1
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
2
|
Yin J, Wang H, Li S, Zhao L, You Y, Yang J, Liu Y. Nonlinear relationship between sleep midpoint and depression symptoms: a cross-sectional study of US adults. BMC Psychiatry 2023; 23:671. [PMID: 37715146 PMCID: PMC10503124 DOI: 10.1186/s12888-023-05130-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Despite the close relationship between sleep-wake cycles and depression symptoms, the relationship between sleep midpoint and depression symptoms in adults remains understudied. METHODS In this cross-sectional study, 18280 adults aged ≥ 18 years from the National Health and Nutrition Examination Survey (NHANES) 2015-2020 were analyzed. Covariates included age, sex, race/ethnicity, education level, marital status, family income, body mass index, smoking status, drinking status, physical activity, comorbid condition, sleep duration, and sleep disturbance were adjusted in multivariate regression models. RESULTS Weighted restricted cubic spline based on the complex sampling design of NHANES showed that in participants with a sleep midpoint from 2:18 AM to 6:30 AM, the prevalence of depression symptoms increased by 0.2 times (adjusted odds ratio [OR] = 1.20, 95% confidence interval [CI]: 1.08-1.33) per 1-h increment in sleep midpoint compared to the reference point of 2:18 AM. For participants with a sleep midpoint after 6:30 AM and before 2:18 AM the next day, the relationship between sleep midpoint and depression symptoms was not significant after adjusting for all covariates (adjusted OR = 1.01, 95% CI: 0.99-1.03). CONCLUSIONS The findings indicate a significant nonlinear association between sleep midpoint and depression symptoms in a nationally representative sample of adults.
Collapse
Affiliation(s)
- Jiahui Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayang Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Li
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leiyong Zhao
- Department of Psychosomatic Medicine, Affliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuanxiang Liu
- Department of Neurology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China.
| |
Collapse
|
3
|
Yang YD, Zeng Y, Li J, Zhou JH, He QY, Zheng CJ, Reichetzeder C, Krämer BK, Hocher B. Association of BMAL1 clock gene polymorphisms with fasting glucose in children. Pediatr Res 2023:10.1038/s41390-023-02467-8. [PMID: 36732647 PMCID: PMC10382306 DOI: 10.1038/s41390-023-02467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/02/2022] [Accepted: 12/18/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The brain and muscle Arnt-like protein-1 (BMAL1) gene is an important circadian clock gene and previous studies have found that certain polymorphisms are associated with type 2 diabetes in adults. However, it remains unknown if such polymorphisms can affect fasting glucose in children and if other factors modify the associations. METHODS A school-based cross-sectional study with 947 Chinese children was conducted. A multivariable linear regression model was used to analyze the association between BMAL1 gene polymorphisms and fasting glucose level. RESULTS After adjusting for age, sex, body mass index (BMI), physical activity, and unhealthy diet, GG genotype carriers of BMAL1 rs3789327 had higher fasting glucose than AA/GA genotype carriers (b = 0.101, SE = 0.050, P = 0.045). Adjusting for the same confounders, rs3816358 was shown to be significantly associated with fasting glucose (b = 0.060, SE = 0.028, P = 0.032). Furthermore, a significant interaction between rs3789327 and nutritional status on fasting glucose was identified (Pinteraction = 0.009); rs3789327 was associated with fasting glucose in the overweight/obese subgroup (b = 0.353, SE = 0.126, P = 0.006), but not in non-overweight/non-obese children. CONCLUSIONS BMAL1 polymorphisms were significantly associated with the fasting glucose level in children. Additionally, the observed interaction between nutritional status and BMAL1 supports promoting an optimal BMI in children genetically predisposed to higher glucose level. IMPACT Polymorphisms in the essential circadian clock gene BMAL1 were associated with fasting blood glucose levels in children. Additionally, there was a significant interaction between nutritional status and BMAL1 affecting fasting glucose levels. BMAL1 rs3789327 was associated with fasting glucose only in overweight/obese children. This finding could bring novel insights into mechanisms by which nutritional status influences fasting glucose in children.
Collapse
Affiliation(s)
- Yi-De Yang
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, 410006, Changsha, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Yuan Zeng
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, 410006, Changsha, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Jian Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, 410013, Changsha, China
| | - Jun-Hua Zhou
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Quan-Yuan He
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Chan-Juan Zheng
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, 410006, Changsha, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.,HMU - Health and Medical University, Potsdam, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, 410013, Changsha, China. .,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany. .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China. .,Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022; 81:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The old people often suffer from circadian rhythm disturbances, which in turn accelerate aging. Many aging-related degenerative diseases such as Alzheimer's disease, Parkinson's disease, and osteoarthritis have an inextricable connection with circadian rhythm. In light of the predominant effects of clock genes on regulating circadian rhythm, we systematically present the elaborate network of roles that clock genes play in aging in this review. First, we briefly introduce the basic background regarding clock genes. Second, we systemically summarize the roles of clock genes in aging and aging-related degenerative diseases. Third, we discuss the relationship between clock genes polymorphisms and aging. In summary, this review is intended to clarify the indispensable roles of clock genes in aging and sheds light on developing clock genes as anti-aging targets.
Collapse
Affiliation(s)
- Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chengxu Xue
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Danni Xu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Peng LU, Bai G, Pang Y. Roles of NPAS2 in circadian rhythm and disease. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1257-1265. [PMID: 34415290 DOI: 10.1093/abbs/gmab105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
NPAS2, a circadian rhythm gene encoding the neuronal PAS domain protein 2 (NPAS2), has received widespread attention because of its complex functions in cells and diverse roles in disease progression, especially tumorigenesis. NPAS2 binds with DNA at E-box sequences and forms heterodimers with another circadian protein, brain and muscle ARNT-like protein 1 (BMAL1). Nucleotide variations of the NPAS2 gene have been shown to influence the overall survival and risk of death of cancer patients, and differential expression of NPAS2 has been linked to patient outcomes in breast cancer, lung cancer, non-Hodgkin's lymphoma, and other diseases. Here, we review the latest advances in our understanding of NPAS2 with the aim of drawing attention to its potential clinical applications and prospects.
Collapse
Affiliation(s)
- L u Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Gaigai Bai
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Melhuish Beaupre LM, Gonçalves VF, Zai CC, Tiwari AK, Harripaul RS, Herbert D, Freeman N, Müller DJ, Kennedy JL. Genome-Wide Association Study of Sleep Disturbances in Depressive Disorders. MOLECULAR NEUROPSYCHIATRY 2020; 5:34-43. [PMID: 32399468 DOI: 10.1159/000505804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 11/19/2022]
Abstract
Sleep disturbance affects about 75% of depressed individuals and is associated with poorer patient outcomes. The genetics in this field is an emerging area of research. Thus far, only core circadian genes have been examined in this context. We expanded on this by performing a genome-wide association study (GWAS) followed by a preplanned hypothesis-driven analysis with 27 genes associated with the biology of sleep. All participants were diagnosed by their referring physician, completed the Beck Depression Inventory (BDI), and the Udvalg for Kliniske Undersogelser Side Effect Rating Scale at baseline. Our phenotype consisted of replies to 3 questions from these questionnaires. From standard GWAS chip data, imputations were performed. Baseline total BDI scores (n = 364) differed significantly between those with and those without sleep problems. We were unable to find any significant GWAS hits although our top hit was for changes in sleep and an intergenic marker near SNX18 (p = 1.06 × 10<sup>-6</sup>). None of the markers in our hypothesis-driven analysis remained significant after applying Bonferroni corrections. Our top finding among these genes was for rs13019460 of Neuronal PAS Domain Protein 2 with changes in sleep (p = 0.0009). Overall, both analyses were unable to detect any significant associations in our modest sample though we did find some interesting preliminary associations worth further exploration.
