1
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Al Mamun A, Rahman MM, Huq MA, Rahman MM, Rana MR, Rahman ST, Khatun ML, Alam MK. Phytoremediation: a transgenic perspective in omics era. Transgenic Res 2024; 33:175-194. [PMID: 38922381 DOI: 10.1007/s11248-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Shabiha Tasbir Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Mst Lata Khatun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Khasrul Alam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
3
|
Kim T, Han WS, Yoon S, Kang PK, Shin J, Nam MJ. Evaluation of the impact of transition from porous to fractured rock media on 3D field-scale DNAPLs contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132711. [PMID: 37827105 DOI: 10.1016/j.jhazmat.2023.132711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
A 3D high-resolution subsurface characteristic (HSC) numerical model to assess migration and distribution of subsurface DNAPLs was developed. Diverse field data, including lithologic, hydrogeologic, petrophysical, and fracture information from both in situ observations and laboratory experiments were utilized for realistic model representation. For the first time, the model integrates hydrogeologic characteristics of both porous (unconsolidated soil (US) and weathered rock (WR)) and fractured rock (FR) media distinctly affecting DNAPLs migration. This allowed for capturing DNAPLs behavior within US, WR, and FR as well as at the boundary between the media, simultaneously. In the 3D HSC model, hypothetical 100-year DNAPLs contamination was simulated, quantitatively analyzing its spatiotemporal distributions by momentum analyses. Twelve sensitivity scenarios examined the impact of WR and FR characteristics on DNAPLs migration, delineating significant roles of WR. DNAPLs primarily resided in WR due to low permeability and limited penetration into FR through sparse inlet fractures. The permeability anisotropy in WR was most influential to determine the DNAPLs fate, surpassing the impacts of FR characteristics, including rock matrix permeability, fracture aperture size, and fracture + rock mean porosity. This study first attempted to apply the field-data-based multiple geological media concept in the DNAPLs prediction model. Consequently, the field-scale effects of WR and media transitions, which have been often overlooked in evaluating DNAPLs contamination, were underscored.
Collapse
Affiliation(s)
- Taehoon Kim
- Department of Earth System Sciences, Yonsei University, Seoul, Republic of Korea
| | - Weon Shik Han
- Department of Earth System Sciences, Yonsei University, Seoul, Republic of Korea.
| | - Seonkyoo Yoon
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Peter K Kang
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA; Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA
| | - Jehyun Shin
- Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, Republic of Korea
| | - Myung Jin Nam
- Department of Energy Resources and Geosystems Engineering, Sejong University, Seoul, Republic of Korea; Department of Energy and Mineral Resources Engineering, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hayat U, Abbas S. Oxalic acid-assisted phytoextraction of heavy metal contaminated wastewater through Lemna minor L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103972-103982. [PMID: 37695484 DOI: 10.1007/s11356-023-29547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
The present research was carried out to investigate the performance of oxalic acid (OA) through Lemna minor L. (duckweed) in the phytoextraction of lead (Pb) from metal contaminated water. Zero, 100 μM, 250 μM, and 500 μM Pb concentration and combinations with 2.5 ml of OA were provided to the plants in the form of solution after defining intervals. Continuous aeration was provided to the plants and kept a pH level at 6.5. Results from this research depicted that increasing concentration level of Pb inhibited the overall plant growth, biomass, frond area, chlorophyll, and antioxidant enzyme activities like peroxidase (POD), superoxide-dismutase (SOD), catalases (CAT), and ascorbate-peroxidase (APX). Moreover, Pb stress enhances the concentration, hydrogen peroxide, malondialdehyde, and electrolyte leakage substances in plants. Furthermore, the addition of OA alleviated the Pb-induced toxicity in the plants, increasing the Pb accumulation and its endorsement in the L. minor. The OA addition increased the Pb accumulation in plants at 0, 100, 250 and 500 μM. At higher concentration, Pb showed harmful effect as related to the other low doses. Under the application of OA, Pb higher accumulation and concentration in L. minor were measured, which showed that it could be the most suitable plant for the phytoextraction of lead-contaminated soil and wastewater.
Collapse
Affiliation(s)
- Umer Hayat
- Faculty of Science, Department of Environmental Sciences, University of Gujrat (Hafiz Hayat Campus), Gujrat, Punjab, Pakistan.
