1
|
Eghan K, Lee S, Yoo D, Kim WK. 2-Ethylhexanol induces autism-like neurobehavior and neurodevelopmental disorders in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137469. [PMID: 39904159 DOI: 10.1016/j.jhazmat.2025.137469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by impaired social interaction, communication deficits, and repetitive behaviors. The rising prevalence of ASD necessitates intensified research. 2-Ethylhexanol, is a synthetically produced branched-chain alcohol used in plasticizer synthesis. However, its role in ASD-like symptoms and potential neurotoxic effects remains largely unexplored. This study employed a multimodal neurotoxicity testing approach to evaluate the adverse effects of 2-ethylhexanol on zebrafish neurobehavior and neurodevelopment. Wild-type and transgenic zebrafish lines (tg(elavl3: eGFP) and tg(mbp:mGFP)) were exposed to 2-ethylhexanol for 120 hours post-fertilization (hpf). Significant disruptions were observed in early motor activities, such as tail coiling and touch-evoked responses, which aligned with later locomotor impairments, including reduced distance traveled and increased turn angle. These behavioral changes were accompanied by decreased levels of acetylcholinesterase (AChE) and dopamine (DA). Deficits in social behavior (e.g., reduced body contact) were identified, potentially linked to altered transcription of autism-associated genes (adsl, eif4a1, mbd5, vps13b, and tsc1b). Abnormalities in neurogenesis, including reduced brain and spinal cord size, and demyelination of oligodendrocytes and Schwann cells, were evident. Additionally, transcriptional changes related to neurodevelopment (gap43, manf, sox2) and neurotransmitter signaling (drd1, mao, htr1bd) were observed. Our findings provide compelling evidence that 2-ethylhexanol exposure leads to neurodevelopmental impairments and behavioral alterations reminiscent of ASD. This research highlights the importance of further investigations to assess the potential risks of 2-ethylhexanol exposure and develop prevention and mitigation strategies.
Collapse
Affiliation(s)
- Kojo Eghan
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, South Korea.
| | - Sangwoo Lee
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Donggon Yoo
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Woo-Keun Kim
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
2
|
Pereira AR, Gomes IB, Simões M. Parabens alter the surface characteristics and antibiotic susceptibility of drinking water bacteria. CHEMOSPHERE 2024; 368:143704. [PMID: 39515535 DOI: 10.1016/j.chemosphere.2024.143704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Parabens are markedly present in products of daily use, considered emerging environmental contaminants that can harm human health and aquatic life, due to their release into aquatic sources. The impact of the exposure of microbial communities to parabens remains unclear. This study investigates aspects of the mode of action of methylparaben (MP), propylparaben (PP), butylparaben (BP), and MIX at environmental (15 μg/L) and in-use (15000 μg/L) concentrations, against two bacterial strains of Acinetobacter calcoaceticus and Stenotrophomonas maltophilia previously isolated from drinking water (DW). BP showed the strongest antimicrobial activity, while MP exhibited the weakest. The mechanism of action of parabens at the selected concentrations was found to be related to perturbations on physicochemical bacterial cell surface properties and charge, by causing an increase of bacterial cell envelope hydrophilicity and zeta potential values. In addition, parabens may activate osmotic regulation mechanisms as observed by the increase in vacuole area for MP-exposed A. calcoaceticus. The bacterial metabolic activity as well as bacterial size was also affected by parabens exposure. MP exposure further enhanced the biofilm formation ability and increased bacterial tolerance to antibiotics. The results raise environmental implications, particularly concerning water quality and public health, as parabens exposure can potentiate the virulence of DW bacteria, increasing the risk of human exposure to harmful microorganisms.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
3
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
4
|
Barraza J, Cleofas P, Villamil S, García M, López A, Casas E, Salazar Z, Pichardo F, Barajas-Salinas A, Núñez-Macías E, Ramírez Y, Bonilla E, Bahena I, Ortíz-Muñíz R, Cortés-Barberena E, Betancourt M, Casillas F. In vitro exposure of porcine spermatozoa to methylparaben, and propylparaben, alone or in combination adversely affects sperm quality. J Appl Toxicol 2024; 44:1540-1554. [PMID: 38862408 DOI: 10.1002/jat.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Parabens (PBs) are widely used in the cosmetic, pharmaceutical, and food industries as preservatives of products. Because of its great use, humans and other organisms are highly exposed daily. However, little is known about the effect of PBs on male infertility. Therefore, the aim of the present study was to evaluate the effect of methylparaben (MePB) and propylparaben (PrPB), alone or in combination, on the physiological characteristics of pig in vitro exposed sperm to different concentrations (0, 200, 500, and 700 μM) for viability, motility, and acrosome integrity evaluation and (0, 200, 500, 700, 1000, and 2000 μM) for DNA fragmentation index evaluation, after 4 h of exposure. The results showed that sperm viability decreased after exposure to MePB from the concentration of 500 μM. In the PrPB and mixture groups, viability decreased at all concentrations except for the control. The decrease in viability of sperm exposed to PrPB was greater than that of the mixture and MePB groups. Sperm motility decreased in all the experimental groups exposed to PBs, at all concentrations, except for the control group. Acrosome integrity was not decreased in the MePB group; however, in the PrPB group, it decreased at a concentration of 200 μM and in the mixture at 500 μM. All groups exhibited DNA damage at different concentrations, except for the control group. Additionally, the effect of PBs on sperm quality was concentration-dependent. The results demonstrated that MePB and PrPB alone or in combination can have adverse effects on sperm quality parameters. MePB had lower toxicity than did both PrPB and the mixture. The mixture did not have an additive effect on any of the parameters evaluated. This could partially explain the link between PB exposure and infertility.
