1
|
van Hasselt SJ, Coscia M, Allocca G, Vyssotski AL, Meerlo P. Seasonal variation in sleep time: jackdaws sleep when it is dark, but do they really need it? J Comp Physiol B 2024; 194:335-345. [PMID: 37789130 PMCID: PMC11233326 DOI: 10.1007/s00360-023-01517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Sleep is an important behavioural and physiological state that is ubiquitous throughout the animal kingdom. Birds are an interesting group to study sleep since they share similar sleep features with mammals. Interestingly, sleep time in birds has been shown to vary greatly amongst seasons. To understand the mechanisms behind these variations in sleep time, we did an electro-encephalogram (EEG) study in eight European jackdaws (Coloeus monedula) in winter and summer under outdoor seminatural conditions. To assess whether the amount and pattern of sleep is determined by the outdoor seasonal state of the animals or directly determined by the indoor light-dark cycle, we individually housed them indoors where we manipulated the light-dark (LD) cycles to mimic long winter nights (8:16 LD) and short summer nights (16:8 LD) within both seasons. Jackdaws showed under seminatural outdoor conditions 5 h less sleep in summer compared to winter. During the indoor conditions, the birds rapidly adjusted their sleep time to the new LD cycle. Although they swiftly increased or decreased their sleep time, sleep intensity did not vary. The results indicate that the strong seasonal differences in sleep time are largely and directly driven by the available dark time, rather than an endogenous annual clock. Importantly, these findings confirm that sleep in birds is not a rigid phenomenon but highly sensitive to environmental factors.
Collapse
Affiliation(s)
- Sjoerd J van Hasselt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Massimiliano Coscia
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Giancarlo Allocca
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia
- Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
van Hasselt SJ, Epifani L, Zantinge D, Vitkute K, Kas MJH, Allocca G, Meerlo P. A Study on REM Sleep Homeostasis in the Day-Active Tree Shrew ( Tupaia belangeri): Cold-Induced Suppression of REM Sleep Is Not Followed by a Rebound. BIOLOGY 2023; 12:biology12040614. [PMID: 37106815 PMCID: PMC10136224 DOI: 10.3390/biology12040614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
The function and regulation of rapid-eye-movement (REM) sleep is a topic of ongoing debate. It is often assumed that REM sleep is a homeostatically regulated process and that a need for REM sleep builds up, either during prior wakefulness or during preceding slow wave sleep. In the current study, we tested this hypothesis in six diurnal tree shrews (Tupaia belangeri), small mammals closely related to primates. All animals were individually housed and kept under a 12:12 light-dark cycle with an ambient temperature of 24 °C. We recorded sleep and temperature in the tree shrews for 3 consecutive 24 h days. During the second night, we exposed the animals to a low ambient temperature of 4 °C, a procedure that is known to suppress REM sleep. Cold exposure caused a significant drop in brain temperature and body temperature and also resulted in a strong and selective suppression of REM sleep by 64.9%. However, contrary to our expectation, the loss of REM sleep was not recovered during the subsequent day and night. These findings in a diurnal mammal confirm that the expression of REM sleep is highly sensitive to environmental temperature but do not support the view that REM sleep is homeostatically regulated in this species.
Collapse
Affiliation(s)
- Sjoerd J van Hasselt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Luisa Epifani
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Danique Zantinge
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Kornelija Vitkute
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Giancarlo Allocca
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Somnivore Pty. Ltd., Bacchus Marsh, VIC 3340, Australia
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Bukhtiyarova O, Chauvette S, Seigneur J, Timofeev I. Brain states in freely behaving marmosets. Sleep 2022; 45:6586531. [PMID: 35576961 PMCID: PMC9366652 DOI: 10.1093/sleep/zsac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Study Objectives We evaluated common marmosets as a perspective animal model to study human sleep and wake states. Methods Using wireless neurologger recordings, we performed longitudinal multichannel local field potential (LFP) cortical, hippocampal, neck muscle, and video recordings in three freely behaving marmosets. The brain states were formally identified using self-organizing maps. Results Marmosets were generally awake during the day with occasional 1–2 naps, and they slept during the night. Major electrographic patterns fall in five clearly distinguished categories: wakefulness, drowsiness, light and deep NREM sleep, and REM. Marmosets typically had 14–16 sleep cycles per night, with either gradually increasing or relatively low, but stable delta power within the cycle. Overall, the delta power decreased throughout the night sleep. Marmosets demonstrated prominent high amplitude somatosensory mu-rhythm (10–15 Hz), accompanied with neocortical ripples, and alternated with occipital alpha rhythm (10–15 Hz). NREM sleep was characterized with the presence of high amplitude slow waves, sleep spindles and ripples in neocortex, and sharp-wave-ripple complexes in CA1. Light and deep stages differed in levels of delta and sigma power and muscle tone. REM sleep was defined with low muscle tone and activated LFP with predominant beta-activity and rare spindle-like or mu-like events. Conclusions Multiple features of sleep–wake state distribution and electrographic patterns associated with behavioral states in marmosets closely match human states, although marmoset have shorter sleep cycles. This demonstrates that marmosets represent an excellent model to study origin of human electrographical rhythms and brain states.
