1
|
Wu X, Jeong CB, Huang W, Ip JCH, Guo J, Lai KP, Liu W, Mo J. Environmental occurrence, biological effects, and health implications of zinc pyrithione: A review. MARINE POLLUTION BULLETIN 2024; 203:116466. [PMID: 38713926 DOI: 10.1016/j.marpolbul.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Hong E, Gu SM, Kim JM, Yoon KS, Lee JM, Kim YH, Suh SK, Lee D, Eom H, Yun J, Cha HJ. The designer benzodiazepine, flubromazepam, induces reward-enhancing and cardiotoxic effects in rodents. Toxicol Res (Camb) 2022; 11:644-653. [DOI: 10.1093/toxres/tfac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The use of many benzodiazepines is controlled worldwide due to their high likelihood of abuse and potential adverse effects. Flubromazepam—a designer benzodiazepine—is a long-acting gamma-aminobutyric acid subtype A receptor agonist. There is currently a lack of scientific evidence regarding the potential for flubromazepam dependence or other adverse effects. This study aimed to evaluate the dependence potential, and cardiotoxicity via confirmation of the QT and RR intervals which are the factors on the electrical properties of the heart of flubromazepam in rodents. Using a conditioned place preference test, we discovered that mice treated intraperitoneally with flubromazepam (0.1 mg/kg) exhibited a significant preference for the flubromazepam-paired compartment, suggesting a potential for flubromazepam dependence. In addition, we observed several cardiotoxic effects of flubromazepam; 100-μM flubromazepam reduced cell viability, increased RR intervals but not QT intervals in the electrocardiography measurements, and considerably inhibited potassium channels in a human ether-à-go-go-related gene assay. Collectively, these findings suggest that flubromazepam may have adverse effects on psychological and cardiovascular health, laying the foundation for further efforts to list flubromazepam as a controlled substance at both national and international levels.
Collapse
Affiliation(s)
- Eunchong Hong
- College of Pharmacy , Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy , Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jin Mook Kim
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Kyung Sik Yoon
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Jin-Moo Lee
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Soo Kyung Suh
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Dohyun Lee
- Laboratory Animal Center , Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Heejong Eom
- Laboratory Animal Center , Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy , Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Hye Jin Cha
- Deputy Director General for Narcotics Safety Planning , Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| |
Collapse
|
3
|
Yoon KS, Kwack SJ. In vitro and in vivo estrogenic activity of triclosan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:800-809. [PMID: 34193021 DOI: 10.1080/15287394.2021.1944940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is an antibacterial and antifungal agent used in many consumer products and exhibits a chemical structure similar to non-steroidal estrogen, which is known to induce endocrine disruption. Triclosan has been found in human plasma, urine, and breast milk, and the safety of TCS-containing products has been disputed. Although studies attempted to determine the estrogenic activity of TCS, no clear results have emerged. The aim of the present study was to examine estrogenic activity of TCS using an in vitro E-screen assay and an in vivo uterotrophic assay. The in vitro E-screen assay demonstrated that TCS significantly enhanced proliferation of MCF-7 breast cancer cells, although not in a concentration-dependent manner. The in vivo uterotrophic results showed no significant change in the weight of uteri obtained from TCS-administered Sprague-Dawley rats. Further, to understand the estrogenic activity attributed to TCS at the molecular level, gene-expression profiling of uterus samples was performed from both TCS- or estrogen-treated rats and the genes and cellular processes affected by TCS or estrogen were compared. Data demonstrated that both the genes and cellular processes affected by TCS or estrogen were significantly similar, indicating the possibility that TCS-mediated estrogenic activity occurred at the global transcriptome level. In conclusion, in vitro and gene-profiling results suggested that TCS exhibited estrogenic activity.
Collapse
Affiliation(s)
- Kyung Sik Yoon
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon Republic of Korea
| |
Collapse
|
4
|
Yang M, Hu J, Xia M, Wang Y, Tian F, Li W, Sun Y, Zhou Z. Zinc pyrithione induces immobilization of human spermatozoa and suppresses the response of the cAMP/PKA signaling pathway. Eur J Pharm Sci 2019; 137:104984. [PMID: 31276740 DOI: 10.1016/j.ejps.2019.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
Abstract
Zinc pyrithione (ZPT), a zinc coordination complex, is used as an antimicrobial agent. This study investigated the molecular mechanisms underlying ZPT-induced spermatozoa immobilization by examining plasma membrane integrity, mitochondrial dysfunction, and the cAMP/PKA signaling pathway response. ZPT inhibited spermatozoa motility and movement patterns in a concentration-dependent manner. The 100% effective concentration (EC100) and median effective concentration (EC50) at which ZPT-induced spermatozoa immobilization at 20 s were 40 μmol/L and 16.19 μmol/L, respectively. ZPT did not significantly disrupt spermatozoa plasma membranes, but it exerted a strong and significant effect on the depolarization of mitochondria. In addition, ZPT exposure induced intracellular H+ accumulation and Ca2+ dissipation in spermatozoa, accompanied by suppression of the cAMP/PKA signaling pathway. Thus, ZPT induces spermatozoa immobilization without significant plasma membrane injury and so could be a candidate microbicidal spermicide.