| | - Shafuq Abbas
- Faculty of Science, Department of Environmental Sciences, University of Gujrat (Hafiz Hayat Campus), Gujrat, Punjab, Pakistan
| |
Collapse
|
5
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
6
|
Gao JJ, Wang B, Peng RH, Li ZJ, Xu J, Tian YS, Yao QH. Phytoremediation of multiple persistent pollutants co-contaminated soil by HhSSB transformed plant. ENVIRONMENTAL RESEARCH 2021; 197:110959. [PMID: 33722526 DOI: 10.1016/j.envres.2021.110959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/28/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The high toxicity of persistent pollutants limits the phytoremediation of pollutants-contaminated soil. In this study, heterologous expressing Halorhodospira halophila single-stranded DNA binding protein gene (HhSSB) improves tolerance to 2,4,6-trinitrotoluene (TNT), 2,4,6-trichlorophenol (2,4,6-TCP), and thiocyanate (SCN-) in A. thaliana and tall fescue (Festuca arundinacea). The HhSSB transformed Arabidopsis, and tall fescue also exhibited enhanced phytoremediation of TNT, 2,4,6-TCP, and SCN- separately contaminated soil and co-contaminated soil compared to control plants. TNT assay was selected to explore the mechanism of how HhSSB enhances the phytoremediation of persistent pollutants. Our result indicates that HhSSB enhances the phytoremediation of TNT by enhancing the transformation of TNT in Arabidopsis. Moreover, transcriptomics and comet analysis revealed that HhSSB improves TNT tolerance through three pathways: strengthening the defense system, enhancing the ROS scavenging system, and reducing DNA damage. These results presented here would be particularly useful for further studies in the remediation of soil contaminated by organic and inorganic pollutants.
Collapse
Affiliation(s)
- Jian-Jie Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Bo Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Zhen-Jun Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
7
|
Kumar V, AlMomin S, Al-Shatti A, Al-Aqeel H, Al-Salameen F, Shajan AB, Nair SM. Enhancement of heavy metal tolerance and accumulation efficiency by expressing Arabidopsis ATP sulfurylase gene in alfalfa. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1112-1121. [PMID: 31044606 DOI: 10.1080/15226514.2019.1606784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transgenic alfalfa (Medicago sativa L.) plants overexpressing the Arabidopsis ATP sulfurylase gene were generated using Agrobacterium-mediated genetic transformation to enhance their heavy metal accumulation efficiency. The ATP sulfurylase gene was cloned from Arabidopsis, following exposure to vanadium (V) and lead (Pb), and transferred into an Agrobacterium tumefaciens binary vector. This was co-cultivated with leaf explants of the alfalfa genotype Regen SY. Co-cultivated leaf explants were cultured on callus and somatic embryo induction medium, followed by regeneration medium for regenerating complete transgenic plants. The transgenic nature of the plants was confirmed using PCR and southern hybridization. The expression of Arabidopsis ATP sulfurylase gene in the transgenic plants was evaluated through RT-PCR. The selected transgenic lines showed increased tolerance to a mixture of five heavy metals and also demonstrated enhanced metal uptake ability under controlled conditions. The transgenic lines were fertile and did not exhibit any apparent morphological abnormality. The results of this study indicated an effective approach to improve the heavy metal accumulation ability of alfalfa plants which can then be used for the remediation of contaminated soil in arid regions.
Collapse
Affiliation(s)
- V Kumar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research , Kuwait City , Kuwait
| | - S AlMomin
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research , Kuwait City , Kuwait
| | - A Al-Shatti
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research , Kuwait City , Kuwait
| | - H Al-Aqeel
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research , Kuwait City , Kuwait
| | - F Al-Salameen
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research , Kuwait City , Kuwait
| | - A B Shajan
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research , Kuwait City , Kuwait
| | - S M Nair
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research , Kuwait City , Kuwait
| |
Collapse
|
8
|
Selmar D, Wittke C, Beck-von Wolffersdorff I, Klier B, Lewerenz L, Kleinwächter M, Nowak M. Transfer of pyrrolizidine alkaloids between living plants: A disregarded source of contaminations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:456-461. [PMID: 30826608 DOI: 10.1016/j.envpol.2019.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
To elucidate the origin of the wide-spread contaminations of plant derived commodities with various alkaloids, we employed co-cultures of pyrrolizidine alkaloid (PA) containing Senecio jacobaea plants with various alkaloid free acceptor plants. Our analyses revealed that all plants grown in the vicinity of the Senecio donor plants indeed contain significant amounts of the PAs, which previously had been synthesized in the Senecio plants. These findings illustrate that typical secondary metabolites, such as pyrrolizidine alkaloids, are commonly transferred and exchanged between living plants. In contrast to the broad spectrum of alkaloids in Senecio, in the acceptor plants nearly exclusively jacobine is accumulated. This indicates that this alkaloid is exuded specifically by the Senecio roots. Although the path of alkaloid transfer from living donor plants is not yet fully elucidated, these novel insights will extend and change our understanding of plant-plant interactions and reveal a high relevance with respect to the widespread alkaloidal contaminations of plant-derived commodities. Moreover, they could be the basis for the understanding of various so far not fully understood phenomena in cultivation of various crops, e.g. the beneficial effects of crop rotations or the co-cultivation of certain vegetables.