Collapse
Affiliation(s)
- Olga Bukhtiyarova
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval , Québec (Québec) , Canada
- CERVO Brain Research Centre , Québec (Québec) , Canada
| | | | | | - Igor Timofeev
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval , Québec (Québec) , Canada
- CERVO Brain Research Centre , Québec (Québec) , Canada
| |
Collapse
|
4
|
Zaid E, Vyssotski AL, Lesku JA. Sleep architecture and regulation of male dusky antechinus, an Australian marsupial. Sleep 2022; 45:6585950. [PMID: 35567787 PMCID: PMC9366648 DOI: 10.1093/sleep/zsac114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study Objectives
In this study, we (1) describe sleep behavior and architecture, and (2) explore how sleep is regulated in dusky antechinus (Antechinus swainsonii), a small insectivorous marsupial. Our aim is to provide the first investigation into sleep homeostasis in a marsupial.
Methods
Wild-caught male dusky antechinus (n = 4) were individually housed in large indoor cages under a natural photoperiod of 10.5 h light/13.5 h dark. Continuous recordings of EEG, EMG, and tri-axial accelerometry were performed under baseline conditions and following 4-h of extended wakefulness.
Results
Antechinus engage in SWS and REM sleep. Some aspects of these states are mammal-like, including a high amount (23%) of REM sleep, but other features are reminiscent of birds, notably, hundreds of short sleep episodes (SWS mean: 34 s; REM sleep: 10 s). Antechinus are cathemeral and sleep equally during the night and day. Immediately after the sleep deprivation ended, the animals engaged in more SWS, longer SWS episodes, and greater SWS SWA. The animals did not recover lost REM sleep.
Conclusions
Sleep architecture in dusky antechinus was broadly similar to that observed in eutherian and marsupial mammals, but with interesting peculiarities. We also provided the first evidence of SWS homeostasis in a marsupial mammal.
Collapse
Affiliation(s)
- Erika Zaid
- School of Agriculture, Biomedicine and Environment, La Trobe University , Melbourne , Australia
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich/ETH Zurich , Zurich , Switzerland
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University , Melbourne , Australia
| |
Collapse
|
5
|
Johnsson RD, Connelly F, Vyssotski AL, Roth TC, Lesku JA. Homeostatic regulation of NREM sleep, but not REM sleep, in Australian magpies. Sleep 2021; 45:6357668. [PMID: 34432054 DOI: 10.1093/sleep/zsab218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES We explore NREM and REM sleep homeostasis in Australian magpies (Cracticus tibicen tyrannica). We predicted that magpies would recover lost sleep by spending more time in NREM and REM sleep, and by engaging in more intense NREM sleep as indicated by increased slow-wave activity (SWA). METHODS Continuous 72-h recordings of EEG, EMG and tri-axial accelerometry, along with EEG spectral analyses, were performed on wild-caught Australian magpies housed in indoor aviaries. Australian magpies were subjected to two protocols of night-time sleep deprivation: full 12-h night (n = 8) and first 6-h half of the night (n = 5), which were preceded by a 36-h baseline recording and followed by a 24-h recovery period. RESULTS Australian magpies recovered lost NREM sleep by sleeping more, with increased NREM sleep consolidation, and increased SWA during recovery sleep. Following 12-h of night-time sleep loss, magpies also showed reduced SWA the following night after napping more during the recovery day. Surprisingly, the magpies did not recover any lost REM sleep. CONCLUSIONS Only NREM sleep is homeostatically regulated in Australian magpies with the level of SWA reflecting prior sleep/wake history. The significance of emerging patterns on the apparent absence of REM sleep homeostasis, now observed in multiple species, remains unclear.