Collapse
Affiliation(s)
- J Barraza
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
- Master's degree in Animal Reproduction Biology, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - P Cleofas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - S Villamil
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - M García
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - A López
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Casas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - Z Salazar
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - F Pichardo
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - A Barajas-Salinas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Núñez-Macías
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - Y Ramírez
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - E Bonilla
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - I Bahena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - R Ortíz-Muñíz
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Cortés-Barberena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - M Betancourt
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - F Casillas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| |
Collapse
|
5
|
Park C, Jeon H, Kho Y, Ji K. The combined effects of preservative chemicals in consumer products: An analysis using embryonic and adult zebrafish. CHEMOSPHERE 2024; 357:141984. [PMID: 38614392 DOI: 10.1016/j.chemosphere.2024.141984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Benzisothiazolinone (BIT) and propyl paraben (PP) are preservatives in cleaning products; however, their toxicities are not well understood. In this study, zebrafish embryos were exposed to BIT, PP, and mixtures of both for 96 h to investigate the effects on growth hormone (GH), insulin-like growth factor-1 (IGF-1), and the transcription of 19 genes related to the GH/IGFs axis. Concentrations of BIT and PP were measured in the whole body of larvae. Zebrafish pairs were also exposed to BIT, PP, and mixtures for 21 d to evaluate the effects on sex hormones, histology in gonad, and transcription of 22 genes related to the hypothalamus-pituitary-gonad axis and vitellogenin. The mixtures had potentiation effects on development, reproduction, hormones, and gene transcripts than individual exposure. Larvae exposed to 229 μg L-1 BIT, 64.5 μg L-1 PP, and mixtures showed reduced growth. Decreased GH and IGF-1 levels were supported by gene regulation associated with the GH/IGFs axis. In larvae, reactive oxygen species, superoxide dismutase, catalase, and glutathione peroxidase levels were increased under all exposures. The gonadosomatic index in males and number of eggs decreased after mixture exposure. In females exposed to mixtures, the percentage of atretic follicle in ovary was significantly increased. The significant decrease in testosterone in males and significant decrease in 17β-estradiol in females exposed to mixtures suggest anti-estrogenic and anti-androgenic potential. Thus, preservative mixtures in consumer products may be more toxic than the individual substances, which is important for managing the risks of mixing preservatives.
Collapse
Affiliation(s)
- Chaeun Park
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea
| | - Hyeri Jeon
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea; Department of Occupational and Environmental Health, Yongin University, Yongin, 17092, Republic of Korea.
| |
Collapse
|
6
|
Neri I, MacCallum J, Di Lorenzo R, Russo G, Lynen F, Grumetto L. Into the toxicity potential of an array of parabens by biomimetic liquid chromatography, cell viability assessments and in silico predictions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170461. [PMID: 38286290 DOI: 10.1016/j.scitotenv.2024.170461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Five parabens (PBs) i.e., Methylparaben (MP), Ethylparaben (EP), Isopropylparaben (iPrP), Isobutylparaben (iBuP), Benzylparaben (BzP), and their parent compound i.e., para-hydroxy Benzoic Acid (pHBA), were studied both in vitro and in silico. Specifically, we determined their retention on several both protein- (Human Serum Albumin and α1-acidic glycoprotein) and (phospho) lipid- (immobilized artificial membrane (IAM)) based biomimetic stationary phases to evaluate their penetration potential through the biomembranes and their possible distribution in the body. The IAM phases were based either on phosphatidylcholine (PC) analogues i.e., PC.MG and PC.DD2 or on sphingomyelin (SPH). We also assessed their viability effect on breast cancer cells (MCF-7) via MTT assay subjecting the cells to five different PB concentrations i.e., 100 μM, 10 μM, 1 μM, 0.1 μM and 0.01 μM. Finally, their pharmacokinetics and toxicity were assessed by the ADMET Predictor™ software. Isopropylparaben was found to be more active than 17β estradiol (E2) employed as positive control, on the screened cell line inducing cell proliferation up to 150 % more of untreated cells. Other analogues showed only a slight/moderate cell proliferation activity, with parabens having longer/branched side chain showing, on average, a higher proliferation rate. Significant linear direct relationships (for PC.DD2 r2 = 0.89, q2 = 0.86, for SPH r2 = 0.89, q2 = 0.85, for both P value < 0.05) were observed between the difference in proliferative effect between the readout and the control at 0.01 μM concentration and the retention on the IAM phases measured at pH 5.0 for all compounds but pHBA, which is the only analyte of the dataset supporting a carboxylic acid moiety. IAM affinity data measured at pH 7.0 were found to be related to the effective human jejunal permeability as predicted by the software ADMET® Predictor, which is relevant when PBs are added to pharmaceutical and food commodities.
