1
|
Flores LM, Vinueza DR, Gilardoni G, Mota AJ, Malagón O. The Essential Oil from the Roots of Valeriana rigida Ruiz & Pav. Growing in the Paramos of Chimborazo (Ecuador): Chemical Analysis, Enantioselective Profile, and Preliminary Biological Activity. PLANTS (BASEL, SWITZERLAND) 2025; 14:1062. [PMID: 40219130 PMCID: PMC11990907 DOI: 10.3390/plants14071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
The essential oil (EO) obtained from the roots of Valeriana rigida Ruiz & Pav. (Caprifoliaceae), collected in the moorland region of Chimborazo Province, Ecuador, was analyzed for the first time. The chemical profile was qualitatively and quantitatively analyzed using GC-MS and GC-FID, respectively. With both detectors, two stationary phases of different polarities were used. A total of 56 compounds were identified, and the most abundant components (>3% on at least one column) were a mixture of cyclosativene and α-ylangene (4.5-4.4%), α-copaene (9.0-8.8%), decanoic acid (16.0-15.6%), β-chamigrene (3.2-3.1%), δ-cadinene (9.7-9.5%), dodecanoic acid (13.4-12.3%), and 7-epi-α-eudesmol (5.0-4.9%), on a non-polar and polar stationary phase, respectively. Additionally, the enantioselective analysis showed (1S,5S)-(+)-α-pinene, (1R,4S)-(-)-camphene, (1S,5S)-(-)-β-pinene, and (1R,2S,6S,7S,8S)-(-)-α-copaene as enantiomerically pure compounds, whereas germacrene D exhibited both enantiomeric forms. The anti-inflammatory activity of V. rigida EO was comparable to that of aspirin, as indicated by the IC50 values, with no significant differences observed.
Collapse
Affiliation(s)
- Linda M. Flores
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur Km 1 ½, Riobamba 060155, Ecuador; (L.M.F.); (D.R.V.)
- Departamento de Química, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, 18071 Granada, Spain
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador;
| | - Diego R. Vinueza
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur Km 1 ½, Riobamba 060155, Ecuador; (L.M.F.); (D.R.V.)
- Programa de Doctorado en Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador
| | - Gianluca Gilardoni
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador;
| | - Antonio J. Mota
- Departamento de Química Inorgánica, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, 18071 Granada, Spain;
| | - Omar Malagón
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador;
| |
Collapse
|
2
|
Vyas PJ, Wagh SS, Kalaskar MG, Patil KR, Sharma AK, Kazmi I, Al-Abbasi FA, Alzarea SI, Afzal O, Altamimi ASA, Gupta G, Patil CR. Volatile Oil Containing Plants as Phytopharmaceuticals to Treat Psoriasis: A Review. Curr Pharm Biotechnol 2024; 25:313-339. [PMID: 37287299 DOI: 10.2174/1389201024666230607140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Psoriasis is a chronic skin condition caused by an autoimmune response that accelerates the life cycle of skin cells, resulting in the characteristic symptoms of scaling, inflammation, and itching. METHODS Palliative treatment options for psoriasis often prioritize the use of volatile oils. These oils contain monoterpenes, sesquiterpenes, and phenylpropanoids that are intricately linked to the molecular cascades involved in the pathogenesis and symptoms of psoriasis. To evaluate the antipsoriatic efficacy of volatile oils and their components, we conducted a systematic review of scientific studies. Our literature search encompassed various online databases, including PubMed, BIREME, SCIELO, Open Grey, Scopus, and ScienceDirect. The selected studies included experimental in vitro/in vivo assessments as well as clinical studies that examined the potential of volatile oils and their extracts as antipsoriatic agents. We excluded conference proceedings, case reports, editorials, and abstracts. Ultimately, we identified and evaluated a total of 12 studies for inclusion in our analysis. RESULTS The data collected, compiled, and analyzed strongly support the interaction between volatile oils and their constituents with the key molecular pathways involved in the pathogenesis of psoriasis and the development of its symptoms. Volatile oils play a significant role in the palliative treatment of psoriasis, while their chemical constituents have the potential to reduce the symptoms and recurrence of this condition. CONCLUSION The current review highlights that the constituents found in volatile oils offer distinct chemical frameworks that can be regarded as promising starting points for the exploration and development of innovative antipsoriatic agents.
