1
|
Liu C, Liu WH, Yang W, Chen L, Xue Y, Chen XY. GLP-1 modulated the firing activity of nigral dopaminergic neurons in both normal and parkinsonian mice. Neuropharmacology 2024; 252:109946. [PMID: 38599494 DOI: 10.1016/j.neuropharm.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.
Collapse
Affiliation(s)
- Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China; Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Hong Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wu Yang
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Dadgar-Kiani E, Bieri G, Melki R, Hossain A, Gitler AD, Lee JH. Neuromodulation modifies α-synuclein spreading dynamics in vivo and the pattern is predicted by changes in whole-brain function. Brain Stimul 2024; 17:938-946. [PMID: 39096960 PMCID: PMC11416857 DOI: 10.1016/j.brs.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Many neurodegenerative disease treatments, such as deep brain stimulation for Parkinson's Disease, can alleviate symptoms by primarily compensating for circuit dysfunctions. However, the stimulation's effect on the underlying disease progression remains relatively unknown. Here, we report that neuromodulation can not only modulate circuit function but also modulate the in vivo spreading dynamics of α-synuclein pathology, the primary pathological hallmark observed in Parkinson's Disease. METHODS In a mouse model, pre-formed fibrils were injected into the striatum to induce widespread α-synuclein pathology. Two days after fibril injection, mice were treated for two weeks with daily optogenetic stimulation of the Secondary Motor Area, Layer V. Whole brains were then extracted, immunolabeled, cleared, and imaged with light-sheet fluorescent microscopy. RESULTS Repeated optogenetic stimulation led to a decrease in pathology at the site of stimulation and at various cortical and subcortical regions, while the contralateral cortex saw a consistent increase. Aligning the pathology changes with optogenetic-fMRI measured brain activity, we found that the changes in pathology and brain function had similar spatial locations but opposite polarity. CONCLUSION These results demonstrate the ability to modulate and predict whole brain pathology changes using neuromodulation, opening a new horizon for investigating optimized neuromodulation therapies.
Collapse
Affiliation(s)
- Ehsan Dadgar-Kiani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Gregor Bieri
- Department of Genetics, Stanford University, CA, 94305, USA
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Aronee Hossain
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University, CA, 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, CA, 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Qi C, Qian C, Steijvers E, Colvin RA, Lee D. Single dopaminergic neuron DAN-c1 in Drosophila larval brain mediates aversive olfactory learning through D2-like receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575767. [PMID: 38293177 PMCID: PMC10827047 DOI: 10.1101/2024.01.15.575767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The intricate relationship between the dopaminergic system and olfactory associative learning in Drosophila has been an intense scientific inquiry. Leveraging the formidable genetic tools, we conducted a screening of 57 dopaminergic drivers, leading to the discovery of DAN-c1 driver, uniquely targeting the single dopaminergic neuron (DAN) in each brain hemisphere. While the involvement of excitatory D1-like receptors is well-established, the role of D2-like receptors (D2Rs) remains underexplored. Our investigation reveals the expression of D2Rs in both DANs and the mushroom body (MB) of third instar larval brains. Silencing D2Rs in DAN-c1 via microRNA disrupts aversive learning, further supported by optogenetic activation of DAN-c1 during training, affirming the inhibitory role of D2R autoreceptor. Intriguingly, D2R knockdown in the MB impairs both appetitive and aversive learning. These findings elucidate the distinct contributions of D2Rs in diverse brain structures, providing novel insights into the molecular mechanisms governing associative learning in Drosophila larvae.