Collapse
Affiliation(s)
- Robin D Johnsson
- La Trobe University, School of Life Sciences, Melbourne, Australia
| | - Farley Connelly
- La Trobe University, School of Life Sciences, Melbourne, Australia.,The University of Melbourne, School of BioSciences, Melbourne, Australia
| | | | - Timothy C Roth
- Franklin and Marshall College, Department of Psychology, Lancaster, USA
| | - John A Lesku
- La Trobe University, School of Life Sciences, Melbourne, Australia
| |
Collapse
|
6
|
Wang J, Li Q, Huang Q, Lv M, Li P, Dai J, Zhou M, Xu J, Zhang F, Gao J. Washed Microbiota Transplantation Accelerates the Recovery of Abnormal Changes by Light-Induced Stress in Tree Shrews. Front Cell Infect Microbiol 2021; 11:685019. [PMID: 34249778 PMCID: PMC8262326 DOI: 10.3389/fcimb.2021.685019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The gut and brain interact constantly in a complex fashion. Its intricacy and intrigue is progressively being revealed in the study of the "gut-brain axis". Among many factors, abnormal light exposure is a potential powerful stressor, which is becoming ever more pervasive in our modern society. However, little is known about how stress, induced by staying up late by light, affects the gut-brain axis. We addressed this question by extending the normal circadian light for four hours at night in fifteen male tree shrews to simulate the pattern of staying up late in humans. The behavior, biochemical tests, microbiota dynamics, and brain structure of tree shrews were evaluated. The simple prolongation of light in the environment resulted in substantial changes of body weight loss, behavioral differences, total sleep time reduction, and an increased level of urine cortisol. These alterations were rescued by the treatment of either ketamine or washed microbiota transplantation (WMT). Importantly, the sustainability of WMT effect was better than that of ketamine. Magnetic Resonance Imaging analysis indicated that ketamine acted on the hippocampus and thalamus, and WMT mainly affected the piriform cortex and lateral geniculate nucleus. In conclusion, long-term light stimulation could change the behaviors, composition of gut microbiota and brain structure in tree shrews. Targeting microbiota thus certainly holds promise as a treatment for neuropsychiatric disorders, including but not limited to stress-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Qianqian Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Lv
- Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Pan Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Jing Dai
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Minjie Zhou
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jialu Xu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Jun Gao
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Department of Rehabilitation Medicine, Jiangsu Shengze Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Dimanico MM, Klaassen AL, Wang J, Kaeser M, Harvey M, Rasch B, Rainer G. Aspects of tree shrew consolidated sleep structure resemble human sleep. Commun Biol 2021; 4:722. [PMID: 34117351 PMCID: PMC8196209 DOI: 10.1038/s42003-021-02234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. Dimanico et al investigated sleep in tree shrews using electrophysiological recordings and compared it to equivalent read-outs in rats and humans. They reported that there was considerable homology of sleep structure between humans and tree shrews despite the difference in body mass between these species.
Collapse
Affiliation(s)
- Marta M Dimanico
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Arndt-Lukas Klaassen
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Jing Wang
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Melanie Kaeser
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Harvey
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
8
|
Ocampo-Garcés A, Bassi A, Brunetti E, Estrada J, Vivaldi EA. REM sleep-dependent short-term and long-term hourglass processes in the ultradian organization and recovery of REM sleep in the rat. Sleep 2021; 43:5734991. [PMID: 32052056 DOI: 10.1093/sleep/zsaa023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES To evaluate the contribution of long-term and short-term REM sleep homeostatic processes to REM sleep recovery and the ultradian organization of the sleep wake cycle. METHODS Fifteen rats were sleep recorded under a 12:12 LD cycle. Animals were subjected during the rest phase to two protocols (2T2I or 2R2I) performed separately in non-consecutive experimental days. 2T2I consisted of 2 h of total sleep deprivation (TSD) followed immediately by 2 h of intermittent REM sleep deprivation (IRD). 2R2I consisted of 2 h of selective REM sleep deprivation (RSD) followed by 2 h of IRD. IRD was composed of four cycles of 20-min RSD intervals alternating with 10 min of sleep permission windows. RESULTS REM sleep debt that accumulated during deprivation (9.0 and 10.8 min for RSD and TSD, respectively) was fully compensated regardless of cumulated NREM sleep or wakefulness during deprivation. Protocol 2T2I exhibited a delayed REM sleep rebound with respect to 2R2I due to a reduction of REM sleep transitions related to enhanced NREM sleep delta-EEG activity, without affecting REM sleep consolidation. Within IRD permission windows there was a transient and duration-dependent diminution of REM sleep transitions. CONCLUSIONS REM sleep recovery in the rat seems to depend on a long-term hourglass process activated by REM sleep absence. Both REM sleep transition probability and REM sleep episode consolidation depend on the long-term REM sleep hourglass. REM sleep activates a short-term REM sleep refractory period that modulates the ultradian organization of sleep states.