Collapse
Affiliation(s)
- Ilaria Neri
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN Edinburgh, United Kingdom; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy; Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, I-00136 Rome, Italy
| | - Janis MacCallum
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN Edinburgh, United Kingdom
| | - Ritamaria Di Lorenzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN Edinburgh, United Kingdom.
| | - Frédéric Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| |
Collapse
|
7
|
Huo Y, Li M, An Z, Jiang J, Zhou Y, Ma Y, Xie J, Wei F, He M. Effect of pH on UV/H 2O 2-mediated removal of single, mixed and halogenated parabens from water. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132818. [PMID: 37879281 DOI: 10.1016/j.jhazmat.2023.132818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Adjusting pH values in aqueous environments can significantly improve the efficiency by which parabens and halo-parabens are removed. In this study, 20 neutral and deprotonated species were selected as models to investigate their pH-dependent removal mechanisms and kinetics by a UV/H2O2 process using density functional theory (DFT). Compared to neutral species, deprotonated species exhibit higher reactivity to HO• due to their high electron cloud density. H atom abstraction (HAA) reactions on the substitution groups are the most favorable pathways for neutral species, while radical adduct formation (RAF) reactions are the most favorable for deprotonated species. Single electron transfer (SET) reactions can be neglected for neutral species, while these reactions become a viable route for deprotonated molecules. The total reaction rate constants range from 1.63 × 109 to 3.74 × 1010 M- 1 s- 1 at pH 7.0, confirming the experimental results. Neutral and weakly alkaline conditions are favorable for the degradation of MeP and halo-parabens in the UV/H2O2 process. The order of removal efficiency at optimum pH is dihalo-parabens > mono-halo-parabens ≈ F, F-MeP > MeP. Furthermore, the transformation products must undergo oxidative degradation due to their high toxicity. Our findings provide new insights into the removal of parabens and their halogenated derivatives from wastewater.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Fenghua Wei
- Assets and Laboratory Management Office, Shandong University, Qingdao 266237, PR China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
8
|
Pereira AR, Simões M, Gomes IB. Parabens as environmental contaminants of aquatic systems affecting water quality and microbial dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167332. [PMID: 37758132 DOI: 10.1016/j.scitotenv.2023.167332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Among different pollutants of emerging concern, parabens have gained rising interest due to their widespread detection in water sources worldwide. This occurs because parabens are used in personal care products, pharmaceuticals, and food, in which residues are generated and released into aquatic environments. The regulation of the use of parabens varies across different geographic regions, resulting in diverse concentrations observed globally. Concentrations of parabens exceeding 100 μg/L have been found in wastewater treatment plants and surface waters while drinking water (DW) sources typically exhibit concentrations below 6 μg/L. Despite their low levels, the presence of parabens in DW is a potential exposure route for humans, raising concerns for both human health and environmental microbiota. Although a few studies have reported alterations in the functions and characteristics of microbial communities following exposure to emerging contaminants, the impact of the exposure to parabens by microbial communities, particularly biofilm colonizers, remains largely understudied. This review gathers the most recent information on the occurrence of parabens in water sources, as well as their effects on human health and aquatic organisms. The interactions of parabens with microbial communities are reviewed for the first time, filling the knowledge gaps on the effects of paraben exposure on microbial ecosystems and their impact on disinfection tolerance and antimicrobial resistance, with potential implications for public health.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
9
|
Eghan K, Lee S, Kim WK. Cardio- and neuro-toxic effects of four parabens on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115670. [PMID: 37976924 DOI: 10.1016/j.ecoenv.2023.115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Parabens can potentially disrupt the hormonal regulation of energy metabolism, leading to issues related to obesity, metabolic health, and the cardiovascular and nervous systems. However, the health effects of parabens have yielded conflicting research results. The impact of these substances on aquatic organisms, specifically their neuro- and cardio-toxic effects, has been insufficiently investigated. Hence, the primary goal of our research was to investigate and comprehensively assess the neuro- and cardio-toxic effects of four distinct parabens using the Daphnia magna model. After 48 h of exposure to various concentrations (0.1, 1, and 10 mg/L) of four parabens (methyl-, ethyl-, propyl-, and butyl-paraben), along with a solvent control, we conducted a series of physiological tests, behavioral observations, and gene transcription analyses, focusing on cardiomyopathy, serotonin, glutamate, dopamine, GABA, acetylcholine receptors, and ion flux. From a physiological perspective, the heart rate and thoracic limb activity of the exposed daphnids showed substantial time- and dose-dependent inhibitions. Notably, among the parabens tested, butylparaben exhibited the most potent inhibition, with significant alterations in cardiomyopathy-related gene transcription. In the context of neurotoxicity, all the parabens had a significant impact on gene expression, with methylparaben having the most pronounced effect. Additionally, significant changes were observed in parameters such as distance moved, the distance between individuals, and the extent of body contact among the daphnids. In summary, our findings indicate that each paraben has the capacity to induce neurobehavioral and cardiotoxic disorders in Daphnia magna. The effects of butylparaben on the cardiovascular and nervous systems were found to be the most pronounced. These discoveries showed the potential ecological implications of paraben exposure in aquatic ecosystems, particularly regarding the predator avoidance abilities of Daphnia magna.
