1
|
Adeleke MA, Babalola AS, Busari LO, Surakat OA, Rufai AM, Fasasi KA, Adekunle TA, Adeniyi YA, Adeogun A, Olatunde G. Modelling species distribution of Anopheles gambiae s.l. in Osun state using random forest modeling approach. Sci Rep 2025; 15:16524. [PMID: 40360721 PMCID: PMC12075671 DOI: 10.1038/s41598-025-95001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/18/2025] [Indexed: 05/15/2025] Open
Abstract
Malaria continues to be a public health problem in Nigeria. Effective vector control has been acknowledged as one of the major strategies to combat malaria in Nigeria. In order to inform context-specific policies, there is need to understand the species niche/colonization and geographical distribution of local Anopheles mosquitoes in different geographical areas in Nigeria. Therefore, this study was designed to model the distribution of Anopheles gambiae s.l. in Osun State, Nigeria. Immature stages of Anopheles mosquitoes were collected from 17 Local Government Areas (LGAs) of Osun State between 2022 and 2023, resulting in the identification of over 20,000 Anopheline mosquitoes. Of these, 146 breeding sites were identified. Two sibling species of An. gambiae s.l were later confirmed using molecular techniques (An. gambiae s.s. and An. coluzzii) with 99% of the Anopheles being An. coluzzii in all the 17 LGAs. The results were modelled using Random Forest to predict their potentially suitable habitats across the entire state. A total of 23 environmental variables (19 bioclimatic and four topographic) were used in the model, resulting in maps of the potential geographical distribution of dominant vector species under current climatic conditions. The model suggests that members of the Anopheles gambiae s.l. encountered would be found in the three senatorial districts (from high to moderate), with more suitable areas in the central part of the state. Temperature-related climatic conditions seems to be ranked higher in order of variable importance that contributed to the distribution of these species. Mean diurnal range (monthly temperature fluctuation) and temperature of the coldest month seem to be strongly associated with the presence of these species. Our model suggested areas with higher monthly temperature fluctuations in the state (between 9 and 10 °C) to support the breeding of Anopheles species, and they are likely to be abundant in areas with lower temperature during the coldest month (wet season) of the year (between 18 and 19 °C). The results of this study provide a baseline data allowing decision-makers to monitor the distribution of these species and establish a management plan for future mosquito surveillance and control programs in Osun State.
Collapse
Affiliation(s)
- Monsuru A Adeleke
- Department of Animal and Environmental Biology, Osun State University, Osogbo, Nigeria
| | - Ayodele S Babalola
- Department of Public Health and Epidemiology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Lateef O Busari
- Department of Animal and Environmental Biology, Osun State University, Osogbo, Nigeria.
| | - Olabanji A Surakat
- Department of Animal and Environmental Biology, Osun State University, Osogbo, Nigeria
| | - Akinlabi M Rufai
- Department of Animal and Environmental Biology, Osun State University, Osogbo, Nigeria
| | - Kamilu A Fasasi
- Department of Animal and Environmental Biology, Osun State University, Osogbo, Nigeria
| | - Taiwo A Adekunle
- Department of Computer Science, Osun State University, Osogbo, Nigeria
| | - Yasmeen A Adeniyi
- Department of Medical Biostatistics, University of Leicester, Leicester, UK
| | - Adedapo Adeogun
- Department of Public Health and Epidemiology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Ganiyu Olatunde
- Department of Animal and Environmental Biology, Osun State University, Osogbo, Nigeria
| |
Collapse
|
2
|