Collapse
Affiliation(s)
- Adrián Ocampo-Garcés
- Laboratorio de Sueño y Cronobiología, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandro Bassi
- Laboratorio de Sueño y Cronobiología, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Enzo Brunetti
- Instituto de Neurocirugía e Investigaciones Cerebrales Doctor Alfonso Asenjo, Santiago, Chile
| | - Jorge Estrada
- Laboratorio de Sueño y Cronobiología, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ennio A Vivaldi
- Laboratorio de Sueño y Cronobiología, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
van Hasselt SJ, Rusche M, Vyssotski AL, Verhulst S, Rattenborg NC, Meerlo P. The European starling (Sturnus vulgaris) shows signs of NREM sleep homeostasis but has very little REM sleep and no REM sleep homeostasis. Sleep 2021; 43:5682807. [PMID: 31863116 PMCID: PMC7294413 DOI: 10.1093/sleep/zsz311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Indexed: 01/02/2023] Open
Abstract
Most of our knowledge about the regulation and function of sleep is based on studies in a restricted number of mammalian species, particularly nocturnal rodents. Hence, there is still much to learn from comparative studies in other species. Birds are interesting because they appear to share key aspects of sleep with mammals, including the presence of two different forms of sleep, i.e. non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We examined sleep architecture and sleep homeostasis in the European starling, using miniature dataloggers for electroencephalogram (EEG) recordings. Under controlled laboratory conditions with a 12:12 h light-dark cycle, the birds displayed a pronounced daily rhythm in sleep and wakefulness with most sleep occurring during the dark phase. Sleep mainly consisted of NREM sleep. In fact, the amount of REM sleep added up to only 1~2% of total sleep time. Animals were subjected to 4 or 8 h sleep deprivation to assess sleep homeostatic responses. Sleep deprivation induced changes in subsequent NREM sleep EEG spectral qualities for several hours, with increased spectral power from 1.17 Hz up to at least 25 Hz. In contrast, power below 1.17 Hz was decreased after sleep deprivation. Sleep deprivation also resulted in a small compensatory increase in NREM sleep time the next day. Changes in EEG spectral power and sleep time were largely similar after 4 and 8 h sleep deprivation. REM sleep was not noticeably compensated after sleep deprivation. In conclusion, starlings display signs of NREM sleep homeostasis but the results do not support the notion of important REM sleep functions.
Collapse
Affiliation(s)
- Sjoerd J van Hasselt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Maria Rusche
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich, Zurich, Switzerland
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Luo PH, Shu YM, Ni RJ, Liu YJ, Zhou JN. A Characteristic Expression Pattern of Core Circadian Genes in the Diurnal Tree Shrew. Neuroscience 2020; 437:145-160. [PMID: 32339628 DOI: 10.1016/j.neuroscience.2020.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
The day-active tree shrew may serve as an animal model of human-like diurnal rhythms. However, the molecular basis for circadian rhythms in this species has remained unclear. In the present study, we investigated the expression patterns of core circadian genes involved in transcriptional/translational feedback loops (TTFLs) in both central and peripheral tissues of the tree shrew. The expression of 12 core circadian genes exhibited similar rhythmic patterns in the olfactory bulb, prefrontal cortex, hippocampus, and cerebellum, while the hypothalamus exhibited the weakest oscillations. The rhythms in peripheral tissues, especially the liver, were much more robust than those in brain tissues. ARNTL and NPAS2 were weakly rhythmic in brain tissues but exhibited almost the strongest rhythmicity in peripheral tissues. CLOCK and CRY2 exhibited the weakest rhythms in both central and peripheral tissues, while NR1D1 and CIART exhibited robust rhythms in both tissues. Most of these circadian genes were highly expressed at light/dark transitions in both brain and peripheral tissues, such as ARNTL and NPAS2 peaking at dusk while PERs peaking at dawn. Additionally, the peripheral clock was phase-advanced relative to the brain clock, as there was a significant advance (2-4 h) for PER3, DBP, NR1D1 and NR1D2. Furthermore, these genes exhibited an anti-phasic relationship between the diurnal tree shrew and the nocturnal mouse (i.e., 12-h phasing differential). Collectively, our findings demonstrate a characteristic expression pattern of core circadian genes in the tree shrew, which may provide a means for elucidating molecular mechanisms of diurnal rhythms.