Collapse
Affiliation(s)
- Kojo Eghan
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
10
|
Tran CM, Ra JS, Rhyu DY, Kim KT. Transcriptome analysis reveals differences in developmental neurotoxicity mechanism of methyl-, ethyl-, and propyl- parabens in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115704. [PMID: 37979356 DOI: 10.1016/j.ecoenv.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Studies on the comparison of developmental (neuro) toxicity of parabens are currently limited, and unharmonized concentrations between phenotypic observations and transcriptome analysis hamper the understanding of their differential molecular mechanisms. Thus, developmental toxicity testing was conducted herein using the commonly used methyl- (MtP), ethyl- (EtP), and propyl-parabens (PrP) in zebrafish embryos. With a benchmark dose of 5%, embryonic-mortality-based point-of-departure (M-POD) values of the three parabens were determined, and changes in locomotor behavior were evaluated at concentrations of 0, M-POD/50, M-POD/10, and M-POD, where transcriptome analysis was conducted to explore the underlying neurotoxicity mechanism. Higher long-chained parabens were more toxic than short-chained parabens, as determined by the M-POD values of 154.1, 72.6, and 24.2 µM for MtP, EtP, and PrP, respectively. Meanwhile, exposure to EtP resulted in hyperactivity, whereas no behavioral effect was observed with MtP and PrP. Transcriptome analysis revealed that abnormal behaviors in the EtP-exposed group were associated with distinctly enriched pathways in signaling, transport, calcium ion binding, and metal binding. In contrast, exposure to MtP and PrP mainly disrupted membranes and transmembranes, which are closely linked to abnormal embryonic development rather than neurobehavioral changes. According to the changes in the expressions of signature mRNAs, tentative transcriptome-based POD values for each paraben were determined as MtP (2.68 µM), EtP (3.85 µM), and PrP (1.4 µM). This suggests that different molecular perturbations initiated at similar concentrations determined the extent and toxicity outcome differently. Our findings provide insight into better understanding the differential developmental neurotoxicity mechanisms of parabens.
Collapse
Affiliation(s)
- Cong Minh Tran
- Department of Energy and Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jin-Sung Ra
- Eco-testing and Risk Assessment Center, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
| | - Dong Young Rhyu
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Energy and Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
11
|
Mumtaz B, Nair A, Mishra P. Toxicity of benzyl paraben on aquatic as well as terrestrial life. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1272-1284. [PMID: 38063998 DOI: 10.1007/s10646-023-02717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
Parabens are derivatives of alkyl esters of p-hydroxybenzoic acid and come in different classes. These compounds are primarily used as antimicrobial preservative agents in many commercial products, including cosmetics and pharmaceuticals. Accordingly, Benzyl paraben (BeP) is known to be a potential endocrine disruptor. The aim of this study was to determine the toxicity of benzyl paraben (BeP) on aquatic and terrestrial organisms, specifically Scenedesmus sp., Moina macrocopa, and Eisenia fetida. All the organisms were treated with different concentrations of BeP (0.025 mg/L and 1000 mg/L), and LC25, LC50, and LC90 values were used to measure the toxicity levels. Results showed the LC values of BeP for M. macrocopa (3.3 mg/L, 4.7 mg/L, 7.3 mg/L) and E. fetida (173.2 mg/L, 479.8 mg/L, 1062 mg/L), respectively. Toxicity tests on green algae (Scenedesmus sp.) were conducted, the green algae were subjected to various BeP concentration. At 50 mg/L of BeP, cell viability was reduced to 56.2% and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay indicated 35.4% viable cells. The chlorophyll value and the biochemical parameters of the algal cells were corroborative with the cell viability test. Lethal indices (LC50) for M. macrocopa and E. fetida were evaluated for their toxicity on biochemical properties and were found to be catalase (0.111 mg/L, 0.5 mg/L), lipid peroxidation (0.072 mg/L, 0.056 mg/L), and total protein (0.309 mg/L, 0.314 mg/L), respectively. Overall, this study demonstrated the toxic impact of BeP on non-target aquatic as well as terrestrial species.
