directions that may be the most impactful in expanding this knowledge, including the use of text and data mining to systematically study cellular heterogeneity in more depth; dynamical systems theory to understand and potentially classify neuron firing patterns; and mathematical modeling to study the interaction between cellular properties and network output. Our goals are to provide a synthesis of the literature for experimentalists studying CA1 PCs, to give theorists an idea of the rich diversity of behaviors models may need to reproduce to accurately represent these cells, and to provide suggestions for future research.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada.,McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
28
|
Mizuseki K, Miyawaki H. Hippocampal information processing across sleep/wake cycles. Neurosci Res 2017; 118:30-47. [DOI: 10.1016/j.neures.2017.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
|