McCallum F, Mond K, Cheng Q, Furuya-Kanamori L, Auliff A, Kaminiel P. A Health Survey Revealing Prevalence of Vector-Borne Diseases and Tuberculosis in Papua New Guinea Defence Force Personnel and Families. Am J Trop Med Hyg 2023; 109:1086-1094. [PMID: 37748766 PMCID: PMC10622466 DOI: 10.4269/ajtmh.23-0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 09/27/2023] Open
Abstract
The Papua New Guinean Defence Force (PNGDF) and the Australian Defence Force (ADF) work and train closely. Infectious diseases pose a health threat to both forces, but recent knowledge about the risk at military bases in Papua New Guinea is limited. To improve understanding, a collaborative cross-sectional survey was conducted (March-April 2019) at Lombrum Naval base (Manus province) and Moem Army barracks (Wewak, East Sepik province) plus its Vanimo outpost (Sandaun province). Clinical data, venous blood, and sputum were collected from PNGDF personnel (DF) from the three sites, with point-of-care testing conducted for malaria (microscopy and rapid diagnostic test [RDT]), lymphatic filariasis (RDT), glucose-6-phosphate-dehydrogenase (G6PD) deficiency (RDT), tuberculosis (GeneXpert), and hemoglobin level. Finger prick blood collected from family members residing at the Wewak base was tested for malaria and hemoglobin level. Overall, 235 DF and 793 family members completed the survey. Microscopy revealed malaria prevalence as 0.4% Plasmodium falciparum and 3.1% Plasmodium vivax among DF and 3.5% P. falciparum, 14.3% P. vivax, and 0.3% mixed P. falciparum/P. vivax among family members. Among DF, 3.9% were G6PD deficient and none tested positive for tuberculosis or for lymphatic filariasis antigen. Anemia was present in 6.5% of DF and 47.3% of family members, predominantly females. Results suggest ongoing exposure to malaria, particularly P. vivax, at study sites, whereas infections of lymphatic filariasis and tuberculosis were not detected. Survey results will inform the PNGDF and the ADF regarding vector-borne disease risk for future sustainable health and disease control interventions.
Collapse
Affiliation(s)
- Fiona McCallum
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Krond Mond
- Papua New Guinea Defence Force Health Services, Port Moresby, Papua New Guinea
| | - Qin Cheng
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Luis Furuya-Kanamori
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Alyson Auliff
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Peter Kaminiel
- Papua New Guinea Defence Force Health Services, Port Moresby, Papua New Guinea
| |
Collapse
|
3
|
Sekarrini CE, Sumarmi, Bachri S, Taryana D, Giofandi EA. The application of geographic information system for dengue epidemic in Southeast Asia: A review on trends and opportunity. J Public Health Res 2022; 11:22799036221104170. [PMID: 35911430 PMCID: PMC9335475 DOI: 10.1177/22799036221104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
The infectious disease dengue hemorrhagic fever remains an unresolved global problem, with climatic conditions and the location of areas located at the equator more often infected with dengue fever. Various modeling approaches have been employed for the development of a dengue risk map. The geographic information system approach was used as an instrument in applying mathematical algorithms to process field vector data into a preventive objective which is studied, then the application of remote sensing provides spatial-temporal data related to land use/land cover data sources as other variable categories. Map of hotspots for dengue fever cases is used to identify the risk of dengue fever areas by applying various complex methodologies, analysis, and visualization of advanced data are needed for its application in public health. In the last 10 years, the increase in the publication of dengue hemorrhagic fever in Southeast Asia in reputable international journals has increased significantly.