Collapse
Affiliation(s)
- Lindsay M Melhuish Beaupre
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vanessa F Gonçalves
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Clement C Zai
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Arun K Tiwari
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ricardo S Harripaul
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Deanna Herbert
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Natalie Freeman
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel J Müller
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - James L Kennedy
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Genetics of Circadian and Sleep Measures in Adults: Implications for Sleep Medicine. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00165-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
LeVan TD, Xiao P, Kumar G, Kupzyk K, Qiu F, Klinkebiel D, Eudy J, Cowan K, Berger AM. Genetic Variants in Circadian Rhythm Genes and Self-Reported Sleep Quality in Women with Breast Cancer. J Circadian Rhythms 2019; 17:6. [PMID: 31303884 PMCID: PMC6611482 DOI: 10.5334/jcr.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Women diagnosed with breast cancer (BC) are at increased risk of sleep deficiency. Approximately 30-60% of these women report poor sleep during and following surgery, chemotherapy, radiation therapy, and anti-estrogen therapy. The purpose of this study was to examine the relationship between genetic variation in circadian rhythm genes and self-reported sleep quality in women with BC. METHODS This cross-sectional study recruited women with a first diagnosis of breast cancer at five sites in Nebraska and South Dakota. Sixty women were included in the study. Twenty-six circadian genes were selected for exome sequencing using the Nextera Rapid Capture Expanded Exome kit. 414 variants had a minor allele frequency of ≥5% and were included in the exploratory analysis. The association between Pittsburgh Sleep Quality Index (PSQI) score and genetic variants was determined by two-sample t-test or ANOVA. RESULTS Twenty-five variants were associated with the PSQI score at p < 0.10, of which 19 were significant at p<0.05, although the associations did not reach statistical significance after adjustment for multiple comparisons. Variants associated with PSQI were from genes CSNK1D & E, SKP1, BHLHE40 & 41, NPAS2, ARNTL, MYRIP, KLHL30, TIMELESS, FBXL3, CUL1, PER1&2, RORB. Two genetic variants were synonymous or missense variants in the BHLHE40 and TIMELESS genes, respectively. CONCLUSIONS These exploratory results demonstrate an association of genetic variants in circadian rhythm pathways with self-reported sleep in women with BC. Testing this association is warranted in a larger replication population.
Collapse
Affiliation(s)
| | - Peng Xiao
- University of Nebraska Medical Center, US
| | | | | | - Fang Qiu
- University of Nebraska Medical Center, US
| | | | - James Eudy
- University of Nebraska Medical Center, US
| | | | | |
Collapse
|
9
|
Dorokhov VB, Puchkova AN, Arsen’ev GN, Slominsky PA, Dementienko VV, Sveshnikov DS, Putilov AA. Association of obesity in shift workers with the minor allele of a single-nucleotide polymorphism (rs4851377) in the largest circadian clock gene (NPAS2). BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1537558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexandra N. Puchkova
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb N. Arsen’ev
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Petr A. Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, the Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Valeriy V. Dementienko
- Laboratory of Medical Electronics, Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Science, Moscow, Russia
| | - Dmitry S. Sveshnikov
- Department of Normal Physiology, Medical Institute, Peoples’ Friendship University of Russia, Moscow, Russia
| | - Arcady A. Putilov
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Zahari Z, Ibrahim MA, Musa N, Tan SC, Mohamad N, Ismail R. Sleep quality and OPRM1 polymorphisms: a cross-sectional study among opioid-naive individuals. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000117217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zalina Zahari
- Universiti Sultan Zainal Abidin, Malaysia; Universiti Sains Malaysia, Malaysia
| | | | | | | | - Nasir Mohamad
- Universiti Sains Malaysia, Malaysia; Universiti Sultan Zainal Abidin, Malaysia
| | - Rusli Ismail
- Universiti Sains Malaysia, Malaysia; Universiti Sultan Zainal Abidin, Malaysia
| |
Collapse
|
11
|
Tranah GJ, Yaffe K, Nievergelt CM, Parimi N, Glymour MM, Ensrud KE, Cauley JA, Ancoli-Israel S, Mariani S, Redline S, Stone KL, the Osteoporotic Fractures in Men Study (MrOS) Research Group. APOEε4 and slow wave sleep in older adults. PLoS One 2018; 13:e0191281. [PMID: 29370207 PMCID: PMC5784964 DOI: 10.1371/journal.pone.0191281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Slow wave (or stage N3) sleep has been linked to a variety of cognitive processes. However, the role of stage N3 in the elderly is debated. The link between stage N3 and episodic memory may be weakened or changed in the older adult population, possibly due to several altered mechanisms impacting the cellular structure of the brain. The bases for the age-related dissociation between stage N3 and cognition are not understood. Since APOEε4 status is the strongest genetic risk factor for cognitive decline, we assessed whether the ε4 allele is associated with stage N3 sleep. Participants were from the population-based Osteoporotic Fractures in Men (MrOS) cohort with polysomnography and APOEε4 genotype data (n = 2,302, 100% male, mean age 76.6 years). Sleep stages were objectively measured using overnight in-home polysomnography and central electroencephalogram data were used to score stage N3 sleep. Cognitive function was assessed using the Modified Mini Mental State Exam (3MS). The APOE rs429358 single nucleotide polymorphism, which defines the APOEε4 allele, was genotyped using a custom genotyping array. Total time in stage N3 sleep was significantly higher (p<0.0001) among the 40 MrOS participants carrying two copies of the ε4 allele (62±5.2 minutes) compared with 43±1.5 minutes for carriers of one ε4 allele (n = 515) and 40±0.8 minutes for ε4 non-carriers (n = 1747). All results were independent of sleep efficiency, number of sleep cycles, and apnea hypopnea index. These findings support an association between APOEε4 genotype and sleep stage N3 in the elderly. Increased total stage N3 duration among ε4/ε4 carriers does not appear to reflect compensation for prior cognitive decline and may reflect overactive downscaling of synapses during sleep. If confirmed, these results might in part explain the high risk of age-related cognitive decline and AD among APOE ε4/ε4 carriers.
Collapse
Affiliation(s)
- Gregory J. Tranah
- Research Institute, California Pacific Medical Center, San Francisco, California, United States of America
| | - Kristine Yaffe
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, California, United States of America
- Medical Center, San Francisco VA, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics University of California San Francisco, San Francisco, California, United States of America
| | - Caroline M. Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Neeta Parimi
- Research Institute, California Pacific Medical Center, San Francisco, California, United States of America
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics University of California San Francisco, San Francisco, California, United States of America
| | - Kristine E. Ensrud
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Chronic Disease Outcomes Research, Minneapolis VA Medical Center, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jane A. Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sara Mariani
- Division of Sleep & Circadian Disorders, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan Redline
- Departments of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katie L. Stone
- Research Institute, California Pacific Medical Center, San Francisco, California, United States of America
| | | |
Collapse
|
12
|
Putilov AA, Dorokhov VB, Poluektov MG. How have our clocks evolved? Adaptive and demographic history of the out-of-African dispersal told by polymorphic loci in circadian genes. Chronobiol Int 2017; 35:511-532. [DOI: 10.1080/07420528.2017.1417314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, the Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, The Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael G. Poluektov
- Department of Nervous Diseases, Institute of Professional Education, I.M. Sechenov 1-st Moscow State Medical University, Moscow, Russia
| |
Collapse
|
13
|
|
14
|
Abstract
The circadian clock interacts with the sleep homeostatic drive in humans. Chronotype and sleep parameters show substantial heritability, underscoring a genetic component to these measures. This article reviews the genetic underpinnings of chronotype and of sleep, including sleepiness, sleep quality and latency, and sleep timing and duration in healthy adult sleepers, drawing on candidate gene and genome-wide association studies. Notably, both circadian and noncircadian genes associate with individual differences in chronotype and in sleep parameters. The article concludes with a brief discussion of future research directions.