Collapse
Affiliation(s)
- Peng-Hao Luo
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yu-Mian Shu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Rong-Jun Ni
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin) 2020; 7:321-362. [PMID: 33251281 PMCID: PMC7678948 DOI: 10.1080/23328940.2020.1743605] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
This article reviews the literature on the circadian rhythms of body temperature and whole-organism metabolism. The two rhythms are first described separately, each description preceded by a review of research methods. Both rhythms are generated endogenously but can be affected by exogenous factors. The relationship between the two rhythms is discussed next. In endothermic animals, modulation of metabolic activity can affect body temperature, but the rhythm of body temperature is not a mere side effect of the rhythm of metabolic thermogenesis associated with general activity. The circadian system modulates metabolic heat production to generate the body temperature rhythm, which challenges homeothermy but does not abolish it. Individual cells do not regulate their own temperature, but the relationship between circadian rhythms and metabolism at the cellular level is also discussed. Metabolism is both an output of and an input to the circadian clock, meaning that circadian rhythmicity and metabolism are intertwined in the cell.
Collapse
Affiliation(s)
- Roberto Refinetti
- Department of Psychology, University of New Orleans, New Orleans, LA, USA
| |
Collapse
|
12
|
Rattenborg NC, de la Iglesia HO, Kempenaers B, Lesku JA, Meerlo P, Scriba MF. Sleep research goes wild: new methods and approaches to investigate the ecology, evolution and functions of sleep. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0251. [PMID: 28993495 DOI: 10.1098/rstb.2016.0251] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 11/12/2022] Open
Abstract
Despite being a prominent aspect of animal life, sleep and its functions remain poorly understood. As with any biological process, the functions of sleep can only be fully understood when examined in the ecological context in which they evolved. Owing to technological constraints, until recently, sleep has primarily been examined in the artificial laboratory environment. However, new tools are enabling researchers to study sleep behaviour and neurophysiology in the wild. Here, we summarize the various methods that have enabled sleep researchers to go wild, their strengths and weaknesses, and the discoveries resulting from these first steps outside the laboratory. The initial studies to 'go wild' have revealed a wealth of interindividual variation in sleep, and shown that sleep duration is not even fixed within an individual, but instead varies in response to an assortment of ecological demands. Determining the costs and benefits of this inter- and intraindividual variation in sleep may reveal clues to the functions of sleep. Perhaps the greatest surprise from these initial studies is that the reduction in neurobehavioural performance resulting from sleep loss demonstrated in the laboratory is not an obligatory outcome of reduced sleep in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | | | - Bart Kempenaers
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 Groningen, The Netherlands
| | - Madeleine F Scriba
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Sleep Ecophysiology: Integrating Neuroscience and Ecology. Trends Ecol Evol 2016; 31:590-599. [DOI: 10.1016/j.tree.2016.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
14
|