Collapse
Affiliation(s)
- Cheng Qi
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | | | | - Robert A. Colvin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
Ishola IO, Oloyo AK, Olubodun-Obadun TG, Godswill OD, Omilabu SA, Adeyemi OO. Neuroprotective potential of plant derived parenchymal stem cells extract on environmental and genetic models of Parkinson disease through attenuation of oxidative stress and neuroinflammation. Metab Brain Dis 2023; 38:557-571. [PMID: 36401682 DOI: 10.1007/s11011-022-01120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/30/2022] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor and non-motor features. The current treatment regimen for PD are dopamine enhancers which have been reported to worsen the disease prognosis after long term treatment, thus, the need for better treatment options. This study sought to investigate the protective action of Double Stem Cell® (DSC), a blend of stem cells extracts from Swiss apples (Malus Domestica) and Burgundy grapes (Vitis vinifera) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism in mice and genetic model of PD in Drosophila melanogaster. Male albino mice were pretreated with MPTP (4 × 20 mg/kg, i.p., two hourly in 8 h), twelve hours before administration of DSC (8, 40, or 200 mg/kg, p.o.). Thereafter, behavioural, biochemical and immunohistochemical assays were carried out. The impact of vehicle or DSC supplementation on α-synuclein aggregation was evaluated in Drosophila melanogaster using the UAS-Gal4 system, female DDC-Gal4 flies were crossed with male UAS-α-synuclein, the progenies were examined for fecundity, locomotion, memory, and lifespan. MPTP-induced motor deficits in open field test (OFT), working memory impairment (Y-maze test (YMT)) and muscle incoordination (rotarod test) were ameliorated by DSC (8, 40 or 200 mg/kg) through dose-dependent and significant improvements in motor, cognitive and motor coordination. Moreso, MPTP exposure caused significant increase in lipid peroxidation and decrease in antioxidant enzymes activities (glutathione, catalase and superoxide dismutase) in the midbrain which were attenuated by DSC. MPTP-induced expression of microglia (iba-1), astrocytes (glia fibrillary acidic protein; GFAP) as well as degeneration of dopamine neurons (tyrosine hydroxylase positive neurons) in the substantia nigra (SN) were reversed by DSC. Supplementation of flies feed with graded concentration of DSC (0.8, 4 or 20 mg/ml) did not affect fecundity but improved climbing activity and lifespan. Findings from this study showed that Double Stem Cell improved motor and cognitive functions in both mice and Drosophila through attenuation of neurotoxin-induced oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- I O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria.
| | - A K Oloyo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - T G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - O D Godswill
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - S A Omilabu
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - O O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
5
|
Chen XY, Liu C, Xue Y, Chen L. Changed firing activity of nigra dopaminergic neurons in Parkinson's disease. Neurochem Int 2023; 162:105465. [PMID: 36563966 DOI: 10.1016/j.neuint.2022.105465] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disease which is characterized by selective degeneration of dopaminergic neurons in the substantia nigra pars compacta. The intrinsic neuronal firing activity is critical for the functional organization of brain and the specific deficits of neuronal firing activity may be associated with different brain disorders. It is known that the surviving nigra dopaminergic neurons exhibit altered firing activity, such as decreased spontaneous firing frequency, reduced number of firing neurons and increased burst firing in Parkinson's disease. Several ionic mechanisms are involved in changed firing activity of dopaminergic neurons under parkinsonian state. In this review, we summarize the changes of spontaneous firing activity as well as the possible mechanisms of nigra dopaminergic neurons in Parkinson's disease. This review may let us clearly understand the involvement of neuronal firing activity of nigra dopaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Neuropeptide apelin presented in the dopaminergic neurons modulates the neuronal excitability in the substantia nigra pars compacta. Neuropharmacology 2022; 219:109235. [PMID: 36041497 DOI: 10.1016/j.neuropharm.2022.109235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
The dopaminergic neurons in the substantia nigra pars compacta are characterized by autonomous pacemaking activity. The spontaneous firing activity of nigral dopaminergic neurons plays an important role in physiological function and is essential for their survival. Importantly, the spontaneous firing activity may also be involved in the preferential vulnerability of the nigral dopaminergic neurons in Parkinson's disease (PD). The neuropeptide apelin was reported to exert neuroprotective effects in neurodegenerative diseases, including PD. And it was noticed that apelin modulates neuronal activity in some brain regions. The present study investigated the electrophysiological and behavioral effects of apelin in the substantia nigra. Double-labeling immunofluorescence showed that apelin was present in nigral dopaminergic neurons and that these neurons expressed apelin receptor APJ. Further single unit in vivo electrophysiological recordings revealed that endogenous apelin tonically increased the firing rate of nigral dopaminergic neurons in both normal and parkinsonian animals. Exogenous apelin-13 exerted excitatory effects on the majority of nigral dopaminergic neurons, yet reduced excitability in a subset of neurons. In addition, nigral application of apelin-13 increased motor activity in normal rats and blocking endogenous apelin reduced motor activity. Considering the involvement of the spontaneous firing activity of nigral dopaminergic neurons in the development of PD and the possibility that apelin acts in an autocrine manner on apelin receptors expressed by nigral dopaminergic neurons, the modulation of the spontaneous firing activity of nigral dopaminergic neurons by apelin may serve as a neuroprotective factor in PD.