Collapse
Affiliation(s)
- Namni Goel
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 1017 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA.
| |
Collapse
|
15
|
Differential arousal regulation by prokineticin 2 signaling in the nocturnal mouse and the diurnal monkey. Mol Brain 2016; 9:78. [PMID: 27535380 PMCID: PMC4989352 DOI: 10.1186/s13041-016-0255-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
The temporal organization of activity/rest or sleep/wake rhythms for mammals is regulated by the interaction of light/dark cycle and circadian clocks. The neural and molecular mechanisms that confine the active phase to either day or night period for the diurnal and the nocturnal mammals are unclear. Here we report that prokineticin 2, previously shown as a circadian clock output molecule, is expressed in the intrinsically photosensitive retinal ganglion cells, and the expression of prokineticin 2 in the intrinsically photosensitive retinal ganglion cells is oscillatory in a clock-dependent manner. We further show that the prokineticin 2 signaling is required for the activity and arousal suppression by light in the mouse. Between the nocturnal mouse and the diurnal monkey, a signaling receptor for prokineticin 2 is differentially expressed in the retinorecipient suprachiasmatic nucleus and the superior colliculus, brain projection targets of the intrinsically photosensitive retinal ganglion cells. Blockade with a selective antagonist reveals the respectively inhibitory and stimulatory effect of prokineticin 2 signaling on the arousal levels for the nocturnal mouse and the diurnal monkey. Thus, the mammalian diurnality or nocturnality is likely determined by the differential signaling of prokineticin 2 from the intrinsically photosensitive retinal ganglion cells onto their retinorecipient brain targets.
Collapse
|
16
|
Solovyov IA, Dobrovol’skaya EV, Moskalev AA. Genetic control of circadian rhythms and aging. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416040104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Spada J, Scholz M, Kirsten H, Hensch T, Horn K, Jawinski P, Ulke C, Burkhardt R, Wirkner K, Loeffler M, Hegerl U, Sander C. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study. J Sleep Res 2016; 25:690-701. [PMID: 27126917 DOI: 10.1111/jsr.12421] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/25/2016] [Indexed: 12/28/2022]
Abstract
The genetic basis of sleep is still poorly understood. Despite the moderate to high heritability of sleep-related phenotypes, known genetic variants explain only a small proportion of the phenotypical variance. However, most previous studies were based solely upon self-report measures. The present study aimed to conduct the first genome-wide association (GWA) of actigraphic sleep phenotypes. The analyses included 956 middle- to older-aged subjects (40-79 years) from the LIFE Adult Study. The SenseWear Pro 3 Armband was used to collect 11 actigraphic parameters of night- and daytime sleep and three parameters of rest (lying down). The parameters comprised measures of sleep timing, quantity and quality. A total of 7 141 204 single nucleotide polymorphisms (SNPs) were analysed after imputation and quality control. We identified several variants below the significance threshold of P ≤ 5× 10-8 (not corrected for analysis of multiple traits). The most significant was a hit near UFL1 associated with sleep efficiency on weekdays (P = 1.39 × 10-8 ). Further SNPs were close to significance, including an association between sleep latency and a variant in CSNK2A1 (P = 8.20 × 10-8 ), a gene known to be involved in the regulation of circadian rhythm. In summary, our GWAS identified novel candidate genes with biological plausibility being promising candidates for replication and further follow-up studies.
Collapse
Affiliation(s)
- Janek Spada
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Markus Scholz
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität Leipzig, Leipzig, Germany
| | - Holger Kirsten
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität Leipzig, Leipzig, Germany
| | - Tilman Hensch
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany
| | - Katrin Horn
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität Leipzig, Leipzig, Germany
| | - Philippe Jawinski
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Christine Ulke
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Ralph Burkhardt
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Wirkner
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
| | - Markus Loeffler
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität Leipzig, Leipzig, Germany
| | - Ulrich Hegerl
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Christian Sander
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| |
Collapse
|
18
|
Pati P, Fulton DJR, Bagi Z, Chen F, Wang Y, Kitchens J, Cassis LA, Stepp DW, Rudic RD. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice. Hypertension 2016; 67:661-8. [PMID: 26781276 DOI: 10.1161/hypertensionaha.115.06194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023]
Abstract
Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension.
Collapse
Affiliation(s)
- Paramita Pati
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - David J R Fulton
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Zsolt Bagi
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Feng Chen
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Yusi Wang
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Julia Kitchens
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Lisa A Cassis
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - David W Stepp
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - R Daniel Rudic
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.).
| |
Collapse
|
19
|
Scheinfeldt LB, Gharani N, Kasper RS, Schmidlen TJ, Gordon ES, Jarvis JP, Delaney S, Kronenthal CJ, Gerry NP, Christman MF. Using the Coriell Personalized Medicine Collaborative Data to conduct a genome-wide association study of sleep duration. Am J Med Genet B Neuropsychiatr Genet 2015; 168:697-705. [PMID: 26333835 PMCID: PMC5049662 DOI: 10.1002/ajmg.b.32362] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 07/31/2015] [Indexed: 11/08/2022]
Abstract
Sleep is critical to health and functionality, and several studies have investigated the inherited component of insomnia and other sleep disorders using genome-wide association studies (GWAS). However, genome-wide studies focused on sleep duration are less common. Here, we used data from participants in the Coriell Personalized Medicine Collaborative (CPMC) (n = 4,401) to examine putative associations between self-reported sleep duration, demographic and lifestyle variables, and genome-wide single nucleotide polymorphism (SNP) data to better understand genetic contributions to variation in sleep duration. We employed stepwise ordered logistic regression to select our model and retained the following predictive variables: age, gender, weight, physical activity, physical activity at work, smoking status, alcohol consumption, ethnicity, and ancestry (as measured by principal components analysis) in our association testing. Several of our strongest candidate genes were previously identified in GWAS related to sleep duration (TSHZ2, ABCC9, FBXO15) and narcolepsy (NFATC2, SALL4). In addition, we have identified novel candidate genes for involvement in sleep duration including SORCS1 and ELOVL2. Our results demonstrate that the self-reported data collected through the CPMC are robust, and our genome-wide association analysis has identified novel candidate genes involved in sleep duration. More generally, this study contributes to a better understanding of the complexity of human sleep.