Collapse
Affiliation(s)
- Begum Mumtaz
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - Anju Nair
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India.
| |
Collapse
|
12
|
Valença RM, Moreira RA, Espíndola ELG, Vieira EM. Ethylparaben Toxicity on Cladocerans Daphnia Similis and Ceriodaphnia Silvestrii and Species Sensitivity Analysis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 112:3. [PMID: 38017221 DOI: 10.1007/s00128-023-03832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
Parabens, a group of preservatives with a wide industrial range, threaten human and aquatic biota health due to their toxicity and endocrine disruption potential. As conventional wastewater treatment may not be enough to keep natural environments safe, toxicity studies are useful tools for supporting ecological risk assessments. Here, we focused on assessing ethylparaben's, one of the most common kinds of paraben, toxicity in the cladocerans Daphnia similis and Ceriodaphnia silvestrii. The EC50 sensitivity for D. similis and C. silvestrii was 24 (21-28) mg L- 1 and 25 (19-33) mg L- 1, respectively. Inhibition of reproduction and late development of females were observed in C. silvestrii exposed to 8 mg L- 1. Furthermore, species sensitivity distribution was used to assess ecological risk, and ethylparaben demonstrated low potential risk for aquatic biota.
Collapse
Affiliation(s)
- Rodrigo Maia Valença
- Post Graduate Program of Sciences of Environmental Engineering, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, 9220, Denmark
| | - Raquel Aparecida Moreira
- NEEA/SHS and PPGSEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 560-970, Brazil.
- Institute of Biological Sciences, Federal University of Rio Grande - FURG, Avenida Itália, Km 8, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/SHS and PPGSEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 560-970, Brazil
| | - Eny Maria Vieira
- Post Graduate Program of Sciences of Environmental Engineering, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
13
|
Dailianis S, Vlastos D, Zoppou C, Moschopoulou A, Antonopoulou M. Different isoforms of parabens into marine environment: Biological effects on the bacterium Aliivibrio fischeri and the marine mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165902. [PMID: 37524175 DOI: 10.1016/j.scitotenv.2023.165902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Different isoforms of alkyl esters of p-Hydroxybenzoic acid, also known as parabens, are of great concern due to their widespread presence into the aquatic environment, their high concentrations in wastewater discharges, as well as their ability to induce adverse effects on aquatic organisms. Considering the imperative need for assessing their fate and risk to aquatic environment, the present study investigated the biological effects of two isoforms of parabens, methyl- (MeP) and propyl- (PrP), on the bacterium Aliivibrio fischeri (using the Bioluminescence Inhibition/Microtox® bioassay) and the mussel Mytilus galloprovincialis (in terms of mussel mortality, cellular, oxidative and genotoxic stress indices). The assessment of MeP and PrP behavior into aquatic media (artificial sea water/ASW and 2 % NaCl), primarily performed by UHPLC-UV-MS analysis, showed only a slight hydrolysis of PrP to 4-Hydrobenzoic acid (4-HBA). Furthermore, exposure of both species to different concentrations of each paraben revealed differences among their toxic potential, as well as their ability to cause cellular, oxidative and genotoxic effects on hemocytes of challenged mussels. Interestingly, the Microtox® bioassay showed that PrP mediated toxicity in A. fischeri were more pronounced than MeP, as revealed by the estimated toxic endpoints (in terms of concentration that promote 50 % of bioluminescence inhibition, EC50). Similarly, in challenged mussels, a significant disturbance of mussel hemocytes' lysosomal membrane integrity, as well as enhanced levels of superoxides, nitric oxides, lipid peroxidation byproducts, and micronuclei formation were observed. These findings are of great interest, since MeP and PrP differential toxic potential, as well their ability to induce pre-pathological alterations in marine species, like mussels, give new evidence for their risk to aquatic biota.
Collapse
Affiliation(s)
- Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece.
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Chloe Zoppou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Argyri Moschopoulou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100 Agrinio, Greece
| |
Collapse
|
14
|
Pereira AR, Gomes IB, Simões M. Impact of parabens on drinking water bacteria and their biofilms: The role of exposure time and substrate materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117413. [PMID: 36764214 DOI: 10.1016/j.jenvman.2023.