Parésys L, Hoffmann K, Froger N, Bianchi M, Villey I, Baulieu EE, Fuchs E. Effects of the Synthetic Neurosteroid: 3β-Methoxypregnenolone (MAP4343) on Behavioral and Physiological Alterations Provoked by Chronic Psychosocial Stress in Tree Shrews. Int J Neuropsychopharmacol 2015; 19:pyv119. [PMID: 26476437 PMCID: PMC4851265 DOI: 10.1093/ijnp/pyv119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/14/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Most currently available active antidepressant drugs are selective serotonin/noradrenaline reuptake inhibitors. However, as their clinical efficacy is not immediate, long-term administration is often accompanied by substantial side effects, and numerous patients remain non- or partial responders. We have recently found that the synthetic neurosteroid derivative 3β-methoxypregnenolone, which binds to the microtubule-associated protein-2, can provide a novel therapeutic approach in experimental model of depressive disorders in rats. To further validate the antidepressant-like efficacy of 3β-methoxypregnenolone, we investigated effects of a longer treatment (4-week oral administration; 50mg/kg/d) in a nonrodent species, the tree shrew, exposed to psychosocial stress that elicits close-to-human alterations observed in patients with depressive disorders. METHODS During the experimental period, physiological parameters were registered, including core body temperature and electroencephalogram, while animals were videotaped to analyze their avoidance behavior. Morning urine samples were collected for measurements of cortisol and noradrenaline levels. RESULTS We found that treatment with 3β-methoxypregnenolone abolished stress-triggered avoidance behavior and prevented hormone hypersecretion, hypothermia, and sleep disturbances, further suggesting its antidepressant-like efficacy. Comparative treatment with fluoxetine also prevented some of the physiological alterations, while the hypersecretion of cortisol and sleep disturbances were not or partially restored by fluoxetine, suggesting a better efficacy of 3β-methoxypregnenolone. Alpha-tubulin isoforms were measured in hippocampi: we found that 3β-methoxypregnenolone reversed the specific decrease in acetylation of α-tubulin induced by psychosocial stress, while it did not modify the psychosocial stress-elicited reduction of tyrosinated α-tubulin. CONCLUSIONS Taken together, these data strongly suggest a potent antidepressant-like effect of 3β-methoxypregnenolone on translational parameters.
Collapse
Affiliation(s)
| | | | - Nicolas Froger
- MAPREG SAS, Le Kremlin-Bicêtre, France (Drs Parésys, Froger, Bianchi, Villey, and Baulieu); German Primate Center, Göttingen, Germany (Drs Hoffmann and Fuchs).
| | | | | | | | | |
Collapse
|
15
|
Shu YM, Ni RJ, Sun YJ, Fang H, Zhou JN. Distribution of corticotropin-releasing factor in the tree shrew brain. Brain Res 2015; 1618:270-85. [PMID: 26074350 DOI: 10.1016/j.brainres.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
Abstract
Corticotropin-releasing factor (CRF) in the brain plays an important role in regulations of physiological and behavioral processes, yet CRF distribution in tree shrew brain has not been thoroughly and systematically reported. Here we examined the distribution of CRF immunoreactivity in the brain of tree shrews (Tupaia belangeri chinensis) using immunohistochemical techniques. CRF-immunoreactive (-ir) cells and fibers were present in the rhinencephalon, telencephalon, diencephalon, mesencephalon, metencephalon and myelencephalon of saline- and colchicine-treated tree shrews. Laminar distribution of CRF-ir cells was found in the main olfactory bulb and neocortex. Compared with saline-treated tree shrews, a larger number of CRF-ir cells in colchicine-treated tree shrews were found in the bed nucleus of the stria terminalis, paraventricular hypothalamic nucleus, medial preoptic area, dorsomedial hypothalamic nucleus, reuniens thalamic nucleus, inferior colliculus, Edinger-Westphal nucleus, median raphe nucleus, locus coeruleus, parabrachial nucleus, dorsal tegmental nucleus, lateral reticular nucleus, and inferior olive. CRF-ir fibers from the hypothalamic paraventricular nucleus projected toward and through the internal zone of the median eminence. In addition, density of CRF immunoreactivity is significantly different in the bed nucleus of the stria terminalis, central amygdaloid nucleus, suprachiasmatic nucleus, median raphe nucleus, Edinger-Westphal nucleus, locus coeruleus and inferior olive between tree shrews and rats after saline or colchicine treatment. Our findings provide, for the first time, the comprehensive description of CRF immunoreactivity and whole brain mapping of CRF in tree shrews, which is an anatomical basis for the participation of CRF system in the regulation of numerous behaviors.