Collapse
Affiliation(s)
| | - Neda Gharani
- Coriell Institute for Medical ResearchCamdenNew Jersey
| | | | | | | | | | - Susan Delaney
- Coriell Institute for Medical ResearchCamdenNew Jersey
| | | | | | | |
Collapse
|
20
|
Gottlieb DJ, Hek K, Chen TH, Watson NF, Eiriksdottir G, Byrne EM, Cornelis M, Warby SC, Bandinelli S, Cherkas L, Evans DS, Grabe HJ, Lahti J, Li M, Lehtimäki T, Lumley T, Marciante KD, Pérusse L, Psaty BM, Robbins J, Tranah GJ, Vink JM, Wilk JB, Stafford JM, Bellis C, Biffar R, Bouchard C, Cade B, Curhan GC, Eriksson JG, Ewert R, Ferrucci L, Fülöp T, Gehrman PR, Goodloe R, Harris TB, Heath AC, Hernandez D, Hofman A, Hottenga JJ, Hunter DJ, Jensen MK, Johnson AD, Kähönen M, Kao L, Kraft P, Larkin EK, Lauderdale DS, Luik AI, Medici M, Montgomery GW, Palotie A, Patel SR, Pistis G, Porcu E, Quaye L, Raitakari O, Redline S, Rimm EB, Rotter JI, Smith AV, Spector TD, Teumer A, Uitterlinden AG, Vohl MC, Widen E, Willemsen G, Young T, Zhang X, Liu Y, Blangero J, Boomsma DI, Gudnason V, Hu F, Mangino M, Martin NG, O’Connor GT, Stone KL, Tanaka T, Viikari J, Gharib SA, Punjabi NM, Räikkönen K, Völzke H, Mignot E, Tiemeier H. Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study. Mol Psychiatry 2015; 20:1232-9. [PMID: 25469926 PMCID: PMC4430294 DOI: 10.1038/mp.2014.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 12/22/2022]
Abstract
Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based cohorts totaling 47 180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35- to 80-kb upstream from the thyroid-specific transcription factor PAX8 (lowest P=1.1 × 10(-9)). This finding was replicated in an African-American sample of 4771 individuals (lowest P=9.3 × 10(-4)). The strongest combined association was at rs1823125 (P=1.5 × 10(-10), minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 min longer per night. The alleles associated with longer sleep duration were associated in previous GWAS with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease.
Collapse
Affiliation(s)
- Daniel J. Gottlieb
- VA Boston Healthcare System, Boston, MA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham & Women’s Hospital, Boston MA
- Boston University School of Medicine, Boston, MA
- The NHLBI’s Framingham Heart Study, Framingham, MA
| | - Karin Hek
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Epidemiological and Social Psychiatric Research Institute, Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - Ting-hsu Chen
- VA Boston Healthcare System, Boston, MA
- Boston University School of Medicine, Boston, MA
| | - Nathaniel F. Watson
- Department of Neurology, University of Washington, Seattle, WA
- UW Medicine Sleep Center, University of Washington, Seattle, WA
| | | | - Enda M. Byrne
- The University of Queensland, Queensland Brain Institute, QLD, Australia
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Marilyn Cornelis
- Department of Nutrition, Harvard School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Simon C. Warby
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA
| | | | - Lynn Cherkas
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, HELIOS-Hospital Stralsund, University Medicine Greifswald, Germany
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
| | - Man Li
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere, Finland
| | - Thomas Lumley
- Department of Statistics, University of Auckland, New Zealand
| | - Kristin D. Marciante
- Department of Medicine, University of Washington, Seattle, WA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Louis Pérusse
- Department of Kinesiology, Laval University, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
| | - Bruce M. Psaty
- Department of Medicine, University of Washington, Seattle, WA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Epidemiology and Health Services, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | - John Robbins
- Department of Internal Medicine, University of California Davis, Sacramento CA
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Jacqueline M. Vink
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | | | - Jeanette M. Stafford
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Claire Bellis
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Reiner Biffar
- Department of Prosthodontics, Gerodontology and Dental Materials, Center of Oral Health, University Medicine Greifswald, Germany
| | - Claude Bouchard
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham & Women’s Hospital, Boston MA
| | - Gary C. Curhan
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Johan G. Eriksson
- Folkhalsan Research Centre, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Helsinki, Finland
- National Institute for Health and Welfare, Finland
- Vasa Central Hospital, Vasa, Finland
| | - Ralf Ewert
- Department of Internal Medicine B – Cardiology, Pulmonary Medicine, Infectious Diseases and Intensive Care Medicine, University Medicine Greifswald, Germany
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD
| | - Tibor Fülöp
- University of Mississippi Medical Center, Jackson, MS
| | - Philip R. Gehrman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robert Goodloe
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine, StLouis, MO
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD
| | - Albert Hofman
- Epidemiological and Social Psychiatric Research Institute, Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - David J. Hunter
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA
| | - Majken K. Jensen
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Andrew D. Johnson
- NHLBI Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, Framingham, MA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Linda Kao
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA
| | | | | | - Annemarie I. Luik
- Epidemiological and Social Psychiatric Research Institute, Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - Marco Medici
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Meta-Thyroid Consortium
| | | | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Genetic Analysis Platform, The Broad Institute of MIT and Harvard, Cambridge, MA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sanjay R. Patel
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham & Women’s Hospital, Boston MA
| | - Giorgio Pistis
- Meta-Thyroid Consortium
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Universita` degli Studi di Trieste, Trieste, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Universita` di Sassari, Sassari, Italy
| | - Eleonora Porcu
- Meta-Thyroid Consortium
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Universita` di Sassari, Sassari, Italy
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, and Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Finland
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham & Women’s Hospital, Boston MA
| | - Eric B. Rimm
- Department of Nutrition, Harvard School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Albert V. Smith
- Icelandic Heart Association, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald
| | - André G. Uitterlinden
- Epidemiological and Social Psychiatric Research Institute, Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
- Department of Food Science and Nutrition, Laval University, Quebec, Canada
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - Terry Young
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Xiaoling Zhang
- NHLBI Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, Framingham, MA
| | - Yongmei Liu
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - John Blangero
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Dorret I. Boomsma
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - Vilmundur Gudnason
- Icelandic Heart Association, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Frank Hu
- Department of Nutrition, Harvard School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - George T. O’Connor
- Boston University School of Medicine, Boston, MA
- The NHLBI’s Framingham Heart Study, Framingham, MA
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD
| | - Jorma Viikari
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sina A. Gharib
- UW Medicine Sleep Center, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Naresh M. Punjabi
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health
- Department of Medicine, Johns Hopkins University School of Medicine
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald
| | - Emmanuel Mignot
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Epidemiological and Social Psychiatric Research Institute, Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Effet des saisons sur la sémiologie des troubles bipolaires. ANNALES MEDICO-PSYCHOLOGIQUES 2015. [DOI: 10.1016/j.amp.2015.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Maglione JE, Nievergelt CM, Parimi N, Evans DS, Ancoli-Israel S, Stone KL, Yaffe K, Redline S, Tranah GJ, the Study of Osteoporotic Fractures in Women (SOF) and Osteoporotic Fractures in Men Study (MrOS) Research Groups. Associations of PER3 and RORA Circadian Gene Polymorphisms and Depressive Symptoms in Older Adults. Am J Geriatr Psychiatry 2015; 23:1075-87. [PMID: 25892098 PMCID: PMC4568170 DOI: 10.1016/j.jagp.2015.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Depressive symptoms are common in older adults and associated with poor outcomes. Although circadian genes have been implicated in depression, the relationship between circadian genes and depressive symptoms in older adults is unclear. METHODS A cross-sectional genetic association study of 529 single nucleotide polymorphisms (SNPs) representing 30 candidate circadian genes was performed in two population-based cohorts: the Osteoporotic Fractures in Men Study (MrOS; N=270, age: 76.58±5.61 years) and the Study of Osteoporotic Fractures (SOF) in women (N=1740, 84.05±3.53 years) and a meta-analysis was performed. Depressive symptoms were assessed with the Geriatric Depression Scale categorizing participants as having none-few symptoms (0-2), some depressive symptoms (>2 to <6), or many depressive symptoms (≥6). RESULTS We found associations meeting multiple testing criteria for significance between the PER3 intronic SNP rs12137927 and decreased odds of reporting "some depressive symptoms" in the SOF sample (odds ratio [OR]: 0.61, 95% confidence interval [CI]: 0.48-0.78, df=1, Wald χ2=-4.04, p=0.000054) and the meta-analysis (OR: 0.61, CI: 0.48-0.78, z=-4.04, p=0.000054) and between the PER3 intronic SNPs rs228644 (OR: 0.74, CI: 0.63-0.86, z=3.82, p=0.00013) and rs228682 (OR: 0.74, CI: 0.86-0.63, z=3.81, p=0.00014) and decreased odds of reporting "some depressive symptoms" in the meta-analysis compared to endorsing none-few depressive symptoms. The RORA intronic SNP rs11632098 was associated with greater odds of reporting "many depressive symptoms" (OR: 2.16, CI: 1.45-3.23, df=1, Wald χ2=3.76, p=0.000168) in the men. In the meta-analysis the association was attenuated and nominally significant (OR: 1.63, CI: 1.24-2.16, z=3.45, p=0.00056). CONCLUSION PER3 and RORA may play important roles in the development of depressive symptoms in older adults.