Collapse
Affiliation(s)
- Cipta Estri Sekarrini
- Program Doctoral of Geography Education, Faculty of Social Science, State University of Malang, Malang, East Java, Indonesia
| | - Sumarmi
- Department of Geography Education, Faculty of Social Science, State University of Malang, Malang, East Java, Indonesia
| | - Syamsul Bachri
- Department of Geography Education, Faculty of Social Science, State University of Malang, Malang, East Java, Indonesia
| | - Didik Taryana
- Department of Geography Education, Faculty of Social Science, State University of Malang, Malang, East Java, Indonesia
| | - Eggy Arya Giofandi
- Department of Geography, Faculty of Social Science, State University of Padang, Padang, West Sumatera, Indonesia
| |
Collapse
|
4
|
Seidahmed O, Jamea S, Kurumop S, Timbi D, Makita L, Ahmed M, Freeman T, Pomat W, Hetzel MW. Stratification of malaria incidence in Papua New Guinea (2011-2019): Contribution towards a sub-national control policy. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000747. [PMID: 36962582 PMCID: PMC10022348 DOI: 10.1371/journal.pgph.0000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022]
Abstract
Malaria risk in Papua New Guinea (PNG) is highly heterogeneous, between and within geographical regions, which is operationally challenging for control. To enhance targeting of malaria interventions in PNG, we investigated risk factors and stratified malaria incidence at the level of health facility catchment areas. Catchment areas and populations of 808 health facilities were delineated using a travel-time accessibility approach and linked to reported malaria cases (2011-2019). Zonal statistics tools were used to calculate average altitude and air temperature in catchment areas before they were spatially joined with incidence rates. In addition, empirical Bayesian kriging (EBK) was employed to interpolate incidence risk strata across PNG. Malaria annual incidence rates are, on average, 186.3 per 1000 population in catchment areas up to 600 m, dropped to 98.8 at (800-1400) m, and to 24.1 cases above 1400 m altitude. In areas above the two altitudinal thresholds 600m and 1400m, the average annual temperature drops below 22°C and 17°C, respectively. EBK models show very low- to low-risk strata (<100 cases per 1000) in the Highlands, National Capital District and Bougainville. In contrast, patches of high-risk (>200 per 1000) strata are modelled mainly in Momase and Islands Regions. Besides, strata with moderate risk (100-200) predominate throughout the coastal areas. While 35.7% of the PNG population (estimated 3.33 million in 2019) lives in places at high or moderate risk of malaria, 52.2% (estimated 4.88 million) resides in very low-risk areas. In five provinces, relatively large proportions of populations (> 50%) inhabit high-risk areas: New Ireland, East and West New Britain, Sandaun and Milne Bay. Incidence maps show a contrast in malaria risk between coastal and inland areas influenced by altitude. However, the risk is highly variable in low-lying areas. Malaria interventions should be guided by sub-national risk levels in PNG.
Collapse
Affiliation(s)
- Osama Seidahmed
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
- University of Basel, Basel, Switzerland
| | - Sharon Jamea
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Serah Kurumop
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Diana Timbi
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Leo Makita
- National Department of Health, Port Moresby, Papua New Guinea
| | - Munir Ahmed
- Rotarians Against Malaria, Port Moresby, Papua New Guinea
| | - Tim Freeman
- Rotarians Against Malaria, Port Moresby, Papua New Guinea
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Lim AY, Cheong HK, Chung Y, Sim K, Kim JH. Mosquito abundance in relation to extremely high temperatures in urban and rural areas of Incheon Metropolitan City, South Korea from 2015 to 2020: an observational study. Parasit Vectors 2021; 14:559. [PMID: 34715902 PMCID: PMC8555308 DOI: 10.1186/s13071-021-05071-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite concerns regarding increasingly frequent and intense heat waves due to global warming, there is still a lack of information on the effects of extremely high temperatures on the adult abundance of mosquito species that are known to transmit vector-borne diseases. This study aimed to evaluate the effects of extremely high temperatures on the abundance of mosquitoes by analyzing time series data for temperature and mosquito abundance in Incheon Metropolitan City (IMC), Republic of Korea, for the period from 2015 to 2020. METHODS A generalized linear model with Poisson distribution and overdispersion was used to model the nonlinear association between temperature and mosquito count for the whole study area and for its constituent urban and rural regions. The association parameters were pooled using multivariate meta-regression. The temperature-mosquito abundance curve was estimated from the pooled estimates, and the ambient temperature at which mosquito populations reached maximum