Collapse
Affiliation(s)
- Priyanka J Vyas
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Shivani S Wagh
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Mohan G Kalaskar
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Kalpesh R Patil
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Ajay K Sharma
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatputa, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Chandragouda R Patil
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| |
Collapse
|
3
|
Rungqu P, Oyedeji O, Gondwe M, Oyedeji A. Chemical Composition, Analgesic and Anti-Inflammatory Activity of Pelargonium peltatum Essential Oils from Eastern Cape, South Africa. Molecules 2023; 28:5294. [PMID: 37513168 PMCID: PMC10385469 DOI: 10.3390/molecules28145294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Pelargonium species are native to South Africa, and they have a long history in medicinal use. This study aimed to extract essential oils from different parts of P. peltatum, determine the chemical composition of the essential oils, and assess the essential oils' biological potential as analgesic and anti-inflammatory agents. The essential oils were obtained by hydro-distilling different parts of P. peltatum, and the essential profile was determined by GC-FID and GC-MS. The analgesic activity of the essential oil was determined by using a tail immersion in hot water method in rats, whereas the anti-inflammatory activity of the essential oils was assessed according to right hind paw oedema induced by egg albumin; the three doses selected for each experiment were 100, 200, and 400 mg/kg. According to the GC-FID and GC-MS analysis, camphene (3.6-33.4%), α-terpineol (4.8-19.1%), α-thujone (1.5-15.6%), piperitone (0.9-12.2%), linalool (1.6-11.7%), myrcene (5.2-10.7%), germacrene D (3.7-10.4%), β-caryophyllene (1.2-9.5%), β-cadinene (3.4-6.7%), and β-bourbonene (4.2-6.2%) were some of the major compounds identified in the oil. P. peltatum essential oils demonstrated analgesic activity by increasing pain latency in hot water; furthermore, in an inflammation test, the essential oil reduced the egg-albumin-induced paw oedema in both the first and second phases. Therefore, the current findings suggest that P. peltatum essential oils have analgesic and anti-inflammatory properties.
Collapse
Affiliation(s)
- Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Opeoluwa Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Mavuto Gondwe
- Department of Human Biology, Faculty of Health Science, Walter Sisulu University, Mthatha 5117, South Africa
| | - Adebola Oyedeji
- Department of Chemistry, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa
| |
Collapse
|
4
|
Development, Characterization, and Stability Evaluation of the Anti-Cellulite Emgel Containing Herbal Extracts and Essential Oils. Pharmaceuticals (Basel) 2021; 14:ph14090842. [PMID: 34577542 PMCID: PMC8467277 DOI: 10.3390/ph14090842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the herbal compress was successfully developed and applied for cellulite treatment. The aim of this study was to formulate a more convenient dosage form of herbal application from the original formula. In addition, we aimed to characterize and evaluate the stability of the developed dosage form. A gelled emulsion, or an “emgel,” incorporated with 0.1 wt% tea and coffee extracts (1:1 ratio) plus 5 wt% essential oils (mixed oil) was prepared. The caffeine content in the finished product obtained from tea and coffee extracts analyzed by HPLC was 48.1 ± 2.3 µg/g. The bio-active marker monoterpenes of mixed oil characterized by headspace GCMS were camphene 50.8 ± 1.8 µg/mg, camphor 251.0 ± 3.2 µg/mg, 3-carene 46.7 ± 1.8 µg/mg, α-citral 75.0 ± 2.1 µg/mg, β-citral 65.6 ± 1.3 µg/mg, limonene 36.8 ± 6.7 µg/mg, myrcene 53.3 ± 4.5 µg/mg, α-pinene 85.2 ± 0.6 µg/mg, β-pinene 88.4 ± 1.1 µg/mg, and terpinene-4-ol 104.3 ± 2.6 µg/mg. The stability study was carried out over a period of 3 months at 4, 25, and 50 °C. The caffeine content showed no significant changes and passed the acceptance criteria of ≥80% at all tested temperatures. However, monoterpenes showed their stability for only 2 months at 50 °C. Therefore, the shelf-life of the emgel was, consequently, calculated to be 31 months using the Q10 method. Thus, the anti-cellulite emgel was successfully formulated. The characterization methods and stability evaluation for caffeine and monoterpenes in an emgel matrix were also successfully developed and validated.
