1
|
Miranda MP. Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques. Carbohydr Res 2025; 549:109374. [PMID: 39818085 DOI: 10.1016/j.carres.2024.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells. The identification of this class of compounds can be carried out using simple techniques such as thin layer chromatography (TLC) or more sophisticated techniques such as nuclear magnetic resonance (NMR), providing different information depending on the technique used. Therefore, this work aimed to identify the presence of cerebrosides in different tissues of Holothuria (Halodeima) grisea. TLC analysis and separation on a silica column made it possible to accurately identify the positive fractions for cerebrosides. This selectivity is crucial to ensure that the compounds identified are genuine cerebrosides, eliminating interference from other non-pertinent bands. NMR spectroscopy analyses confirmed the presence of glucosylceramide in the tissues studied. The identification of a β-glucose linked to the ceramide, with specific structural characteristics such as hydroxyl on the 3' carbon of the sphingosine and a double bond between the 4' and 5' carbons, highlights the accuracy of the structural determination obtained with the techniques used.
Collapse
Affiliation(s)
- Matheus Pires Miranda
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Ding L, Chen Z, Lu Y, Su X. Global Analysis of 2-Hydroxy Fatty Acids by Gas Chromatography-Tandem Mass Spectrometry Reveals Species-Specific Enrichment in Echinoderms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16362-16370. [PMID: 37862591 DOI: 10.1021/acs.jafc.3c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Abnormal levels of 2-hydroxy fatty acids (2-OH FAs) are characterized in multiple diseases, and their quantification in foodstuffs is critical to identify the sources of supplementation for potential treatment. However, due to the structural complexity and limited available standards, the comprehensive profiling of 2-OH FAs remains an ongoing challenge. Herein, an innovative approach based on gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed to determine the full profile of these FA metabolites. MS and MS/MS spectra of the trimethylsilyl (TMS) derivatives of 2-OH fatty acid methyl esters (FAMEs) were collected for peak annotation by their signature fragmentation patterns. The structures were further confirmed by validated structure-dependent retention time (RT) prediction models, taking advantage of the correlation between the RT, carbon chain length, and double bond number from commercial standards and pseudostandards identified in the whole-brain samples from mice. An in-house database containing 50 saturated and monounsaturated 2-OH FAs was established, which is expandible when additional molecular species with different chain lengths and backbone structures are identified in the future. A quantitation method was then developed by scheduled multiple reaction monitoring (MRM) and applied to investigate the profiling of 2-OH FAs in echinoderms. Our results revealed that the levels of total 2-OH FAs in sea cucumber Apostichopus japonicas (8.40 ± 0.28 mg/g dry weight) and starfish Asterias amurensis (7.51 ± 0.18 mg/g dry weight) are much higher than that in sea urchin Mesocentrotus nudus (531 ± 108 μg/g dry weight). Moreover, 2-OH C24:1 is the predominant molecular species accounting for 67.9% of the total 2-OH FA in sea cucumber, while 2-OH C16:0 is the major molecular species in starfish. In conclusion, the current innovative GC-MS approach has successfully characterized distinct molecular species of 2-OH FAs that are highly present in sea cucumbers and starfish. Thus, these findings suggest the possibility of developing future feeding strategies for preventing and treating diseases associated with 2-OH FA deficiency.
Collapse
Affiliation(s)
- Lin Ding
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zhaozheng Chen
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yang Lu
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Popov RS, Ivanchina NV, Dmitrenok PS. Application of MS-Based Metabolomic Approaches in Analysis of Starfish and Sea Cucumber Bioactive Compounds. Mar Drugs 2022; 20:320. [PMID: 35621972 PMCID: PMC9147407 DOI: 10.3390/md20050320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Today, marine natural products are considered one of the main sources of compounds for drug development. Starfish and sea cucumbers are potential sources of natural products of pharmaceutical interest. Among their metabolites, polar steroids, triterpene glycosides, and polar lipids have attracted a great deal of attention; however, studying these compounds by conventional methods is challenging. The application of modern MS-based approaches can help to obtain valuable information about such compounds. This review provides an up-to-date overview of MS-based applications for starfish and sea cucumber bioactive compounds analysis. While describing most characteristic features of MS-based approaches in the context of starfish and sea cucumber metabolites, including sample preparation and MS analysis steps, the present paper mainly focuses on the application of MS-based metabolic profiling of polar steroid compounds, triterpene glycosides, and lipids. The application of MS in metabolomics studies is also outlined.