Collapse
Affiliation(s)
- Dirk Selmar
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Mendelssohnstraße 4, D-38106, Braunschweig, Germany.
| | - Carina Wittke
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Mendelssohnstraße 4, D-38106, Braunschweig, Germany
| | | | - Bernhard Klier
- Phytolab, Dutendorferstr. 5-7, D-91487, Vestenbergsgreuth, Germany
| | - Laura Lewerenz
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Mendelssohnstraße 4, D-38106, Braunschweig, Germany
| | | | - Melanie Nowak
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Mendelssohnstraße 4, D-38106, Braunschweig, Germany
| |
Collapse
|
9
|
Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1582-1599. [PMID: 30045575 DOI: 10.1016/j.scitotenv.2018.02.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 05/18/2023]
Abstract
Environmental problems such as the deterioration of groundwater quality, soil degradation and various threats to human, animal and ecosystem health are closely related to the presence of high concentrations of organic xenobiotics in the environment. Employing appropriate technologies to remediate contaminated soils is crucial due to the site-specificity of most remediation methods. The limitations of conventional remediation technologies include poor environmental compatibility, high cost of implementation and poor public acceptability. This raises the call to employ biological methods for remediation. Bioremediation and microbe-assisted bioremediation (phytoremediation) offer many ecological and cost-associated benefits. The overall efficiency and performance of bio- and phytoremediation approaches can be enhanced by genetically modified microbes and plants. Moreover, phytoremediation can also be stimulated by suitable plant-microbe partnerships, i.e. plant-endophytic or plant-rhizospheric associations. Synergistic interactions between recombinant bacteria and genetically modified plants can further enhance the restoration of environments impacted by organic pollutants. Nevertheless, releasing genetically modified microbes and plants into the environment does pose potential risks. These can be minimized by adopting environmental biotechnological techniques and guidelines provided by environmental protection agencies and other regulatory frameworks. The current contribution provides a comprehensive overview on enhanced bioremediation and phytoremediation approaches using transgenic plants and microbes. It also sheds light on the mitigation of associated environmental risks.
Collapse
Affiliation(s)
- Imran Hussain
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria; Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Austria
| | - Gajender Aleti
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shahida Shaheen
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS Institute of Information Technology, Park Road Tarlai Kalan 45550, Islamabad, Pakistan; Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong.
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
| |
Collapse
|
10
|
Rylott EL, Johnston EJ, Bruce NC. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6519-33. [PMID: 26283045 DOI: 10.1093/jxb/erv384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
11
|
L. Edwin-W N, E. Nkang A. Evaluation of Enzyme Expression in a Macrophytic Treated Crude Oil Soil Habitat: Implication for Enhanced Phytoremediation Potential Using Transgenic Botanicals. ACTA ACUST UNITED AC 2015. [DOI: 10.5567/ecology-ik.2015.13.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Angelini VA, Agostini E, Medina MI, González PS. Use of hairy roots extracts for 2,4-DCP removal and toxicity evaluation by Lactuca sativa test. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2531-9. [PMID: 24085515 DOI: 10.1007/s11356-013-2172-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/16/2013] [Indexed: 05/27/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is widely distributed in wastewaters discharged from several industries, and it is considered as a priority pollutant due to its high toxicity. In this study, the use of different peroxidase extracts for 2,4-DCP removal from aqueous solutions was investigated. Tobacco hairy roots (HRs), wild-type (WT), and double-transgenic (DT) for tomato basic peroxidases (TPX1 and TPX2) were used to obtain different peroxidase extracts: total peroxidases (TPx), soluble peroxidases (SPx), and peroxidases ionically bound to the cell wall (IBPx). All extracts derived from DT HRs exhibited higher peroxidase activity than those obtained from WT HRs. TPx and IBPx DT extracts showed the highest catalytic efficiency values. The optimal conditions for 2,4-DCP oxidation were pH 6.5, H2O2 0.5 mM, and 200 U mL(-1) of enzyme, for all extracts analyzed. Although both TPx extracts were able to oxidize different 2,4-DCP concentrations, the removal efficiency was higher for TPx DT. Polyethylene glycol addition slightly improved 2,4-DCP removal efficiency, and it showed some protective effect on TPx WT after 2,4-DCP oxidation. In addition, using Lactuca sativa test, a reduction of the toxicity of post removal solutions was observed, for both TPx extracts. The results demonstrate that TPx extracts from both tobacco HRs appear to be promising candidate for future applications in removing 2,4-DCP from wastewaters. This is particularly true considering that these peroxidase sources are associated with low costs and are readily available. However, TPx DT has increased peroxidase activity, catalytic efficiency, and higher removal efficiency than TPx WT, probably due to the expression of TPX1 and TPX2 isoenzymes.
Collapse
Affiliation(s)
- Vanina A Angelini
- Departamento de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina,
| | | | | | | |
Collapse
|
13
|
Kumar S, Jin M, Weemhoff JL. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes. ACTA ACUST UNITED AC 2012; 3. [PMID: 25298920 PMCID: PMC4186655 DOI: 10.4172/2157-7463.1000127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation.
Collapse
Affiliation(s)
| | - Mengyao Jin
- School of Pharmacy, University of Missouri, USA
| | | |
Collapse
|
14
|
Endophyte-Assisted Phytoremediation of Explosives in Poplar Trees by Methylobacterium populi BJ001T. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-1599-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|