Collapse
Affiliation(s)
- Jeanne E. Maglione
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | | | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology and Epidemiology, University of California, San Francisco, CA
| | - Susan Redline
- Departments of Medicine, Brigham and Women’s Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA
| | | |
Collapse
|
23
|
Jim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Chen Z, Chen AY, Permuth-Wey J, Aben KKH, Anton-Culver H, Antonenkova N, Bruinsma F, Bandera EV, Bean YT, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bunker CH, Butzow R, Campbell IG, Carty K, Chang-Claude J, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, du Bois A, Despierre E, Sieh W, Doherty JA, Dörk T, Dürst M, Easton DF, Eccles DM, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goodman MT, Gronwald J, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hillemanns P, Hogdall CK, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kiemeney LA, Krakstad C, Kjaer SK, Kupryjanczyk J, Vierkant RA, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lim BK, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Milne RL, Modugno F, Thomsen L, Moysich KB, Ness RB, Nevanlinna H, Eilber U, Odunsi K, Olson SH, Orlow I, Orsulic S, et alJim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Chen Z, Chen AY, Permuth-Wey J, Aben KKH, Anton-Culver H, Antonenkova N, Bruinsma F, Bandera EV, Bean YT, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bunker CH, Butzow R, Campbell IG, Carty K, Chang-Claude J, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, du Bois A, Despierre E, Sieh W, Doherty JA, Dörk T, Dürst M, Easton DF, Eccles DM, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goodman MT, Gronwald J, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hillemanns P, Hogdall CK, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kiemeney LA, Krakstad C, Kjaer SK, Kupryjanczyk J, Vierkant RA, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lim BK, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Milne RL, Modugno F, Thomsen L, Moysich KB, Ness RB, Nevanlinna H, Eilber U, Odunsi K, Olson SH, Orlow I, Orsulic S, Palmieri Weber R, Paul J, Pearce CL, Pejovic T, Pelttari LM, Pike MC, Poole EM, Schernhammer E, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Song H, Southey MC, Spiewankiewicz B, Sucheston-Campbell L, Teo SH, Terry KL, Thompson PJ, Tangen IL, Tworoger SS, van Altena AM, Vergote I, Walsh CS, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Amankwah E, Berchuck A, Georgia Chenevix-Trench on behalf of the AOCS management group 95,96, Schildkraut JM, Kelemen LE, Ramus SJ, Monteiro AN, Goode EL, Narod SA, Gayther SA, Pharoah PDP, Sellers TA, Phelan CM. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). JOURNAL OF GENETICS AND GENOME RESEARCH 2015; 2:017. [PMID: 26807442 PMCID: PMC4722961 DOI: 10.23937/2378-3648/1410017] [Show More Authors] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10-4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.
Collapse
Affiliation(s)
- Heather S.L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - Hui-Yi Lin
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan P. Tyrer
- Department of Public Health and Primary Care, The Centre for Cancer Epidemiology, University of Cambridge, Strange ways Research Laboratory, Cambridge, UK
| | - Kate Lawrenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Joe Dennis
- Department of Public Health and Primary Care, The Centre for Cancer Epidemiology, University of Cambridge, Strange ways Research Laboratory, Cambridge, UK
| | - Ganna Chornokur
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ann Y. Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jennifer Permuth-Wey
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Katja KH. Aben
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | - Hoda Anton-Culver
- Genetic Epidemiology Research Institute, UCI Center for Cancer Genetics Research and Prevention, School of Medicine, Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Natalia Antonenkova
- Byelorussian Institute for Oncology and Medical Radiology Aleksandrov N.N., Minsk, Belarus
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Elisa V. Bandera
- Cancer Prevention and Control, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yukie T. Bean
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
| | - Maria Bisogna
- Department of Surgery, Gynecology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Natalia Bogdanova
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Angela Brooks-Wilson
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Clareann H. Bunker
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
- Department of Pathology, Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Karen Carty
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Linda S. Cook
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Daniel W. Cramer
- Obstetrics and Gynecology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andreas du Bois
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Evelyn Despierre
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Weiva Sieh
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer A. Doherty
- Department of Epidemiology, Geisel School of Medicine, Dartmouth, Hanover, NH, USA
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Thilo Dörk
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Department of Gynecology, Friedrich Schiller University, Jena, Germany
| | - Douglas F. Easton
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Diana M. Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Robert P. Edwards
- Department of Obstetrics Gynecology/RS, Division of Gynecological Oncology, Ovarian Cancer Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
- Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | | | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Rosalind Glasspool
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Marc T. Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Community and Population Health Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Philipp Harter
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Hanis N. Hasmad
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
| | - Florian Heitz
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | | | - Peter Hillemanns
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Claus K. Hogdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Beth Y. Karlan
- Women’s Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Melissa Kellar
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lambertus A. Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Susanne K. Kjaer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jolanta Kupryjanczyk
- Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Robert A. Vierkant
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Diether Lambrechts
- Vesalius Research Center, VIB, University of Leuven, Leuven, Belgium
- Department of Oncology, Laboratory for Translational Genetics, University of Leuven, Belgium
| | - Sandrina Lambrechts
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Alice W. Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Shashi Lele
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Arto Leminen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Jenny Lester
- Women’s Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Douglas A. Levine
- Department of Surgery, Gynecology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Boon Kiong Lim
- Department of Obstetrics and Gynaecology, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Karen Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lene Lundvall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Leon F.A.G. Massuger
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Valerie McGuire
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ian McNeish
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Usha Menon
- Women’s Cancer, UCL EGA Institute for Women’s Health, London, UK
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Francesmary Modugno
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Women’s Cancer Research Program, Magee-Women’s Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lotte Thomsen
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roberta B. Ness
- The University of Texas School of Public Health, Houston, TX, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Ursula Eilber
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sandra Orsulic
- Women’s Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - James Paul
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Celeste L. Pearce
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan, USA
| | - Tanja Pejovic
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Liisa M. Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Malcolm C. Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth M. Poole
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva Schernhammer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Barry Rosen
- Department of Gynecology-Oncology, Princess Margaret Hospital, and Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Joseph H. Rothstein
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anja Rudolph
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Ingo B. Runnebaum
- Department of Gynecology, Friedrich Schiller University, Jena, Germany
| | - Iwona K. Rzepecka
- Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Helga B. Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ira Schwaab
- Institut für Humangenetik, Wiesbaden, Germany
| | - Xiao-Ou Shu
- Epidemiology Center and Vanderbilt, Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yurii B. Shvetsov
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Nadeem Siddiqui
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Honglin Song
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Melissa C. Southey