Collapse
Affiliation(s)
- Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | | | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| |
Collapse
|
4
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
5
|
Identification of ceramide 2-aminoethylphosphonate molecular species from different aquatic products by NPLC/Q-Exactive-MS. Food Chem 2020; 304:125425. [DOI: 10.1016/j.foodchem.2019.125425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
|
6
|
Li Q, Che H, Wang C, Zhang L, Ding L, Xue C, Zhang T, Wang Y. Cerebrosides from Sea Cucumber Improved Aβ1–42‐Induced Cognitive Deficiency in a Rat Model of Alzheimer's Disease. Mol Nutr Food Res 2018; 63:e1800707. [DOI: 10.1002/mnfr.201800707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Qian Li
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Hong‐Xia Che
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- College of Marine Science and Biological EngineeringQingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Cheng‐Cheng Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Ling‐Yu Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Lin Ding
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Chang‐Hu Xue
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| | - Tian‐Tian Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Yu‐Ming Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| |
Collapse
|
7
|
Zhang L, Zhang T, Ding L, Xu J, Xue C, Yanagita T, Chang Y, Wang Y. The Protective Activities of Dietary Sea Cucumber Cerebrosides against Atherosclerosis through Regulating Inflammation and Cholesterol Metabolism in Male Mice. Mol Nutr Food Res 2018; 62:e1800315. [DOI: 10.1002/mnfr.201800315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/08/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lingyu Zhang
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 Shandong China
| | - Tiantian Zhang
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 Shandong China
| | - Lin Ding
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 Shandong China
| | - Jie Xu
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 Shandong China
| | - Changhu Xue
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 Shandong China
- Laboratory of Marine Drugs and Biological Products; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266237 Shandong China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry; Department of Applied Biochemistry and Food Science; Saga University; Saga 840-8502 Japan
| | - Yaoguang Chang
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 Shandong China
| | - Yuming Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 Shandong China
- Laboratory of Marine Drugs and Biological Products; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266237 Shandong China
| |
Collapse
|
8
|
Khotimchenko Y. Pharmacological Potential of Sea Cucumbers. Int J Mol Sci 2018; 19:E1342. [PMID: 29724051 PMCID: PMC5983632 DOI: 10.3390/ijms19051342] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
This review presents a detailed analysis of published research data focused on the pharmacological activity exerted by biologically active compounds isolated from sea cucumbers belonging to the class of Holothuroidea, phylum Echinodermata. The review contains descriptions of the structure, physico-chemical properties and pharmacological effects of these active substances. Particular attention is given to compounds with anticoagulant, antithrombotic, antioxidant, anticancer, anti-infectious, immune-stimulating and anti-ACE (angiotensin converting enzyme) activities as well as to the substances exerting a regulating influence on lipid and carbohydrate metabolism. All these compounds may be considered as prototypes for development of new pharmaceutical substances and medicines.
Collapse
Affiliation(s)
- Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia.
- National Scientific Center for Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
9
|
Singh A, Del Poeta M. Sphingolipidomics: An Important Mechanistic Tool for Studying Fungal Pathogens. Front Microbiol 2016; 7:501. [PMID: 27148190 PMCID: PMC4830811 DOI: 10.3389/fmicb.2016.00501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/28/2016] [Indexed: 01/28/2023] Open
Abstract
Sphingolipids form of a unique and complex group of bioactive lipids in fungi. Structurally, sphingolipids of fungi are quite diverse with unique differences in the sphingoid backbone, amide linked fatty acyl chain and the polar head group. Two of the most studied and conserved sphingolipid classes in fungi are the glucosyl- or galactosyl-ceramides and the phosphorylinositol containing phytoceramides. Comprehensive structural characterization and quantification of these lipids is largely based on advanced analytical mass spectrometry based lipidomic methods. While separation of complex lipid mixtures is achieved through high performance liquid chromatography, the soft - electrospray ionization tandem mass spectrometry allows a high sensitivity and selectivity of detection. Herein, we present an overview of lipid extraction, chromatographic separation and mass spectrometry employed in qualitative and quantitative sphingolipidomics in fungi.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Veterans Administration Medical Center, NorthportNY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Veterans Administration Medical Center, NorthportNY, USA
| |
Collapse
|