abundance (TMA) was estimated using a Monte Carlo simulation method. To quantify the effect of extremely high temperatures on mosquito abundance, we estimated the mosquito abundance ratio (AR) at the 99th temperature percentile (AR99th) against the TMA. RESULTS Culex pipiens was the most common mosquito species (51.7%) in the urban region of the IMC, while mosquitoes of the genus Aedes (Ochlerotatus) were the most common in the rural region (47.8%). Mosquito abundance reached a maximum at 23.5 °C for Cx. pipiens and 26.4 °C for Aedes vexans. Exposure to extremely high temperatures reduced the abundance of Cx. pipiens mosquitoes {AR99th 0.34 [95% confidence interval (CI) 0.21-0.54]} to a greater extent than that of Anopheles spp. [AR99th 0.64 (95% CI 0.40-1.03)]. When stratified by region, Ae. vexans and Ochlerotatus koreicus mosquitoes showed higher TMA and a smaller reduction in abundance at extreme heat in urban Incheon than in Ganghwa, suggesting that urban mosquitoes can thrive at extremely high temperatures as they adapt to urban thermal environments. CONCLUSIONS We confirmed that the temperature-related abundance of the adult mosquitoes was species and location specific. Tailoring measures for mosquito prevention and control according to mosquito species and anticipated extreme temperature conditions would help to improve the effectiveness of mosquito-borne disease control programs.
Collapse
Affiliation(s)
- Ah-Young Lim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Hae-Kwan Cheong
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kisung Sim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
6
|
Evolution of Malaria Incidence in Five Health Districts, in the Context of the Scaling Up of Seasonal Malaria Chemoprevention, 2016 to 2018, in Mali. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020840. [PMID: 33478166 PMCID: PMC7844620 DOI: 10.3390/ijerph18020840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Context: In Mali, malaria transmission is seasonal, exposing children to high morbidity and mortality. A preventative strategy called Seasonal Malaria Chemoprevention (SMC) is being implemented, consisting of the distribution of drugs at monthly intervals for up to 4 months to children between 3 and 59 months of age during the period of the year when malaria is most prevalent. This study aimed to analyze the evolution of the incidence of malaria in the general population of the health districts of Kati, Kadiolo, Sikasso, Yorosso, and Tominian in the context of SMC implementation. Methods: This is a transversal study analyzing the routine malaria data and meteorological data of Nasa Giovanni from 2016 to 2018. General Additive Model (GAM) analysis was performed to investigate the relationship between malaria incidence and meteorological factors. Results: From 2016 to 2018, the evolution of the overall incidence in all the study districts was positively associated with the relative humidity, rainfall, and minimum temperature components. The average monthly incidence and the relative humidity varied according to the health district, and the average temperature and rainfall were similar. A decrease in incidence was observed in children under five years old in 2017 and 2018 compared to 2016. Conclusion: A decrease in the incidence of malaria was observed after the SMC rounds. SMC should be applied at optimal periods.
Collapse
|
7
|
Cissoko M, Sagara I, Sankaré MH, Dieng S, Guindo A, Doumbia Z, Allasseini B, Traore D, Fomba S, Bendiane MK, Landier J, Dessay N, Gaudart J. Geo-Epidemiology of Malaria at the Health Area Level, Dire Health District, Mali, 2013-2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3982. [PMID: 32512740 PMCID: PMC7312793 DOI: 10.3390/ijerph17113982] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022]
Abstract
Background: According to the World Health Organization, there were more than 228 million cases of malaria globally in 2018, with 93% of cases occurring in Africa; in Mali, a 13% increase in the number of cases was observed between 2015 and 2018; this study aimed to evaluate the impact of meteorological and environmental factors on the geo-epidemiology of malaria in the health district of Dire, Mali. Methods: Meteorological and environmental variables were synthesized using principal component analysis and multiple correspondence analysis, the relationship between malaria incidence and synthetic indicators was determined using a multivariate general additive model; hotspots were detected by SaTScan. Results: Malaria incidence showed high inter and intra-annual variability; the period of high transmission lasted from September to February; health areas characterized by proximity to the river, propensity for flooding and high agricultural yield were the most at risk, with an incidence rate ratio of 2.21 with confidence intervals (95% CI: 1.85-2.58); malaria incidence in Dire declined from 120 to 20 cases per 10,000 person-weeks between 2013 and 2017. Conclusion: The identification of areas and periods of high transmission can help improve malaria control strategies.