Collapse
|
5
|
Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota. Pharmaceutics 2021; 13:pharmaceutics13071008. [PMID: 34371700 PMCID: PMC8309164 DOI: 10.3390/pharmaceutics13071008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Oral health is a key contributor to a person’s overall health and well-being. Oral microbiota can pose a serious threat to oral health. Thus, the present study aimed to develop a cinnamon oil (CO)-loaded nanoemulsion gel (NEG1) to enhance the solubilization of oil within the oral cavity, which will enhance its antibacterial, antifungal, and analgesic actions against oral microbiota. For this purpose, the CO-loaded nanoemulsion (CO-NE) was optimized using I-optimal response surface design. A mixture of Pluracare L44 and PlurolOleique CC 497 was used as the surfactant and Capryol was used as the co-surfactant. The optimized CO-NE had a globule size of 92 ± 3 nm, stability index of 95% ± 2%, and a zone of inhibition of 23 ± 1.5 mm. This optimized CO-NE formulation was converted into NEG1 using 2.5% hydroxypropyl cellulose as the gelling agent. The rheological characterizations revealed that the NEG1 formulation exhibited pseudoplastic behavior. The in vitro release of eugenol (the marker molecule for CO) from NEG1 showed an enhanced release compared with that of pure CO. The ex vivo mucosal permeation was found to be highest for NEG1 compared to the aqueous dispersion of CO-NE and pure cinnamon oil. The latency reaction time during the hot-plate test in rats was highest (45 min) for the NEG1 sample at all-time points compared with those of the other tested formulations. The results showed that the CO-NEG formulation could be beneficial in enhancing the actions of CO against oral microbiota, as well as relieving pain and improving overall oral health.
Collapse
|
6
|
Effect of Cinnamon on Inflammatory Factors, Pain and Anthropometric Indices in Progressive-relapsing Multiple Sclerosis Patients: A Randomized Controlled Trial. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Multiple sclerosis (MS) is the most disabling neurological disease and has been studied for decades, but there are still many unproven treatments. Cinnamon (Cinnamomum zeylanicum) is a well-known herb and has many therapeutic applications. Objectives: This study aimed to evaluate the effect of cinnamon on inflammatory factors, pain, and anthropometric indices in patients with progressive-relapsing MS. Methods: In this randomized controlled trial, 60 patients suffering from progressive-relapsing MS were randomly recruited from Shiraz MS Center. Four capsules of cinnamon were taken every day for eight weeks by each participant in the intervention group (500 mg in each capsule) and four capsules of wheat flour by the control group (500 mg in each capsule). A 3-day 24-h food recall and physical activity questionnaire was filled out by interviewing before and after the intervention. Pain level was evaluated by using a Visual Analog scale (VAS). Interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP) were measured in blood samples before and after the intervention. Participants underwent anthropometric measurements, including body weight, height, and waist and hip circumference. Results: Thirty-six (87.80%) participants were female, and twenty-six patients were married (63.41%). IL-6 and hs-CRP levels decreased significantly in the intervention group compared to the control group (P < 0.05). According to the VAS results, the pain level also decreased significantly (P = 0.003) in the intervention group in comparison to the control group. Conclusions: Multiple sclerosis is a debilitating inflammatory disease, and cinnamon may help improve inflammatory markers and pain in MS patients.
Collapse
|
7
|
Poletto P, Alvarez-Rivera G, Torres TMS, Mendiola JA, Ibañez E, Cifuentes A. Compressed fluids and phytochemical profiling tools to obtain and characterize antiviral and anti-inflammatory compounds from natural sources. Trends Analyt Chem 2020; 129:115942. [PMID: 32834241 PMCID: PMC7276128 DOI: 10.1016/j.trac.2020.115942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many natural compounds, found mainly in plants, are associated with the treatment of various diseases. The search for natural therapeutic agents includes compounds with antiviral and anti-inflammatory activities. Among the many steps involved in bioprospection, extraction is the first and most critical step for obtaining bioactive compounds. One of the main advantages of using compressed fluids extraction is the high quality of the final product obtained due to the use of green solvents, while the selectivity towards target compounds can be tuned by adjusting the process parameters, especially pressure, temperature and solvent characteristics. In this review, a discussion is provided on the power of compressed fluids, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE) and subcritical water extraction (SWE) to obtain antiviral and anti-inflammatory compounds from natural sources. In addition, an adequate knowledge about the identity and quantity of the compounds present in the extract is essential to correlate biological activity with chemical composition. Phytochemical profiling tools used for identification and quantification of these bioactive natural compound are also discussed. It can be anticipated that after the current SARS-COV-2 pandemic, the search of new natural compounds with antiviral and anti-inflammatory activity will be a hot research topic, so, this review provides an overview on the technologies currently used that could help this research.