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Parabens have been detected in drinking water (DW) worldwide, however, their impact on DW microbial communities remains to be explored. Microorganisms can easily adapt to environmental changes. Therefore, their exposure to contaminants of emerging concern, particularly parabens, in DW distribution systems (DWDS) may affect the microbiological quality and safety of the DW reaching the consumers tap. This work provides a pioneer evaluation of the effects of methylparaben (MP), propylparaben (PP), butylparaben (BP), and their combination (MIX), in bacterial biofilms formed on different surfaces, representative of DWDS materials - high-density polyethylene (HDPE), polypropylene (PPL) and polyvinyl chloride (PVC). Acinetobacter calcoaceticus and Stenotrophomonas maltophilia, isolated from DW, were used to form single and dual-species biofilms on the surface materials selected. The exposure to MP for 7 days caused the most significant effects on biofilms, by increasing their cellular culturability, density, and thickness up to 233%, 150%, and 224%, respectively, in comparison to non-exposed biofilms. Overall, more pronounced alterations were detected for single biofilms than for dual-species biofilms when HDPE and PPL, demonstrating that the surface material used affected the action of parabens on biofilms. Swimming motility and the production of virulence factors (protease and gelatinase) by S. maltophilia were increased up to 141%, 41%, and 73%, respectively, when exposed to MP for 7 days. The overall results highlight the potential of parabens to interfere with DW bacteria in planktonic state and biofilms, and compromise the DW microbiological quality and safety.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
15
|
Lee W, Marcotullio S, Yeom H, Son H, Kim TH, Lee Y. Reaction kinetics and degradation efficiency of halogenated methylparabens during ozonation and UV/H 2O 2 treatment of drinking water and wastewater effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127878. [PMID: 34872780 DOI: 10.1016/j.jhazmat.2021.127878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the reaction kinetics and degradation efficiency of methylparaben and its halogenated products (Cl-, Br-, Cl,Cl-, Br,Cl-, and Br,Br-methylparabens) during ozonation and UV254/H2O2 treatment. Second-order rate constants for reactions of the parabens with ozone and •OH were [Formula: see text] = 107 - 108 M-1 s-1 and [Formula: see text] = (2.3 - 4.3)× 109 M-1 s-1 at pH 7. Species-specific [Formula: see text] values of the protonated and deprotonated parabens were closely related to phenol ring substituent effects via quantitative structure-activity relationships with other substituted phenols. The UV photolysis rate of the parabens [kUV = (2.4 - 7.2)× 10-4 cm2 mJ-1] depended on the halogenation state of the paraben and solution pH, from which species-specific quantum yields were also determined. In simulated treatments of drinking water and wastewater effluent, the parabens were efficiently eliminated during ozonation, requiring a specific ozone dose of > 0.26 gO3/gDOC for > 97% degradation. During UV/H2O2 treatment with 10 mg L-1 H2O2, the degradation levels were > 90% at a UV fluence of 2000 mJ cm-2, except for Cl,Cl-methylparaben. Kinetic models based on the obtained reaction kinetic parameters could successfully predict the degradation levels of the parabens. Overall, ozonation and UV/H2O2 were effective in controlling parabens and their halogenated products during advanced water treatment.
Collapse
Affiliation(s)
- Woorim Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Sandro Marcotullio
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hoonsik Yeom
- Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Tae-Hun Kim
- Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
16
|
Bolujoko NB, Ogunlaja OO, Alfred MO, Okewole DM, Ogunlaja A, Olukanni OD, Msagati TAM, Unuabonah EI. Occurrence and human exposure assessment of parabens in water sources in Osun State, Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152448. [PMID: 34942254 DOI: 10.1016/j.scitotenv.2021.152448] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Parabens are chemicals extensively used in pharmaceuticals, cosmetics, personal hygiene and food products as preservatives. They are classified as emerging contaminants with endocrine-disrupting capability. In this study, the concentrations of Methylparaben (MeP), Ethylparaben (EtP), Propylparaben (PrP) and Butylparaben (BuP) were obtained from groundwater, surface-water and packaged water samples collected from urban and rural areas of Osun State, Nigeria using HPLC-UV equipment. Data obtained were subjected to descriptive (Mean ± SD), inferential (Kruskal-Wallis test) and multivariate analyses. MeP had the highest average concentration of 163 and 68 μg L-1 in surface water and groundwater respectively while concentrations of MeP, EtP, PrP and BuP were higher than previously reported in other countries. Methylparaben had the highest detection frequencies (88.0 and 50.0%) followed by BuP (69.0 and 50.0%) in surface water and groundwater respectively. No significant difference was observed for concentrations of parabens in groundwater samples in urban and rural sampling sites, suggesting that people living around these sites are equally exposed to any health implications from the use of paraben-polluted potable water. Principal Component Analysis (PCA) data suggest that the pairs MeP & EtP, PrP & BuP (in surface water samples) and MeP, EtP, & PrP (in groundwater samples) are from similar pollution sources. Ecological risk assessment using Algae, Fish, and Daphnia suggests Daphnia as the most sensitive organism while BuP and PrP show the highest health risk. Human exposure assessment showed that higher overall median estimated daily intake (EDI) values for groundwater were observed in infants (1.71 μg kg-1 bw day-1, ∑PBs) compared to toddlers (1.03 μg kg-1 bw day-1, ∑PBs), children (0.64 μg kg-1 bw day-1, ∑PBs), teenagers (0.51 μg kg-1 bw day-1, ∑PBs) and adults (0.62 μg kg-1 bw day-1, ∑PBs). Although these values are below limits set in a few countries, potential bioaccumulation could lead to severe health consequences.