Collapse
Affiliation(s)
- Mady Cissoko
- Malaria Research and Training Center—Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako 1805, Mali; (I.S.); (A.G.); (J.G.)
- Aix Marseille Université (AMU), Institut national de la santé et de la recherche médicale (INSERM), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France; (S.D.); (M.K.B.); (J.L.)
- Direction Régionale de la Santé de Tombouctou, Tombouctou 59, Mali; (M.H.S.); (Z.D.); (B.A.)
| | - Issaka Sagara
- Malaria Research and Training Center—Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako 1805, Mali; (I.S.); (A.G.); (J.G.)
- Aix Marseille Université (AMU), Institut national de la santé et de la recherche médicale (INSERM), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France; (S.D.); (M.K.B.); (J.L.)
| | - Moussa H. Sankaré
- Direction Régionale de la Santé de Tombouctou, Tombouctou 59, Mali; (M.H.S.); (Z.D.); (B.A.)
| | - Sokhna Dieng
- Aix Marseille Université (AMU), Institut national de la santé et de la recherche médicale (INSERM), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France; (S.D.); (M.K.B.); (J.L.)
| | - Abdoulaye Guindo
- Malaria Research and Training Center—Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako 1805, Mali; (I.S.); (A.G.); (J.G.)
- Mère et Enfant face aux Infections Tropicales (MERIT), IRD, Université Paris 5, 75006 Paris, France
| | - Zoumana Doumbia
- Direction Régionale de la Santé de Tombouctou, Tombouctou 59, Mali; (M.H.S.); (Z.D.); (B.A.)
| | - Balam Allasseini
- Direction Régionale de la Santé de Tombouctou, Tombouctou 59, Mali; (M.H.S.); (Z.D.); (B.A.)
| | - Diahara Traore
- Programme National de la Lutte contre le Paludisme (PNLP Mali), Bamako 233, Mali; (D.T.); (S.F.)
| | - Seydou Fomba
- Programme National de la Lutte contre le Paludisme (PNLP Mali), Bamako 233, Mali; (D.T.); (S.F.)
| | - Marc Karim Bendiane
- Aix Marseille Université (AMU), Institut national de la santé et de la recherche médicale (INSERM), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France; (S.D.); (M.K.B.); (J.L.)
| | - Jordi Landier
- Aix Marseille Université (AMU), Institut national de la santé et de la recherche médicale (INSERM), Institut de Recherche pour le Développement (IRD), 13005 Marseille, France; (S.D.); (M.K.B.); (J.L.)
| | - Nadine Dessay
- ESPACE-DEV, UMR228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), 34093 Montpellier, France;
| | - Jean Gaudart
- Malaria Research and Training Center—Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako 1805, Mali; (I.S.); (A.G.); (J.G.)