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Lara Sucheston-Campbell
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
- University Malaya Medical Centre, University of Malaya, Kuala Lumpur, Maylaysia
| | - Kathryn L. Terry
- Obstetrics and Gynecology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Pamela J. Thompson
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Community and Population Health Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ingvild L. Tangen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Shelley S. Tworoger
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Anne M. van Altena
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ignace Vergote
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Christine S. Walsh
- Women’s Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shan Wang-Gohrke
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alice S. Whittemore
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristine G. Wicklund
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yin-Ling Woo
- Department of Obstetrics and Gynaecology, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Hannah Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Genetic Epidemiology Research Institute, UCI Center for Cancer Genetics Research and Prevention, School of Medicine, Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Ernest Amankwah
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
- Clinical and Translational Research Organization, All Children’s Hospital Johns Hopkins Medicine, St Petersburg, FL
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - Joellen M. Schildkraut
- Cancer Prevention, Detection & Control Research Program, Duke Cancer Institute, Durham, NC, USA
| | - Linda E. Kelemen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Susan J. Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Alvaro N.A. Monteiro
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L. Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Steven A. Narod
- Women’s College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Simon A. Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Paul D. P. Pharoah
- Department of Public Health and Primary Care, The Centre for Cancer Epidemiology, University of Cambridge, Strange ways Research Laboratory, Cambridge, UK
- The Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Thomas A. Sellers
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Catherine M. Phelan
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
24
|
Winkelman JW, Blackwell T, Stone K, Ancoli-Israel S, Tranah GJ, Redline S. Genetic associations of periodic limb movements of sleep in the elderly for the MrOS sleep study. Sleep Med 2015; 16:1360-1365. [PMID: 26498236 DOI: 10.1016/j.sleep.2015.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of this study was to assess the relationship between single-nucleotide polymorphisms associated with restless legs syndrome and periodic limb movements of sleep in a population cohort of elderly individuals. METHODS Single-nucleotide polymorphisms previously associated with periodic limb movements of sleep or restless legs syndrome were analyzed in 2356 white male participants in the Osteoporotic Fractures in Men Sleep Study cohort. The associations between single-nucleotide polymorphisms and polysomnographically measured periodic limb movement index ≥15 were examined with logistic regression adjusted for age, ancestry markers, and periodic limb movements of sleep risk factors. RESULTS Of the men in this cohort, 61% had a periodic limb movement index ≥15. Significant associations were observed between a periodic limb movement index ≥15 and the number of risk alleles for the two BTBD9 single-nucleotide polymorphisms (rs9357271[T], odds ratio [OR] = 1.38, 95% confidence interval [CI] 1.20-1.58; and rs3923809[A], OR = 1.43, 95% CI 1.26-1.63), one of the MEIS1 single-nucleotide polymorphisms (rs2300478[G], OR = 1.31, 95% CI 1.14-1.51) and the mitogen-activated protein kinase kinase 5 (MAP2K5)/Ski family transcriptional corepressor 1 (SKOR1) single-nucleotide polymorphism (rs1026732[G], OR = 1.16, 95% CI 1.02-1.31). In a multivariable model controlling for each of the two MEIS1 single-nucleotide polymorphisms, the rs6710341[A] single-nucleotide polymorphism became a significant risk allele (OR = 1.59, 95% CI 1.26-2.00). CONCLUSIONS Our findings confirm an association between the BTBD9, MEIS1, and MAP2K5/SKOR1 single-nucleotide polymorphisms and periodic limb movements of sleep in an elderly cohort not selected for the presence of restless legs syndrome.
Collapse
Affiliation(s)
- John W Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Terri Blackwell
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - Katie Stone
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - Sonia Ancoli-Israel
- Departments of Psychiatry and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gregory J Tranah
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - Susan Redline
- Departments of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
25
|
|
26
|
Gonzalez BD, Jim HSL, Booth-Jones M, Small BJ, Sutton SK, Lin HY, Park JY, Spiess PE, Fishman MN, Jacobsen PB. Course and Predictors of Cognitive Function in Patients With Prostate Cancer Receiving Androgen-Deprivation Therapy: A Controlled Comparison. J Clin Oncol 2015; 33:2021-7. [PMID: 25964245 PMCID: PMC4461804 DOI: 10.1200/jco.2014.60.1963] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Men receiving androgen-deprivation therapy (ADT) for prostate cancer may be at risk for cognitive impairment; however, evidence is mixed in the existing literature. Our study examined the impact of ADT on impaired cognitive performance and explored potential demographic and genetic predictors of impaired performance. PATIENTS AND METHODS Patients with prostate cancer were assessed before or within 21 days of starting ADT (n = 58) and 6 and 12 months later. Age- and education-matched patients with prostate cancer treated with prostatectomy only (n = 84) and men without prostate cancer (n = 88) were assessed at similar intervals. Participants provided baseline blood samples for genotyping. Mean-level cognitive performance was compared using mixed models; cognitive impairment was compared using generalized estimating equations. RESULTS ADT recipients demonstrated higher rates of impaired cognitive performance over time relative to all controls (P = .01). Groups did not differ at baseline (P > .05); however, ADT recipients were more likely to demonstrate impaired performance within 6 and 12 months (P for both comparisons < .05). Baseline age, cognitive reserve, depressive symptoms, fatigue, and hot flash interference did not moderate the impact of ADT on impaired cognitive performance (P for all comparisons ≥ .09). In exploratory genetic analyses, GNB3 single-nucleotide polymorphism rs1047776 was associated with increased rates of impaired performance over time in the ADT group (P < .001). CONCLUSION Men treated with ADT were more likely to demonstrate impaired cognitive performance within 6 months after starting ADT relative to matched controls and to continue to do so within 12 months after starting ADT. If confirmed, findings may have implications for patient education regarding the risks and benefits of ADT.
Collapse
Affiliation(s)
- Brian D Gonzalez
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL.
| | - Heather S L Jim
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| | - Margaret Booth-Jones
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| | - Brent J Small
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| | - Steven K Sutton
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| | - Hui-Yi Lin
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| | - Jong Y Park
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| | - Philippe E Spiess
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| | - Mayer N Fishman
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| | - Paul B Jacobsen
- Brian D. Gonzalez, Heather S.L. Jim, Margaret Booth-Jones, Steven K. Sutton, Hui-Yi Lin, Jong Y. Park, Philippe E. Spiess, Mayer N. Fishman, and Paul B. Jacobsen, Moffitt Cancer Center; and Brent J. Small, University of South Florida, Tampa, FL
| |
Collapse
|
27
|
Geoffroy PA, Lajnef M, Bellivier F, Jamain S, Gard S, Kahn JP, Henry C, Leboyer M, Etain B. Genetic association study of circadian genes with seasonal pattern in bipolar disorders. Sci Rep 2015; 5:10232. [PMID: 25989161 PMCID: PMC4437291 DOI: 10.1038/srep10232] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/28/2023] Open
Abstract
About one fourth of patients with bipolar disorders (BD) have depressive episodes with a seasonal pattern (SP) coupled to a more severe disease. However, the underlying genetic influence on a SP in BD remains to be identified. We studied 269 BD Caucasian patients, with and without SP, recruited from university-affiliated psychiatric departments in France and performed a genetic single-marker analysis followed by a gene-based analysis on 349 single nucleotide polymorphisms (SNPs) spanning 21 circadian genes and 3 melatonin pathway genes. A SP in BD was nominally associated with 14 SNPs identified in 6 circadian genes: NPAS2, CRY2, ARNTL, ARNTL2, RORA and RORB. After correcting for multiple testing, using a false discovery rate approach, the associations remained significant for 5 SNPs in NPAS2 (chromosome 2:100793045–100989719): rs6738097 (pc = 0.006), rs12622050 (pc = 0.006), rs2305159 (pc = 0.01), rs1542179 (pc = 0.01), and rs1562313 (pc = 0.02). The gene-based analysis of the 349 SNPs showed that rs6738097 (NPAS2) and rs1554338 (CRY2) were significantly associated with the SP phenotype (respective Empirical p-values of 0.0003 and 0.005). The associations remained significant for rs6738097 (NPAS2) after Bonferroni correction. The epistasis analysis between rs6738097 (NPAS2) and rs1554338 (CRY2) suggested an additive effect. Genetic variations in NPAS2 might be a biomarker for a seasonal pattern in BD.