Collapse
|
7
|
Chen XY, Chen L, Yang W, Xie AM. GLP-1 Suppresses Feeding Behaviors and Modulates Neuronal Electrophysiological Properties in Multiple Brain Regions. Front Mol Neurosci 2022; 14:793004. [PMID: 34975402 PMCID: PMC8718614 DOI: 10.3389/fnmol.2021.793004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) plays important roles in the regulation of food intake and energy metabolism. Peripheral or central GLP-1 suppresses food intake and reduces body weight. The electrophysiological properties of neurons in the mammalian central nervous system reflect the neuronal excitability and the functional organization of the brain. Recent studies focus on elucidating GLP-1-induced suppression of feeding behaviors and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that activation of GLP-1 receptor (GLP-1R) suppresses food intake and induces postsynaptic depolarization of membrane potential and/or presynaptic modulation of glutamatergic or GABAergic neurotransmission in brain nuclei located within the medulla oblongata, pons, mesencephalon, diencephalon, and telencephalon. This review may provide a background to guide future research about the cellular mechanisms of GLP-1-induced feeding inhibition.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wu Yang
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
9
|
Bian K, Liu C, Wang Y, Xue Y, Chen L. Orexin-B exerts excitatory effects on nigral dopaminergic neurons and alleviates motor disorders in MPTP parkinsonian mice. Neurosci Lett 2021; 765:136291. [PMID: 34666119 DOI: 10.1016/j.neulet.2021.136291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The study aimed to investigate the effects of orexin-B in Parkinson's disease. The present study showed that orexin-B exerted marked excitatory effects via orexin-2 receptor on the nigral dopaminergic neurons in MPTP parkinsonian mice, while blocking orexin-2 receptor decreased the firing rate of dopaminergic neurons significantly. Furthermore, intracerebroventricular application of orexin-B relieved the degeneration of dopaminergic neurons, increased the general spontaneous activity and alleviated motor coordination in MPTP parkinsonian mice. The present study suggests that orexin-B could exert protective effects on dopaminergic neurons and improve motor disorders in parkinsonian mice. Such protective effects of orexin-B on Parkinson's disease may be partially attributed to the excitatory effects on the nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Kang Bian
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Ismael S, Sindi G, Colvin RA, Lee D. Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture. J Biol Chem 2021; 297:101108. [PMID: 34473990 PMCID: PMC8455371 DOI: 10.1016/j.jbc.2021.101108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer's disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary. In this study, Drosophila neurons in primary culture expressing human tau (hTau) were used to study activity-dependent tau release. We found that hTau release was markedly increased by 50 mM KCl treatment for 1 h. A similar level of release was observed using optogenetic techniques, where genetically targeted neurons were stimulated for 30 min using blue light (470 nm). Our results showed that activity-dependent release of phosphoresistant hTauS11A was reduced when compared with wildtype hTau. In contrast, release of phosphomimetic hTauE14 was increased upon activation. We found that released hTau was phosphorylated in its proline-rich and C-terminal domains using phosphorylation site-specific tau antibodies (e.g., AT8). Fold changes in detectable levels of total or phosphorylated hTau in cell lysates or following immunopurification from conditioned media were consistent with preferential release of phosphorylated hTau after light stimulation. This study establishes an excellent model to investigate the mechanism of activity-dependent hTau release and to better understand the role of phosphorylated tau release in the pathogenesis of AD since it relates to alterations in the early stage of neurodegeneration associated with increased neuronal activity.
Collapse
Affiliation(s)
- Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ghadir Sindi
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Robert A Colvin
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
11
|
Novel Approaches Used to Examine and Control Neurogenesis in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22179608. [PMID: 34502516 PMCID: PMC8431772 DOI: 10.3390/ijms22179608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease.