- Aix Marseille Université, APHM, INSERM, IRD, SESSTIM, Hop Timone, BioSTIC, Biostatistic & ICT, 13005 Marseille, France
| |
Collapse
|
8
|
Fouque F, Reeder JC. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect Dis Poverty 2019; 8:51. [PMID: 31196187 PMCID: PMC6567422 DOI: 10.1186/s40249-019-0565-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
Background The climate variables that directly influence vector-borne diseases’ ecosystems are mainly temperature and rainfall. This is not only because the vectors bionomics are strongly dependent upon these variables, but also because most of the elements of the systems are impacted, such as the host behavior and development and the pathogen amplification. The impact of the climate changes on the transmission patterns of these diseases is not easily understood, since many confounding factors are acting together. Consequently, knowledge of these impacts is often based on hypothesis derived from mathematical models. Nevertheless, some direct evidences can be found for several vector-borne diseases. Main body Evidences of the impact of climate change are available for malaria, arbovirus diseases such as dengue, and many other parasitic and viral diseases such as Rift Valley Fever, Japanese encephalitis, human African trypanosomiasis and leishmaniasis. The effect of temperature and rainfall change as well as extreme events, were found to be the main cause for outbreaks and are alarming the global community. Among the main driving factors, climate strongly influences the geographical distribution of insect vectors, which is rapidly changing due to climate change. Further, in both models and direct evidences, climate change is seen to be affecting vector-borne diseases more strikingly in fringe of different climatic areas often in the border of transmission zones, which were once free of these diseases with human populations less immune and more receptive. The impact of climate change is also more devastating because of the unpreparedness of Public Health systems to provide adequate response to the events, even when climatic warning is available. Although evidences are strong at the regional and local levels, the studies on impact of climate change on vector-borne diseases and health are producing contradictory results at the global level. Conclusions In this paper we discuss the current state of the results and draw on evidences from malaria, dengue and other vector-borne diseases to illustrate the state of current thinking and outline the need for further research to inform our predictions and response. Electronic supplementary material The online version of this article (10.1186/s40249-019-0565-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florence Fouque
- UNICEF/UNDP/ World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), 20 Avenue Appia, 1211, Geneva 27, Switzerland.
| | - John C Reeder
- UNICEF/UNDP/ World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), 20 Avenue Appia, 1211, Geneva 27, Switzerland
| |
Collapse
|
9
|
Pulford J, Saweri OPM, Jeffery C, Siba PM, Mueller I, Hetzel MW. Does test-based prescription of evidence-based treatment for malaria improve treatment seeking and satisfaction? Findings of repeated cross-sectional surveys in Papua New Guinea. BMJ Glob Health 2018; 3:e000915. [PMID: 30498587 PMCID: PMC6254749 DOI: 10.1136/bmjgh-2018-000915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction The presumptive treatment of febrile illness with antimalarial medication is becoming less common in low-income and middle-income countries as access to reliable diagnostic tests improves. We explore whether the shift towards test-based antimalarial prescription, and the introduction of highly efficacious artemisinin combination therapies (ACTs), reduces critical delays in seeking treatment for febrile illness or increases patient satisfaction. Methods We conducted countrywide repeat, cross-sectional surveys in 118 randomly selected primary healthcare services in Papua New Guinea. The clinical case management of 1765 consecutively presenting febrile patients was observed and exit interviews were completed at discharge. This was done prior to implementation of test-based ACT prescription (2011) and at 12 (2012) and 60 months (2016) postimplementation. We conducted multiple logistic regressions. Treatment response time was dichotomised as <24 hours from symptom onset vs 24+ hours. Satisfaction was dichotomised as a ‘high’ vs ‘low’ rating based on participant response to a visual, 7-point Likert-type scale. Results 62% (322/517) of febrile patients reported seeking treatment within 24 hours of symptom onset in 2011 compared with 53% (230/434) in 2012 and 42% (339/814) in 2016. Adjusted ORs for reporting a treatment response time <24 hours in the postimplementation surveys were 0.77 (95% CI 0.48 to 1.26) and 0.45 (95% CI 0.31 to 0.65), respectively when compared with the preimplementation period. 53% (230/533) of febrile patients reported ‘high’ satisfaction with the service received in 2011 compared with 32% (143/449) in 2012 and 35% (278/803) in 2016. Adjusted ORs for reporting high satisfaction in the postimplementation surveys were 0.52 (95% CI 0.32 to 0.85) and 0.65 (95% CI 0.39 to 1.10), respectively when compared with the preimplementation period. Conclusion Nationwide implementation of test-based ACT prescription in Papua New Guinea has increased the likelihood of critical treatment seeking delays and decreased patient satisfaction with the service received.