Collapse
Affiliation(s)
- Nathaniel B Bolujoko
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Moses O Alfred
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Dorcas M Okewole
- Department of Mathematical Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede 232101, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, The Science Campus, 1709 Roodepoort, Johannesburg, South Africa
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria.
| |
Collapse
|
17
|
Liang J, Yang X, Liu QS, Sun Z, Ren Z, Wang X, Zhang Q, Ren X, Liu X, Zhou Q, Jiang G. Assessment of Thyroid Endocrine Disruption Effects of Parabens Using In Vivo, In Vitro, and In Silico Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:460-469. [PMID: 34930008 DOI: 10.1021/acs.est.1c06562] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The extensive applications of parabens in foods, drugs, and cosmetics cause inevitable exposure to humans. Revealing the developmental toxicity of parabens is of utmost importance regarding their safety evaluation. In this study, the effects of four commonly used parabens, including methyl paraben (20 ∼ 200 μM), ethyl paraben (20 ∼ 100 μM), propyl paraben (5 ∼ 20 μM), and butyl paraben (BuP, 2 ∼ 10 μM), were investigated on the early development of zebrafish embryos and larvae. The underlying mechanisms were explored from the aspect of their disturbance in the thyroid endocrine system using in vivo, in vitro, and in silico assays. Paraben exposure caused deleterious effects on the early development of zebrafish, with BuP displaying the highest toxicity among all, resulting in the exposure concentration-related mortality, decreased hatching rate, reduced body length, lowered heart rate, and the incidence of malformation. Further investigation showed that paraben exposure reduced thyroid hormone levels and disturbed the transcriptional expressions of the target genes in the hypothalamic-pituitary-thyroid axis. Molecular docking analysis combined with in vitro GH3 cell proliferation assay testified that all test parabens exhibited thyroid receptor agonistic activities. The findings confirmed the developmental toxicity of the test parabens and their thyroid endocrine disruption effects, providing substantial evidence on the safety control of paraben-based preservatives.
Collapse
Affiliation(s)
- Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, P. R. China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Bolujoko NB, Unuabonah EI, Alfred MO, Ogunlaja A, Ogunlaja OO, Omorogie MO, Olukanni OD. Toxicity and removal of parabens from water: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148092. [PMID: 34147811 DOI: 10.1016/j.scitotenv.2021.148092] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
Parabens are biocides used as preservatives in food, cosmetics and pharmaceuticals. They possess antibacterial and antifungal activity due to their ability to disrupt cell membrane and intracellular proteins, and cause changes in enzymatic activity of microbial cells. Water, one of our most valuable natural resource, has become a huge reservoir for parabens. Halogenated parabens from chlorination/ozonation of water contaminated with parabens have shown to be even more persistent in water than other types of parabens. Unfortunately, there is dearth of data on their (halogenated parabens) presence and fate in groundwater which serves as a major source of drinking water for a huge population in developing countries. An attempt to neglect the presence of parabens in water will expose man to it through ingestion of contaminated food and water. Although there are reviews on the occurrence, fate and behaviour of parabens in the environment, they largely omit toxicity and removal aspects. This review therefore, presents recent reports on the acute and chronic toxicity of parabens, their estrogenic agonistic and antagonistic activity and also their relationship with antimicrobial resistance. This article further X-rays several techniques that have been employed for the removal of parabens in water and their drawbacks including adsorption, biodegradation, membrane technology and advanced oxidation processes (AOPs). The heterogeneous photocatalytic process (one of the AOPs) appears to be more favoured for removal of parabens due to its ability to mineralize parabens in water. However, more work is needed to improve this ability of heterogeneous photocatalysts. Perspectives that will be relevant for future scientific studies and which will drive policy shift towards the presence of parabens in our drinking waters are also offered. It is hoped that this review will elicit some spontaneous actions from water professionals, scientists and policy makers alike that will provide more data, effective technologies, and adaptive policies that will address the growing threat of the presence of parabens in our environment with respect to human health.
Collapse
Affiliation(s)
- Nathaniel B Bolujoko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Emmanuel I Unuabonah
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| | - Moses O Alfred
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Martins O Omorogie
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
19
|
Acevedo-García V, Rosales E, Puga A, Pazos M, Sanromán M. Synthesis and use of efficient adsorbents under the principles of circular economy: Waste valorisation and electroadvanced oxidation process regeneration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116796] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Nagar Y, Thakur RS, Parveen T, Patel DK, Ram KR, Satish A. Toxicity assessment of parabens in Caenorhabditis elegans. CHEMOSPHERE 2020; 246:125730. [PMID: 31927363 DOI: 10.1016/j.chemosphere.2019.125730] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Parabens, the alkyl esters of p-hydroxybenzoic acid such as methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP) are used as a preservative in food, personal care products (PCPs), and pharmaceuticals, due to their antimicrobial properties. Parabens are continuously released into the environment, during washout of PCPs, disposal of industrial waste from the pharmaceutical and paper industries. Parabens have been detected in the indoor dust, wastewater stream, surface water of rivers, and the marine system. Recent eco-toxicological data and the environmental presence of parabens, has raised concerns regarding the safety and health of environment/humans. Thus, to further understand the toxicity of parabens, the present study was carried out in the soil nematode and well established biological model organism Caenorhabditis elegans. In the present study, LC50 of MeP, EtP, PrP and BuP for 72 h exposures from L1 larva to adult stage was found to be 278.1, 217.8, 169.2, and 131.88 μg/ml, respectively. Further exposure to 1/5th of LC50 of parabens yielded an internal concentration ranging from 1.67 to 2.83 μg/g dry weight of the organism. The toxicity of parabens on the survival, growth, behavior, and reproduction of the C. elegans was found in the order of BuP > PrP > EtP > MeP. Worms exposed to parabens show significant down-regulation of vitellogenin genes, high levels of reactive oxygen species and anti-oxidant transcripts, the latter being concordant with nuclear localization of DAF-16 and up-regulation of HSF-1 and SKN-1/Nrf. Hence, parabens caused endocrine disruption, oxidative stress and toxicity in C. elegans at environment relevant internal concentration of parabens.