Collapse
Affiliation(s)
- Patrícia Poletto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Talyta M S Torres
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Jose A Mendiola
- Laboratory of Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Hua S, Wang B, Chen R, Zhang Y, Zhang Y, Li T, Dong L, Fu X. Neuroprotective Effect of Dichloromethane Extraction From Piper nigrum L. and Piper longum L. on Permanent Focal Cerebral Ischemia Injury in Rats. J Stroke Cerebrovasc Dis 2019; 28:751-760. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/29/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022] Open
|
9
|
Chemical Composition and Protective Effect of Dichloromethane Extract From Piper nigrum and P. longum on the OGD Model. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02648-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Izuegbuna O, Otunola G, Bradley G. Chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS One 2019; 14:e0209682. [PMID: 30695064 PMCID: PMC6350967 DOI: 10.1371/journal.pone.0209682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023] Open
Abstract
Background The Opuntia spp. have been used in traditional medicine for many centuries. It is used in the management of diseases that involves oxidative stress, especially diabetes, obesity and cancer. Opuntia stricta (Haw) is one of the relatively unknown species in South Africa where it is regarded more as a weed. Because of this, not much is known about its chemical composition. Aim To determine the chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. Methods The phytochemical composition of acetone, aqueous and ethanol extract of cladodes of Opuntia stricta (Haw), as well as the vitamins A, C and E of its dried weight cladodes and the antioxidant activities, were evaluated using standard in vitro methods. The anti-inflammatory and cytotoxic activities were evaluated using cell-based assays. The phytochemical composition and vitamins were determined spectrophotometrically, while the antioxidant activities were determined by DPPH, nitric oxide, hydrogen peroxide scavenging activity and phosphomolybdenum (total) antioxidant activity. Anti-inflammatory activity was determined using RAW 264.7 cells, while cytotoxicity was determined using U937 cells. Results The phytochemical composition showed a significant difference in the various extracts. The total phenolics were higher than other phytochemicals in all the extracts used. All the extracts displayed antioxidant activity, while most of the extracts showed anti-inflammatory activity. Only one extract showed cytotoxicity, and it was mild. Conclusion The results show that the Opuntia stricta is rich in polyphenolic compounds and has good antioxidant activity as well as anti-inflammatory activities.
Collapse
Affiliation(s)
- Ogochukwu Izuegbuna
- Department of Biochemistry, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Gloria Otunola
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Graeme Bradley
- Department of Biochemistry, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
- * E-mail:
| |
Collapse
|
11
|
Fang Y, Kang Y, Zou H, Cheng X, Xie T, Shi L, Zhang H. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. Fitoterapia 2018; 124:92-102. [PMID: 29066299 DOI: 10.1016/j.fitote.2017.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/27/2022]
Abstract
β-elemene, extracted from Rhizoma zedoariae, has been widely used as a traditional medicine for its antitumor activity against a broad range of cancers. However, the effect of β-elemene in inflammation disorders has yet to be determined. The present study was designed to investigate the anti-inflammatory effects and potential molecular mechanisms of β-elemene in lipopolysaccharide (LPS)-induced murine macrophage cells RAW264.7. We found that the production of pro-inflammatory mediators, including interleukin-6(IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), induced by LPS was significantly suppressed by β-elemene in a dose-dependent manner in RAW264.7 macrophage cell line. Also, β-elemene inhibited LPS-induced nitric oxide synthase (iNOS) and interleukin-10 (IL-10) expression by RAW264.7, which was related to the down-regulation of Wnt/β-catenin signaling pathway. Importantly, this study demonstrates that β-catenin was significantly inhibited by β-elemene, which appeared to be largely responsible for the down-regulation of Wnt/β-catenin signaling pathway. Accordingly, the deletion of β-catenin in primary macrophages reversed β-catenin-elicited inhibition of immune response. Furthermore, β-catenin expression and Wnt/β-catenin signaling pathway induced by LPS in RAW264.7 was also significantly inhibited by α-humulene, one isomeric sesquiterpene of β-elemene. α-humulene was also found to significantly inhibit LPS-induced production of proinflammatory cytokines. However, α-humulene showed more cytotoxic ability than β-elemene. Collectively, our data illustrated that β-elemene exerted a potent inhibitory effect on pro-inflammatory meditator and cytokines production via the inactivation of β-catenin, and also demonstrated the protective functions of β-elemene in endotoxin-induced inflammation. β-elemene may serve as potential nontoxic modulatory agents for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yangyi Fang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhua Kang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zou