Collapse
Affiliation(s)
- Yu-Mian Shu
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Rong-Jun Ni
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Yun-Jun Sun
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Hui Fang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PR China.
| |
Collapse
|
16
|
Coimbra JP, Collin SP, Hart NS. Variations in retinal photoreceptor topography and the organization of the rod-free zone reflect behavioral diversity in Australian passerines. J Comp Neurol 2015; 523:1073-94. [DOI: 10.1002/cne.23718] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 02/01/2023]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
- School of Anatomical Sciences, University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
| |
Collapse
|
17
|
Mexicano G, Montoya-Loaiza B, Ayala-Guerrero F. Sleep characteristics in the quail Coturnix coturnix. Physiol Behav 2014; 129:167-72. [PMID: 24582668 DOI: 10.1016/j.physbeh.2014.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/30/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED As mammals, birds exhibit two sleep phases, slow wave sleep (SWS) and REM (Rapid Eye Movement) sleep characterized by presenting different electrophysiological patterns of brain activity. During SWS a high amplitude slow wave pattern in brain activity is observed. This activity is substituted by a low amplitude fast frequency pattern during REM sleep. Common quail (Coturnix coturnix) is an animal model that has provided information related to different physiological mechanisms present in man. There are reports related to its electrophysiological brain activity, however the sleep characteristics that have been described are not. The objectives of this study is describing the sleep characteristics throughout the nychthemeral cycle of the common quail and consider this bird species as an avian model to analyze the regulatory mechanisms of sleep. Experiments were carried out in implanted exemplars of C. coturnix. Under general anesthesia induced by ether inhalation, stainless steel electrodes were placed to register brain activity from the anterior and posterior areas during 24 continuous hours throughout the sleep-wake cycle. Ocular and motor activities were visually monitored. Quail showed four electrophysiologically and behaviorally different states of vigilance: wakefulness (53.28%), drowsiness (14.27%), slow wave sleep (30.47%) and REM sleep (1.98%). The animals presented 202 REM sleep episodes throughout the nychthemeral cycle. Sleep distribution was polyphasic; however sleep amount was significantly greater during the period corresponding to the night. The number of nocturnal REM sleep episodes was significantly greater than that of diurnal one. CONCLUSION The quail C. coturnix shows a polyphasic distribution of sleep; however the amount of this state of vigilance is significantly greater during the nocturnal period.
Collapse
Affiliation(s)
- Graciela Mexicano
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de Mexico Mexico
| | - Bibiana Montoya-Loaiza
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de Mexico Mexico
| | - Fructuoso Ayala-Guerrero
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de Mexico Mexico.
| |
Collapse
|
18
|
Toth LA, Bhargava P. Animal models of sleep disorders. Comp Med 2013; 63:91-104. [PMID: 23582416 PMCID: PMC3625050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/21/2012] [Accepted: 11/25/2012] [Indexed: 06/02/2023]
Abstract
Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders-insomnia, narcolepsy, restless legs syndrome, and sleep apnea-and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders.
Collapse
Affiliation(s)
- Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| | | |
Collapse
|
19
|
Horne J. Why REM sleep? Clues beyond the laboratory in a more challenging world. Biol Psychol 2013; 92:152-68. [DOI: 10.1016/j.biopsycho.2012.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 09/17/2012] [Accepted: 10/11/2012] [Indexed: 11/16/2022]
|
20
|
Behavioral and electrophysiological correlates of sleep and sleep homeostasis. Curr Top Behav Neurosci 2013; 25:1-24. [PMID: 24142866 DOI: 10.1007/7854_2013_248] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The definition of what sleep is depends on the method that is applied to record sleep. Behavioral and (electro)-physiological measures of sleep clearly overlap in mammals and birds , but it is often unclear how these two relate in other vertebrates and invertebrates. Homeostatic regulation of sleep, where the amount of sleep depends on the amount of previous waking, can be observed in physiology and behavior in all animals this was tested in. In mammals and birds, sleep is generally subdivided into two states, non-rapid eye movement (NREM) sleep and REM sleep. In mammals the combination of behavioral sleep and the changes in the slow-wave range of the NREM sleep electroencephalogram (EEG) can explain and predict the occurrence and depth of sleep in great detail. For REM sleep this is far less clear. Finally, the discovery that slow-waves in the NREM sleep EEG are influenced locally on the cortex depending on prior waking behavior is an interesting new development that asks for an adaptation of the concept of homeostatic regulation of sleep. Incorporating local sleep into models of sleep regulation is needed to obtain a comprehensive picture.
Collapse
|
21
|
Hoffmann K, Coolen A, Schlumbohm C, Meerlo P, Fuchs E. Remote long-term registrations of sleep-wake rhythms, core body temperature and activity in marmoset monkeys. Behav Brain Res 2012; 235:113-23. [DOI: 10.1016/j.bbr.2012.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|