Collapse
Affiliation(s)
- Yogendra Nagar
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravindra Singh Thakur
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tuba Parveen
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Aruna Satish
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Geppert M, Schwarz A, Stangassinger LM, Wenger S, Wienerroither LM, Ess S, Duschl A, Himly M. Interactions of TiO 2 Nanoparticles with Ingredients from Modern Lifestyle Products and Their Effects on Human Skin Cells. Chem Res Toxicol 2020; 33:1215-1225. [PMID: 32088960 PMCID: PMC7238409 DOI: 10.1021/acs.chemrestox.9b00428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The
number of consumer products containing nanoparticles (NPs)
experienced a rapid increase during the past decades. However, most
studies of nanosafety have been conducted using only pure NPs produced
in the laboratory, while the interactions with other ingredients in
consumer products have rarely been considered so far. In the present
study, we investigated such interactions—with a special focus
on modern lifestyle products (MLPs) used by adolescents. An extensive
survey was undertaken at different high schools all over Austria to
identify MLPs that either contain NPs or that could come easily in
contact with NPs from other consumer products (such as TiO2 from sunscreens). Based on the results from a survey among secondary
schools students, we focused on ingredients from Henna tattoos (2-hydroxy-1,4-naphtoquinone,
HNQ, and p-phenylenediamine, PPD), fragrances (butylphenyl
methylpropional, known as Lilial), cosmetics and skin-care products
(four different parabens). As a cellular model, we decided to use
neonatal normal human dermal fibroblasts (nNHDF), since skin contact
is the main route of exposure for these compounds. TiO2 NPs interacted with these compounds as evidenced by alterations
in their hydrodynamic diameter observed by nanoparticle tracking analysis.
Combinations of TiO2 NPs with the different MLP components
did not show altered cytotoxicity profiles compared to MLP components
without TiO2 NPs. Nevertheless, altered cellular glutathione
contents were detected after incubation of the cells with Lilial.
This effect was independent of the presence of TiO2 NPs.
Testing mixtures of NPs with other compounds from consumer products
is an important approach to achieve a more reliable safety assessment.
Collapse
Affiliation(s)
- Mark Geppert
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Alexandra Schwarz
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Lea Maria Stangassinger
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Susanna Wenger
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Lisa Maria Wienerroither
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Stefanie Ess
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Albert Duschl
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Martin Himly
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
22
|
Choi Y, Kim K, Kim D, Moon HB, Jeon J. Ny-Ålesund-oriented organic pollutants in sewage effluent and receiving seawater in the Arctic region of Kongsfjorden. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113792. [PMID: 31877466 DOI: 10.1016/j.envpol.2019.113792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Ny-Ålesund, one of four permanent settlements on Spitsbergen in Svalbard, is a research town that includes scientific institutes from many countries. Because of daily-used chemicals (e.g., pharmaceutical and personal care products (PPCPs)) used by residents in the area, generated sewage is considered as a point source in the Kongsfjorden. The aim of the present study was to identify and quantify organic pollutants in the effluent and along the shoreline and offshore via target, suspect, and non-target screening using liquid chromatography-high-resolution mass spectrometry. We tentatively identified 30 compounds using the suspect and non-target screening methods in effluent samples from our first visit to the settlement in 2016. Among these, 3 were false positive, 24 were confirmed, and the 3 remaining compounds were not confirmed because of a lack of reference standards. Of the confirmed, 21 were quantifiable and considered target compounds for the 2nd year study. The quantified compounds in the effluent samples in 2017 totaled 17, including PPCPs, pesticides, perfluorinated compounds, and their metabolites. Some of the compounds, such as caffeine, paraxanthine/theophylline, acetaminophen, cetirizine, diethyl toluamide (DEET), and icaridin, were also detected in the receiving seawater. The concentration range was from 4 to 280,000 ng/L in the effluent and 2-98 ng/L in the seawater. Other 24 compounds were tentatively identified in the second-year effluent samples. Five were further confirmed using reference standards. Prioritization was performed on the 47 substances screened in Ny-Ålesund using the exposure and toxicity index. As the result, the top seven substances of concern present were perfluorooctanesulfonic acid (PFOS), triphenyl phosphate (TPHP), irbesartan, DEET, acetaminophen, caffeine, and paraxanthine/theophylline. As the effluent was identified as a source of the concerned organic pollutants, an emission reduction strategy should take place for protection of Arctic Fjorden environment.
Collapse
Affiliation(s)
- Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Deokwon Kim
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|