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaxuan Cheng
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Biochemistry and Molecular Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- Institute of Holistic Integrative Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liyun Shi
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hang Zhang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Grinevicius VM, Andrade KS, Ourique F, Micke GA, Ferreira SR, Pedrosa RC. Antitumor activity of conventional and supercritical extracts from Piper nigrum L. cultivar Bragantina through cell cycle arrest and apoptosis induction. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Schabauer L, Steflitsch W, Buchbauer G. Essential Oils and Compounds against Pains in Animal Studies. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The positive impact of essential oils and compounds has been known for a long time. Essential oils are multicomponent mixtures and obtained by steam distillation of leaves or flowers or simply by pressing orange peels for example. Due to the broad-spectrum activity, essential oils can be used for a variety of disorders like sleeping problems, colds or gastrointestinal complaints. The focus of this paper is the use of essential oils against pain in animal studies. The broad use of analgesics like NSAIDs against headaches or menstrual cramps for example, is often associated with unpleasant side effects. Essential oils may help to reduce the analgesic doses.
Collapse
Affiliation(s)
- Lisa Schabauer
- Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Wolfgang Steflitsch
- Second Department of Pneumological Medicine, Otto Wagner Hospital, A-1140 Vienna, Austria
| | - Gerhard Buchbauer
- Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Wang B, Zhang Y, Huang J, Dong L, Li T, Fu X. Anti-inflammatory activity and chemical composition of dichloromethane extract from Piper nigrum and P. longum on permanent focal cerebral ischemia injury in rats. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Zhao Q, Cheng X, Wang X, Wang J, Zhu Y, Ma X. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:140-147. [PMID: 27396346 DOI: 10.1016/j.jep.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/29/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The present study is to investigate the neuroprotective effect of Mu-Xiang-You-Fang (MXYF), a classic Traditional Chinese Medicine used by Chinese minorities to treat stroke, on cerebral ischemia-reperfusion (I/R) injury and the related signaling pathways. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into 6 groups: sham group, I/R group, nimodipine and MXYF (58, 116 and 232mg/kg respectively) groups. Cerebral ischemia model was induced by middle cerebral artery occlusion for 2h followed by reperfusion for 48h. Neurological functional score was evaluated according to the method of Zea longa's score and the infarct area was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48h after reperfusion. The protein expression of cytochrome c (cyt-c), Bcl-2, Bax, caspase-9, caspase-3 and caspase-7 were analyzed by western blot and the mRNA expression of Caspase-9, Caspase-3 and Caspase-7 were determined by the reverse transcription-polymerase chain reaction. RESULTS Oral administration of MXYF (116 and 232mg/kg) significantly reduced the neurological functional score and attenuated the cerebral infarct area. Western blot analysis showed that the expression of Bcl-2 is enhanced and Bax expression is inhibited after treatment with MXYF (116 and 232mg/kg), leading to significant increase of the ratio between Bcl-2 and Bax. Furthermore, the protein expression of cyt-c, caspase-9, caspase-3 and caspase-7 was significantly inhibited while the mRNA expression of caspase-9, caspase-3 and caspase-7 but not cyt-c was markedly inhibited in the MXYF (116 and 232mg/kg) treatment groups compared with the I/R group. CONCLUSIONS The above data suggested that MXYF has potential neuroprotective activities by the regulation of apoptotic pathway, MXYF is a promising agent in treatment of stroke.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Cytoprotection
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Gas Chromatography-Mass Spectrometry
- Gene Expression Regulation
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Male
- Neuroprotective Agents/isolation & purification
- Neuroprotective Agents/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Qipeng Zhao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiuli Cheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiaobo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yafei Zhu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Xueqin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
16
|
Cinnamon extract exhibits potent anti-proliferative activity by modulating angiogenesis and cyclooxygenase in myeloma cells. J Herb Med 2016. [DOI: 10.1016/j.hermed.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|