Collapse
|
12
|
Keshmiri Neghab H, Soheilifar MH, Grusch M, Ortega MM, Esmaeeli Djavid G, Saboury AA, Goliaei B. The state of the art of biomedical applications of optogenetics. Lasers Surg Med 2021; 54:202-216. [PMID: 34363230 DOI: 10.1002/lsm.23463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Optogenetics has opened new insights into biomedical research with the ability to manipulate and control cellular activity using light in combination with genetically engineered photosensitive proteins. By stimulating with light, this method provides high spatiotemporal and high specificity resolution, which is in contrast to conventional pharmacological or electrical stimulation. Optogenetics was initially introduced to control neural activities but was gradually extended to other biomedical fields. STUDY DESIGN In this paper, firstly, we summarize the current optogenetic tools stimulated by different light sources, including lasers, light-emitting diodes, and laser diodes. Second, we outline the variety of biomedical applications of optogenetics not only for neuronal circuits but also for various kinds of cells and tissues from cardiomyocytes to ganglion cells. Furthermore, we highlight the potential of this technique for treating neurological disorders, cardiac arrhythmia, visual impairment, hearing loss, and urinary bladder diseases as well as clarify the mechanisms underlying cancer progression and control of stem cell differentiation. CONCLUSION We sought to summarize the various types of promising applications of optogenetics to treat a broad spectrum of disorders. It is conceivable to expect that optogenetics profits a growing number of patients suffering from a range of different diseases in the near future.
Collapse
Affiliation(s)
- Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Fan CH, Wei KC, Chiu NH, Liao EC, Wang HC, Wu RY, Ho YJ, Chan HL, Wang TSA, Huang YZ, Hsieh TH, Lin CH, Lin YC, Yeh CK. Sonogenetic-Based Neuromodulation for the Amelioration of Parkinson's Disease. NANO LETTERS 2021; 21:5967-5976. [PMID: 34264082 DOI: 10.1021/acs.nanolett.1c00886] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sonogenetics is a promising strategy allowing the noninvasive and selective activation of targeted neurons in deep brain regions; nevertheless, its therapeutic outcome for neurodegeneration diseases that need long-term treatment remains to be verified. We previously enhanced the ultrasound (US) sensitivity of targeted cells by genetic modification with an engineered auditory-sensing protein, mPrestin (N7T, N308S). In this study, we expressed mPrestin in the dopaminergic neurons of the substantia nigra in Parkinson's disease (PD) mice and used 0.5 MHz US for repeated and localized brain stimulation. The mPrestin expression in dopaminergic neurons persisted for at least 56 days after a single shot of adeno-associated virus, suggesting that the period of expression was long enough for US treatment in mice. Compared to untreated mice, US stimulation ameliorated the dopaminergic neurodegeneration 10-fold and mitigated the PD symptoms of the mice 4-fold, suggesting that this sonogenetic strategy has the clinical potential to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Kuo-Chen Wei
- New Taipei Municipal TuCheng Hospital, New Taipei City 236017, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 33305, Taiwan
| | | | | | | | - Ruo-Yu Wu
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan
| | | | | | | | | | | | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 106319, Taiwan
| | | | | |
Collapse
|
14
|
Abstract
Bio-photonic devices that utilize the interaction between light and biological substances have been emerging as an important tool for clinical diagnosis and/or therapy. At the same time, implanted biodegradable photonic devices can be disintegrated and resorbed after a predefined operational period, thus avoiding the risk and cost associated with the secondary surgical extraction. In this paper, the recent progress on biodegradable photonics is reviewed, with a focus on material strategies, device architectures and their biomedical applications. We begin with a brief introduction of biodegradable photonics, followed by the material strategies for constructing biodegradable photonic devices. Then, various types of biodegradable photonic devices with different functionalities are described. After that, several demonstration examples for applications in intracranial pressure monitoring, biochemical sensing and drug delivery are presented, revealing the great potential of biodegradable photonics in the monitoring of human health status and the treatment of human diseases. We then conclude with the summary of this field, as well as current challenges and possible future directions.