Collapse
Affiliation(s)
- Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China.
| | - Yinqiang Sun
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety of Ministry of Education/NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Frew JW, Hawkes JE, Krueger JG. Topical, systemic and biologic therapies in hidradenitis suppurativa: pathogenic insights by examining therapeutic mechanisms. Ther Adv Chronic Dis 2019; 10:2040622319830646. [PMID: 30854183 PMCID: PMC6399757 DOI: 10.1177/2040622319830646] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease of the skin, manifesting in chronic, recurrent painful pustules, nodules, boils and purulent draining abscesses. Our current understanding of the pathogenesis of the disease is incomplete. This review aims to identify available treatment options in HS and discuss the pharmacological mechanisms through which such agents function. Identifying common pathways may inform our understanding of the pathogenesis of HS as well as identify future therapeutic targets. The pharmacological mechanisms implicated in topical therapies, antibiotic, hormonal, systemic immunomodulatory and biologic therapies for HS are discussed. Significant differences exist between agents and implicated pathways in therapy for mild and severe disease. This is an expression of the possible dichotomy in inflammatory pathways (and treatment responses) in HS. Studies involving monoclonal antibodies provide the greatest insight into what these specific mechanisms may be. Their variable levels of clinical efficacy compared with placebo bolsters the suggestion that differential inflammatory pathways may be involved in different presentations and severity of disease. Nuclear factor kappa B (NF-κB), tumor necrosis factor (TNF)-α and other innate immune mechanisms are strongly represented in treatments which are effective in mild to moderate disease in the absence of scarring or draining fistulae, however complex feed-forward mechanisms in severe disease respond to interleukin (IL)-1 inhibition but are less likely to respond to innate immune inhibition (through NF-κB or TNF-α) alone. It is unclear whether IL-17 inhibition will parallel TNF-α or IL-1 inhibition in effect, however it is plausible that small molecule targets (Janus kinase1 and phosphodiesterase 4) may provide effective new strategies for treatment of HS.
Collapse
Affiliation(s)
- John W. Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jason E. Hawkes
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - James G. Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
6
|
Yoon KS, Yun J, Kim YH, Shin J, Kim SJ, Seo JW, Hyun SA, Suh SK, Cha HJ. 2-(2,5-Dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)ethanamine (25D-NBOMe) and N-(2-methoxybenzyl)-2,5-dimethoxy-4-chlorophenethylamine (25C-NBOMe) induce adverse cardiac effects in vitro and in vivo. Toxicol Lett 2019; 304:50-57. [PMID: 30658151 DOI: 10.1016/j.toxlet.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/21/2018] [Accepted: 01/13/2019] [Indexed: 01/08/2023]
Abstract
Two emerging psychoactive substances, 2-(2,5-dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)ethanamine (25D-NBOMe) and N-(2-methoxybenzyl)-2,5-dimethoxy-4-chlorophenethylamine (25C-NBOMe), are being abused, leading to fatal and non-fatal intoxications. However, most of their adverse effects have been reported anecdotally. In the present study, cardiotoxicity was evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, rat electrocardiography (ECG), and human ether-a-go-go-related gene (hERG) assay. Expression levels of p21 (CDC42/RAC)-activated kinase 1 (PAK1), one of known biomarkers for cardiotoxicity, were also analyzed. Both 25D-NBOMe and 25C-NBOMe at 100 μM reduced cell viability in MTT assay. At 2.0 mg/kg and 0.75 mg/kg, they prolonged QT intervals in rat ECG. PAK1 was down-regulated by treatment with these two test compounds. Furthermore, potassium channels were inhibited by 25D-NBOMe treatment in hERG assay. Taken together, these results suggest that both 25D-NBOMe and 25C-NBOMe have potential cardiotoxicity, especially regarding cardiac rhythm. Further studies are needed to confirm the relationship between PAK1 down-regulation and cardiotoxicity.
Collapse
Affiliation(s)
- Kyung Sik Yoon
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Chungju, Republic of Korea.
| | - Young-Hoon Kim
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Jisoon Shin
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Sung Jin Kim
- Cosmetics Policy Division, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Jung-Wook Seo
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, Daejeon, Republic of Korea.
| | - Sung-Ae Hyun
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, Daejeon, Republic of Korea.
| | - Soo Kyung Suh
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Hye Jin Cha
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| |
Collapse
|