Collapse
Affiliation(s)
- Justin Pulford
- International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Olga P M Saweri
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Caroline Jeffery
- International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,University of Melbourne, Melbourne, Australia.,Institut Pasteur, Paris, France
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Hetzel MW, Pulford J, Ura Y, Jamea-Maiasa S, Tandrapah A, Tarongka N, Lorry L, Robinson LJ, Lilley K, Makita L, Siba PM, Mueller I. Insecticide-treated nets and malaria prevalence, Papua New Guinea, 2008-2014. Bull World Health Organ 2017; 95:695-705B. [PMID: 29147042 PMCID: PMC5689189 DOI: 10.2471/blt.16.189902] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Objective To investigate changes in malaria prevalence in Papua New Guinea after the distribution of long-lasting Insecticide-treated nets, starting in 2004, and the introduction of artemisinin-based combination therapy in 2011. Methods Two malaria surveys were conducted in 2010–2011 and 2013–2014. They included 77 and 92 randomly selected villages, respectively. In each village, all members of 30 randomly selected households gave blood samples and were assessed for malaria infection by light microscopy. In addition, data were obtained from a malaria survey performed in 2008–2009. Results The prevalence of malaria below 1600 m in altitude decreased from 11.1% (95% confidence interval, CI: 8.5–14.3) in 2008–2009 to 5.1% (95% CI 3.6–7.4) in 2010–2011 and 0.9% (95% CI 0.6–1.5) in 2013–2014. Prevalence decreased with altitude. Plasmodium falciparum was more common than P. vivax overall, but not everywhere, and initially the prevalence of P. vivax infection decreased more slowly than P. falciparum infection. Malaria infections were clustered in households. In contrast to findings in 2008–2009, no significant association between net use and prevalence was found in the later two surveys. The prevalence of both fever and splenomegaly also decreased but their association with malaria infection became stronger. Conclusion Large-scale insecticide-treated net distribution was associated with an unprecedented decline in malaria prevalence throughout Papua New Guinea, including epidemic-prone highland areas. The decline was accompanied by broader health benefits, such as decreased morbidity. Better clinical management of nonmalarial fever and research into residual malaria transmission are required.
Collapse
Affiliation(s)
- Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, 4002, Switzerland
| | - Justin Pulford
- International Public Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Yangta Ura
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Sharon Jamea-Maiasa
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Anthony Tandrapah
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Nandao Tarongka
- Deceased, formerly, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Lina Lorry
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Leanne J Robinson
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Ken Lilley
- Australian Army Malaria Institute, Enoggera, Australia
| | - Leo Makita
- National Department of Health, Waigani, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
11
|
Cable J, Barber I, Boag B, Ellison AR, Morgan ER, Murray K, Pascoe EL, Sait SM, Wilson AJ, Booth M. Global change, parasite transmission and disease control: lessons from ecology. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160088. [PMID: 28289256 PMCID: PMC5352815 DOI: 10.1098/rstb.2016.0088] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level is critical for sustainable control in humans and livestock. Here we highlight and synthesize evidence regarding potential effects of 'system changes' (both climatic and anthropogenic) on parasite transmission from wild host-parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Joanne Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Iain Barber
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester LE1 7RH, UK
| | - Brian Boag
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Amy R Ellison
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Eric R Morgan
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, UK
| | - Kris Murray
- Grantham Institute - Climate Change and the Environment, Faculty of Natural Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Emily L Pascoe
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Biodiversity and Molecular Ecology, Centre for Research and Innovation, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| | - Steven M Sait
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Anthony J Wilson