Collapse
|
15
|
Serotonin receptor 5-HT7 in Drosophila mushroom body neurons mediates larval appetitive olfactory learning. Sci Rep 2020; 10:21267. [PMID: 33277559 PMCID: PMC7718245 DOI: 10.1038/s41598-020-77910-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022] Open
Abstract
Serotonin (5-HT) and dopamine are critical neuromodulators known to regulate a range of behaviors in invertebrates and mammals, such as learning and memory. Effects of both serotonin and dopamine are mediated largely through their downstream G-protein coupled receptors through cAMP-PKA signaling. While the role of dopamine in olfactory learning in Drosophila is well described, the function of serotonin and its downstream receptors on Drosophila olfactory learning remain largely unexplored. In this study we show that the output of serotonergic neurons, possibly through points of synaptic contacts on the mushroom body (MB), is essential for training during olfactory associative learning in Drosophila larvae. Additionally, we demonstrate that the regulation of olfactory associative learning by serotonin is mediated by its downstream receptor (d5-HT7) in a cAMP-dependent manner. We show that d5-HT7 expression specifically in the MB, an anatomical structure essential for olfactory learning in Drosophila, is critical for olfactory associative learning. Importantly our work shows that spatio-temporal restriction of d5-HT7 expression to the MB is sufficient to rescue olfactory learning deficits in a d5-HT7 null larvae. In summary, our results establish a critical, and previously unknown, role of d5-HT7 in olfactory learning.
Collapse
|
16
|
Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. SENSORS 2020; 20:s20143981. [PMID: 32709072 PMCID: PMC7411870 DOI: 10.3390/s20143981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Optical waveguides and integrated optical devices are promising solutions for many applications, such as medical diagnosis, health monitoring and light therapies. Despite the many existing reviews focusing on the materials that these devices are made from, a systematic review that relates these devices to the various materials, fabrication processes, sensing methods and medical applications is still seldom seen. This work is intended to link these multidisciplinary fields, and to provide a comprehensive review of the recent advances of these devices. Firstly, the optical and mechanical properties of optical waveguides based on glass, polymers and heterogeneous materials and fabricated via various processes are thoroughly discussed, together with their applications for medical purposes. Then, the fabrication processes and medical implementations of integrated passive and active optical devices with sensing modules are introduced, which can be used in many medical fields such as drug delivery and cardiovascular healthcare. Thirdly, wearable optical sensing devices based on light sensing methods such as colorimetry, fluorescence and luminescence are discussed. Additionally, the wearable optical devices for light therapies are introduced. The review concludes with a comprehensive summary of these optical devices, in terms of their forms, materials, light sources and applications.
Collapse
|
17
|
Heo JY, Nam MH, Yoon HH, Kim J, Hwang YJ, Won W, Woo DH, Lee JA, Park HJ, Jo S, Lee MJ, Kim S, Shim JE, Jang DP, Kim KI, Huh SH, Jeong JY, Kowall NW, Lee J, Im H, Park JH, Jang BK, Park KD, Lee HJ, Shin H, Cho IJ, Hwang EM, Kim Y, Kim HY, Oh SJ, Lee SE, Paek SH, Yoon JH, Jin BK, Kweon GR, Shim I, Hwang O, Ryu H, Jeon SR, Lee CJ. Aberrant Tonic Inhibition of Dopaminergic Neuronal Activity Causes Motor Symptoms in Animal Models of Parkinson's Disease. Curr Biol 2020; 30:276-291.e9. [PMID: 31928877 DOI: 10.1016/j.cub.2019.11.079] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/19/2019] [Accepted: 11/26/2019] [Indexed: 01/12/2023]
Abstract
Current pharmacological treatments for Parkinson's disease (PD) are focused on symptomatic relief, but not on disease modification, based on the strong belief that PD is caused by irreversible dopaminergic neuronal death. Thus, the concept of the presence of dormant dopaminergic neurons and its possibility as the disease-modifying therapeutic target against PD have not been explored. Here we show that optogenetic activation of substantia nigra pars compacta (SNpc) neurons alleviates parkinsonism in acute PD animal models by recovering tyrosine hydroxylase (TH) from the TH-negative dormant dopaminergic neurons, some of which still express DOPA decarboxylase (DDC). The TH loss depends on reduced dopaminergic neuronal firing under aberrant tonic inhibition, which is attributed to excessive astrocytic GABA. Blocking the astrocytic GABA synthesis recapitulates the therapeutic effect of optogenetic activation. Consistently, SNpc of postmortem PD patients shows a significant population of TH-negative/DDC-positive dormant neurons surrounded by numerous GABA-positive astrocytes. We propose that disinhibiting dormant dopaminergic neurons by blocking excessive astrocytic GABA could be an effective therapeutic strategy against PD.