Collapse
Affiliation(s)
- Pierre Alexis Geoffroy
- 1] Inserm, U1144, Paris, F-75006, France [2] AP-HP, GH Saint-Louis - Lariboisière - Fernand Widal, Pôle Neurosciences, 75475 Paris Cedex 10, France [3] Université Paris Descartes, UMR-S 1144, Paris, F-75006, France [4] Fondation FondaMental, Créteil, 94000, France
| | - Mohamed Lajnef
- 1] Fondation FondaMental, Créteil, 94000, France [2] INSERM, U955, Psychiatrie génétique, Créteil, 94000, France [3] AP-HP, Hôpitaux Universitaires Albert Chenevier-Henri Mondor , DHU PePSY, Pôle de Psychiatrie, Créteil, 94000, France
| | - Frank Bellivier
- 1] Inserm, U1144, Paris, F-75006, France [2] AP-HP, GH Saint-Louis - Lariboisière - Fernand Widal, Pôle Neurosciences, 75475 Paris Cedex 10, France [3] Université Paris Descartes, UMR-S 1144, Paris, F-75006, France [4] Fondation FondaMental, Créteil, 94000, France
| | - Stéphane Jamain
- 1] Fondation FondaMental, Créteil, 94000, France [2] INSERM, U955, Psychiatrie génétique, Créteil, 94000, France [3] Université Paris Est, Faculté de médecine, Créteil, 94000, France
| | - Sébastien Gard
- 1] Fondation FondaMental, Créteil, 94000, France [2] Hôpital Charles Perrens, Centre Expert Trouble Bipolaire, Service de psychiatrie adulte, Pôle 3-4-7, Bordeaux, 33000, France
| | - Jean-Pierre Kahn
- 1] Fondation FondaMental, Créteil, 94000, France [2] Service de Psychiatrie et Psychologie Clinique, CHU de Nancy, Hôpitaux de Brabois, Vandoeuvre Les Nancy, 54500, France
| | - Chantal Henry
- 1] Fondation FondaMental, Créteil, 94000, France [2] INSERM, U955, Psychiatrie génétique, Créteil, 94000, France [3] AP-HP, Hôpitaux Universitaires Albert Chenevier-Henri Mondor , DHU PePSY, Pôle de Psychiatrie, Créteil, 94000, France [4] Université Paris Est, Faculté de médecine, Créteil, 94000, France
| | - Marion Leboyer
- 1] Fondation FondaMental, Créteil, 94000, France [2] INSERM, U955, Psychiatrie génétique, Créteil, 94000, France [3] AP-HP, Hôpitaux Universitaires Albert Chenevier-Henri Mondor , DHU PePSY, Pôle de Psychiatrie, Créteil, 94000, France [4] Université Paris Est, Faculté de médecine, Créteil, 94000, France
| | - Bruno Etain
- 1] Fondation FondaMental, Créteil, 94000, France [2] INSERM, U955, Psychiatrie génétique, Créteil, 94000, France [3] AP-HP, Hôpitaux Universitaires Albert Chenevier-Henri Mondor , DHU PePSY, Pôle de Psychiatrie, Créteil, 94000, France [4] Université Paris Est, Faculté de médecine, Créteil, 94000, France
| |
Collapse
|
28
|
Pfeffer M, Korf HW, von Gall C. Chronotype and stability of spontaneous locomotor activity rhythm in BMAL1-deficient mice. Chronobiol Int 2015; 32:81-91. [PMID: 25216070 DOI: 10.3109/07420528.2014.956218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Behavior, physiological functions and cognitive performance change over the time of the day. These daily rhythms are either externally driven by rhythmic environmental cues such as the light/dark cycle (masking) or controlled by an internal circadian clock, the suprachiasmatic nucleus (SCN), which can be entrained to the light/dark cycle. Within a given species, there is genetically determined variability in the temporal preference for the onset of the active phase, the chronotype. The chronotype is the phase of entrainment between external and internal time and is largely regulated by the circadian clock. Genetic variations in clock genes and environmental influences contribute to the distribution of chronotypes in a given population. However, little is known about the determination of the chronotype, the stability of the locomotor rhythm and the re-synchronization capacity to jet lag in an animal without a functional endogenous clock. Therefore, we analyzed the chronotype of BMAL1-deficient mice (BMAL1-/-) as well as the effects of repeated experimental jet lag on locomotor activity rhythms. Moreover, light-induced period expression in the retina was analyzed to assess the responsiveness of the circadian light input system. In contrast to wild-type mice, BMAL1-/- showed a significantly later chronotype, adapted more rapidly to both phase advance and delay but showed reduced robustness of rhythmic locomotor activity after repeated phase shifts. However, photic induction of Period in the retina was not different between the two genotypes. Our findings suggest that a disturbed clockwork is associated with a late chronotype, reduced rhythm stability and higher vulnerability to repeated external desynchronization.
Collapse
Affiliation(s)
- Martina Pfeffer
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Fachbereich Medizin, Goethe-Universität , Frankfurt/Main , Germany
| | | | | |
Collapse
|
29
|
Kripke DF, Kline LE, Nievergelt CM, Murray SS, Shadan FF, Dawson A, Poceta JS, Cronin J, Jamil SM, Tranah GJ, Loving RT, Grizas AP, Hahn EK. Genetic variants associated with sleep disorders. Sleep Med 2015; 16:217-24. [PMID: 25660813 PMCID: PMC4352103 DOI: 10.1016/j.sleep.2014.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/30/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The diagnostic boundaries of sleep disorders are under considerable debate. The main sleep disorders are partly heritable; therefore, defining heritable pathophysiologic mechanisms could delineate diagnoses and suggest treatment. We collected clinical data and DNA from consenting patients scheduled to undergo clinical polysomnograms, to expand our understanding of the polymorphisms associated with the phenotypes of particular sleep disorders. METHODS Patients at least 21 years of age were recruited to contribute research questionnaires, and to provide access to their medical records, saliva for deoxyribonucleic acid (DNA), and polysomnographic data. From these complex data, 38 partly overlapping phenotypes were derived indicating complaints, subjective and objective sleep timing, and polysomnographic disturbances. A custom chip was used to genotype 768 single-nucleotide polymorphisms (SNPs). Additional assays derived ancestry-informative markers (eg, 751 participants of European ancestry). Linear regressions controlling for age, gender, and ancestry were used to assess the associations of each phenotype with each of the SNPs, highlighting those with Bonferroni-corrected significance. RESULTS In peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B), rs6888451 was associated with several markers of obstructive sleep apnea. In aryl hydrocarbon receptor nuclear translocator-like (ARNTL), rs10766071 was associated with decreased polysomnographic sleep duration. The association of rs3923809 in BTBD9 with periodic limb movements in sleep was confirmed. SNPs in casein kinase 1 delta (CSNK1D rs11552085), cryptochrome 1 (CRY1 rs4964515), and retinoic acid receptor-related orphan receptor A (RORA rs11071547) were less persuasively associated with sleep latency and time of falling asleep. CONCLUSIONS SNPs associated with several sleep phenotypes were suggested, but due to risks of false discovery, independent replications are needed before the importance of these associations can be assessed, followed by investigation of molecular mechanisms.