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Mark Booth
- School of Medicine, Pharmacy and Health, Durham University, Durham TS17 6BH, UK
| |
Collapse
|
12
|
Aregawi M, Malm KL, Wahjib M, Kofi O, Allotey NK, Yaw PN, Abba-Baffoe W, Segbaya S, Owusu-Antwi F, Kharchi AT, Williams RO, Saalfeld M, Workneh N, Shargie EB, Noor AM, Bart-Plange C. Effect of anti-malarial interventions on trends of malaria cases, hospital admissions and deaths, 2005-2015, Ghana. Malar J 2017; 16:177. [PMID: 28446198 PMCID: PMC5406984 DOI: 10.1186/s12936-017-1828-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/19/2017] [Indexed: 12/03/2022] Open
Abstract
Background Since 2005, the Government of Ghana and its partners, in concerted efforts to control malaria, scaled up the use of artemisinin-based combination therapy (ACT) and insecticide-treated nets (ITNs). Beginning in 2011, a mass campaign of long-lasting insecticidal nets (LLINs) was implemented, targeting all the population. The impact of these interventions on malaria cases, admissions and deaths was assessed using data from district hospitals. Methods Records of malaria cases and deaths and availability of ACT in 88 hospitals, as well as at district level, ITN distribution, and indoor residual spraying were reviewed. Annual proportion of the population potentially protected by ITNs was estimated with the assumption that each LLIN covered 1.8 persons for 3 years. Changes in trends of cases and deaths in 2015 were estimated by segmented log-linear regression, comparing trends in post-scale-up (2011–2015) with that of pre-scale-up (2005–2010) period. Trends of mortality in children under 5 years old from population-based household surveys were also compared with the trends observed in hospitals for the same time period. Results Among all ages, the number of outpatient malaria cases (confirmed and presumed) declined by 57% (95% confidence interval [CI], 47–66%) by first half of 2015 (during the post-scale-up) compared to the pre-scale-up (2005–2010) period. The number of microscopically confirmed cases decreased by 53% (28–69%) while microscopic testing was stable. Test positivity rate (TPR) decreased by 41% (19–57%). The change in malaria admissions was insignificant while malaria deaths fell significantly by 65% (52–75%). In children under 5 years old, total malaria outpatient cases, admissions and deaths decreased by 50% (32–63%), 46% (19–75%) and 70% (49–82%), respectively. The proportion of outpatient malaria cases, admissions and deaths of all-cause conditions in both all ages and children under five also fell significantly by >30%. Similar decreases in the main malaria indicators were observed in the three epidemiological strata (coastal, forest, savannah). All-cause admissions increased significantly in patients covered by the National Health Insurance Scheme (NHIS) compared to the non-insured. The non-malaria cases and non-malaria deaths increased or remained unchanged during the same period. All-cause mortality for children under 5 years old in household surveys, similar to those observed in the hospitals, declined by 43% between 2008 and 2014. Conclusions The data provide compelling evidence of impact following LLIN mass campaigns targeting all ages since 2011, while maintaining other anti-malarial interventions. Malaria cases and deaths decreased by over 50 and 65%, respectively. The declines were stronger in children under five. Test positivity rate in all ages decreased by >40%. The decrease in malaria deaths was against a backdrop of increased admissions owing to free access to hospitalization through the NHIS. The study demonstrated that retrospective health facility-based data minimize reporting biases to assess effect of interventions. Malaria control in Ghana is dependent on sustained coverage of effective interventions and strengthened surveillance is vital to monitor progress of these investments.
Collapse
Affiliation(s)
| | - Keziah L Malm
- National Malaria Control Programme, Ministry of Health, Accra, Ghana
| | - Mohammed Wahjib
- National Malaria Control Programme, Ministry of Health, Accra, Ghana
| | - Osae Kofi
- National Malaria Control Programme, Ministry of Health, Accra, Ghana
| | | | - Peprah Nana Yaw
- National Malaria Control Programme, Ministry of Health, Accra, Ghana
| | | | | | | | - Abderahmane T Kharchi
- World Health Organization, Intercountry Support Team, West Africa, Ouagadougou, Burkina Faso
| | | | - Mark Saalfeld
- The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
| | - Nibretie Workneh
- The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
| | | | | | | |
Collapse
|