Collapse
Affiliation(s)
- Jun Young Heo
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Min-Ho Nam
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jeongyeon Kim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Yu Jin Hwang
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Woojin Won
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; KU-KIST Graduate School of Converging Science of Technology, Korea University, Seoul 02841, Korea
| | - Dong Ho Woo
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Ji Ae Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyun-Jung Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seonmi Jo
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Min Joung Lee
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sunpil Kim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; KU-KIST Graduate School of Converging Science of Technology, Korea University, Seoul 02841, Korea
| | - Jeong-Eun Shim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Dong-Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Kyoung I Kim
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sue H Huh
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jae Y Jeong
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA 02118, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02132, USA
| | - Junghee Lee
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA 02118, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02132, USA
| | - Hyeonjoo Im
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Jong Hyun Park
- Convergence Research Center for Dementia, KIST, Seoul 02792, Korea
| | - Bo Ko Jang
- Convergence Research Center for Dementia, KIST, Seoul 02792, Korea
| | - Ki Duk Park
- Convergence Research Center for Dementia, KIST, Seoul 02792, Korea
| | - Hyunjoo J Lee
- Center for BioMicrosystems, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, KIST, Seoul 02792, Korea
| | - YoungSoo Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul 02792, Korea; Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, and Integrated Science and Engineering Division, Yonsei University, Incheon 21983, Korea
| | - Hye Yun Kim
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, and Integrated Science and Engineering Division, Yonsei University, Incheon 21983, Korea
| | - Soo-Jin Oh
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Convergence Research Center for Dementia, KIST, Seoul 02792, Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, KIST, Seoul 02792, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Byung K Jin
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Gi Ryang Kweon
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hoon Ryu
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul 02792, Korea; Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA 02118, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02132, USA.
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - C Justin Lee
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; KU-KIST Graduate School of Converging Science of Technology, Korea University, Seoul 02841, Korea; Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea.
| |
Collapse
|
18
|
Wang Z, Gao G, Duan C, Yang H. Progress of immunotherapy of anti-α-synuclein in Parkinson's disease. Biomed Pharmacother 2019; 115:108843. [PMID: 31055236 DOI: 10.1016/j.biopha.2019.108843] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases are characterized by progressive loss of neurons and abnormal protein accumulation, including amyloid (A)β and tau in Alzheimer's disease and Lewy bodies and α-synuclein (α-syn) in Parkinson's disease (PD). Recent evidence suggests that adaptive immunity plays an important role in PD, and that anti-α-syn antibodies can be used as therapy in neurodegenerative diseases; monoclonal antibodies were shown to inhibit α-syn propagation and aggregation in PD models and patients. In this review, we summarize the different pathological states of α-syn, including gene mutations, truncation, phosphorylation, and the high molecular weight form, and describe the specific antibodies that recognize the α-syn monomer or oligomer, some of which have been tested in clinic trials. We also discuss future research directions and potential targets in PD therapy.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Chunli Duan
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
19
|
Liu C, Xue Y, Liu MF, Wang Y, Liu ZR, Diao HL, Chen L. Orexins increase the firing activity of nigral dopaminergic neurons and participate in motor control in rats. J Neurochem 2018; 147:380-394. [DOI: 10.1111/jnc.14568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Cui Liu
- Department of Physiology; Qingdao University; Qingdao China
| | - Yan Xue
- Department of Physiology; Qingdao University; Qingdao China
| | - Mei-Fang Liu
- Department of Physiology; Qingdao University; Qingdao China
| | - Ying Wang
- Department of Physiology; Qingdao University; Qingdao China
| | - Zi-Ran Liu
- Department of Physiology; Qingdao University; Qingdao China
| | - Hui-Ling Diao
- Department of Physiology; Qingdao University; Qingdao China
| | - Lei Chen
- Department of Physiology; Qingdao University; Qingdao China
| |
Collapse
|
20
|
Xu S, Tu S, Gao J, Liu J, Guo Z, Zhang J, Liu X, Liang J, Huang Y, Han M. Protective and restorative effects of the traditional Chinese medicine Jitai tablet against methamphetamine-induced dopaminergic neurotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:76. [PMID: 29475448 PMCID: PMC6389157 DOI: 10.1186/s12906-018-2094-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/16/2018] [Indexed: 01/09/2023]
Abstract
Background Methamphetamine (METH) is a psychostimulant with high abuse liability that affects the monoamine neurotransmitter systems, particularly the dopamine system. Currently there are no effective medications for the treatment of METH abuse to restore METH-induced dopaminergic dysfunction. The Jitai tablet (JTT), a commercial traditional Chinese medicinal preparation, has been shown to modulate the dopaminergic function both in heroin addicts and in morphine-dependent rats. The purpose of this study was to investigate, in a rodent model, whether JTT can protect against METH-induced neurotoxicity, and/or restore METH-damaged dopaminergic function. Methods Immunohistochemical staining and/or autoradiography staining were used to detect tyrosine hydroxylase (TH) expression in the substantia nigra, and to examine the levels of dopamine transporter (DAT), dopamine D2 receptor (D2R) and TH levels in the striatum. Using a stereotyped behavior rating scale, we evaluated the inhibitory effect of JTT on METH-induced behavioral sensitization. Results Repeated METH administration induced obvious stereotyped behavior and neurotoxicity on the dopaminergic system. Pre-treatment with JTT significantly attenuated METH-induced stereotyped responses, and interdicted METH-induced changes in the levels of DAT, D2R and TH expression. Treatment with JTT after METH administration restored DAT, D2R and TH expression to normal levels. Conclusions Our results indicated that JTT protects against METH-induced neurotoxicity and restores the dopaminergic function, and thus might be a potential treatment for the dopaminergic deficits associated with METH abuse.
Collapse
|
21
|
Specification of Physiologic and Disease States by Distinct Proteins and Protein Conformations. Cell 2017; 171:1001-1014. [PMID: 29149602 DOI: 10.1016/j.cell.2017.10.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
Protein conformational states-from intrinsically disordered ensembles to amyloids that underlie the self-templating, infectious properties of prion-like proteins-have attracted much attention. Here, we highlight the diversity, including differences in biophysical properties, that drive distinct biological functions and pathologies among self-templating proteins. Advances in chemical genomics, gene editing, and model systems now permit deconstruction of the complex interplay between these protein states and the host factors that react to them. These methods reveal that conformational switches modulate normal and abnormal information transfer and that intimate relationships exist between the intrinsic function of proteins and the deleterious consequences of their misfolding.
Collapse
|
22
|
Ordaz JD, Wu W, Xu XM. Optogenetics and its application in neural degeneration and regeneration. Neural Regen Res 2017; 12:1197-1209. [PMID: 28966628 PMCID: PMC5607808 DOI: 10.4103/1673-5374.213532] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/30/2022] Open
Abstract
Neural degeneration and regeneration are important topics in neurological diseases. There are limited options for therapeutic interventions in neurological diseases that provide simultaneous spatial and temporal control of neurons. This drawback increases side effects due to non-specific targeting. Optogenetics is a technology that allows precise spatial and temporal control of cells. Therefore, this technique has high potential as a therapeutic strategy for neurological diseases. Even though the application of optogenetics in understanding brain functional organization and complex behaviour states have been elaborated, reviews of its therapeutic potential especially in neurodegeneration and regeneration are still limited. This short review presents representative work in optogenetics in disease models such as spinal cord injury, multiple sclerosis, epilepsy, Alzheimer's disease and Parkinson's disease. It is aimed to provide a broader perspective on optogenetic therapeutic potential in neurodegeneration and neural regeneration.
Collapse
Affiliation(s)
- Josue D. Ordaz
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Fortuna JTS, Gralle M, Beckman D, Neves FS, Diniz LP, Frost PS, Barros-Aragão F, Santos LE, Gonçalves RA, Romão L, Zamberlan DC, Soares FAA, Braga C, Foguel D, Gomes FCA, De Felice FG, Ferreira ST, Clarke JR, Figueiredo CP. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice. Behav Brain Res 2017; 333:150-160. [PMID: 28668282 DOI: 10.1016/j.bbr.2017.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening.
Collapse
Affiliation(s)
- Juliana T S Fortuna
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Matthias Gralle
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda S Neves
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luan P Diniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Paula S Frost
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda Barros-Aragão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luís E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Rafaella A Gonçalves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Campus Xerém, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Daniele C Zamberlan
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Felix A A Soares
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carolina Braga
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Campus Xerém, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | - Cláudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|