Collapse
Affiliation(s)
- Daniel F Kripke
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | | | | | - Sarah S Murray
- Department of Pathology, Center for Advanced Laboratory Medicine, University of California, San Diego, CA, USA
| | - Farhad F Shadan
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - Arthur Dawson
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - J Steven Poceta
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - John Cronin
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - Shazia M Jamil
- Viterbi Family Sleep Center, Scripps Clinic, La Jolla, CA, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|
30
|
Markt SC, Valdimarsdottir UA, Shui IM, Sigurdardottir LG, Rider JR, Tamimi RM, Batista JL, Haneuse S, Flynn-Evans E, Lockley SW, Czeisler CA, Stampfer MJ, Launer L, Harris T, Smith AV, Gudnason V, Lindstrom S, Kraft P, Mucci LA. Circadian clock genes and risk of fatal prostate cancer. Cancer Causes Control 2015; 26:25-33. [PMID: 25388799 PMCID: PMC4282953 DOI: 10.1007/s10552-014-0478-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/09/2014] [Indexed: 01/20/2023]
Abstract
PURPOSE Circadian genes may be involved in regulating cancer-related pathways, including cell proliferation, DNA damage response, and apoptosis. We aimed to assess the role of genetic variation in core circadian rhythm genes with the risk of fatal prostate cancer and first morning void urinary 6-sulfatoxymelatonin levels. METHODS We used unconditional logistic regression to evaluate the association of 96 single-nucleotide polymorphisms (SNPs) across 12 circadian-related genes with fatal prostate cancer in the AGES-Reykjavik cohort (n = 24 cases), the Health Professionals Follow-Up Study (HPFS) (n = 40 cases), and the Physicians' Health Study (PHS) (n = 105 cases). We used linear regression to evaluate the association between SNPs and first morning void urinary 6-sulfatoxymelatonin levels in AGES-Reykjavik. We used a kernel machine test to evaluate whether multimarker SNP sets in the pathway (gene based) were associated with our outcomes. RESULTS None of the individual SNPs were consistently associated with fatal prostate cancer across the three cohorts. In each cohort, gene-based analyses showed that variation in the CRY1 gene was nominally associated with fatal prostate cancer (p values = 0.01, 0.01, and 0.05 for AGES-Reykjavik, HPFS, and PHS, respectively). In AGES-Reykjavik, SNPs in TIMELESS (four SNPs), NPAS2 (six SNPs), PER3 (two SNPs) and CSNK1E (one SNP) were nominally associated with 6-sulfatoxymelatonin levels. CONCLUSION We did not find a strong and consistent association between variation in core circadian clock genes and fatal prostate cancer risk, but observed nominally significant gene-based associations with fatal prostate cancer and 6-sulfatoxymelatonin levels.
Collapse
Affiliation(s)
- Sarah C Markt
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115-6018, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Parsons MJ, Lester KJ, Barclay NL, Archer SN, Nolan PM, Eley TC, Gregory AM. Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNβ3 with sleep measures. J Sleep Res 2014; 23:595-604. [PMID: 24635757 PMCID: PMC4320759 DOI: 10.1111/jsr.12144] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/02/2014] [Indexed: 11/30/2022]
Abstract
Sleep and circadian rhythms are intrinsically linked, with several sleep traits, including sleep timing and duration, influenced by both sleep homeostasis and the circadian phase. Genetic variation in several circadian genes has been associated with diurnal preference (preference in timing of sleep), although there has been limited research on whether they are associated with other sleep measurements. We investigated whether these genetic variations were associated with diurnal preference (Morningness-Eveningness Questionnaire) and various sleep measures, including: the global Pittsburgh Sleep Quality index score; sleep duration; and sleep latency and sleep quality. We genotyped 10 polymorphisms in genes with circadian expression in participants from the G1219 sample (n = 966), a British longitudinal population sample of young adults. We conducted linear regressions using dominant, additive and recessive models of inheritance to test for associations between these polymorphisms and the sleep measures. We found a significant association between diurnal preference and a polymorphism in period homologue 3 (PER3) (P < 0.005, recessive model) and a novel nominally significant association between diurnal preference and a polymorphism in aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) (P < 0.05, additive model). We found that a polymorphism in guanine nucleotide binding protein beta 3 (GNβ3) was associated significantly with global sleep quality (P < 0.005, recessive model), and that a rare polymorphism in period homologue 2 (PER2) was associated significantly with both sleep duration and quality (P < 0.0005, recessive model). These findings suggest that genes with circadian expression may play a role in regulating both the circadian clock and sleep homeostasis, and highlight the importance of further studies aimed at dissecting the specific roles that circadian genes play in these two interrelated but unique behaviours.
Collapse
|
32
|
Osmond-McLeod MJ, Oytam Y, Kirby JK, Gomez-Fernandez L, Baxter B, McCall MJ. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology 2014; 8 Suppl 1:72-84. [PMID: 24266363 PMCID: PMC4179643 DOI: 10.3109/17435390.2013.855832] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 11/13/2022]
Abstract
Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn ((68)Zn) from (68)ZnO nano-sized and larger particles in sunscreens. Sunscreens were applied to the backs of virgin or pregnant hairless mice over four days. Control groups received topical applications of the sunscreen formulation containing no ZnO particles, or no treatment. Major organs were assessed for changes in (68)Zn/(64)Zn ratios, (68)Zn tracer and total Zn concentrations. Short-term biological impact was assessed by measuring levels of serum amyloid A in blood, and by performing whole-genome transcriptional profiling on livers from each group. Increased concentrations of (68)Zn tracer were detected in internal organs of mice receiving topical applications of (68)ZnO (nano-sized and larger particles), as well as in fetal livers from treated dams, compared with controls. Furthermore, concentrations of (68)Zn in organs of virgin mice treated with sunscreen containing (68)ZnO nanoparticles were found to be significantly higher than in mice treated with sunscreen containing larger (68)ZnO particles. However, no ZnO-mediated change in total Zn concentration in any of the major organs was observed. Thus, despite (68)Zn absorption, which may have been in the form of soluble (68)Zn species or (68)ZnO particles (not known), Zn homeostasis was largely maintained, and the presence of ZnO particles in sunscreen did not elicit an adverse biological response in the mice following short-term topical applications.
Collapse
Affiliation(s)
- Megan J Osmond-McLeod
- CSIRO Animal, Food and Health Sciences, CSIRO Advanced Materials TCP (Nanosafety) , North Ryde, NSW , Australia
| | | | | | | | | | | |
Collapse
|
33
|
Gooneratne NS, Vitiello MV. Sleep in older adults: normative changes, sleep disorders, and treatment options. Clin Geriatr Med 2014; 30:591-627. [PMID: 25037297 PMCID: PMC4656195 DOI: 10.1016/j.cger.2014.04.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Approximately 5% of older adults meet criteria for clinically significant insomnia disorders and 20% for sleep apnea syndromes. It is important to distinguish age-appropriate changes in sleep from clinically significant insomnia, with the latter having associated daytime impairments. Non-pharmacologic therapies, such as cognitive-behavioral therapy for insomnia, can be highly effective with sustained benefit. Pharmacologic therapies are also available, but may be associated with psychomotor effects. A high index of suspicion is crucial for effective diagnosis of sleep apnea because symptoms commonly noted in younger patients, such as obesity or loud snoring, may not be present in older patients.
Collapse
Affiliation(s)
- Nalaka S Gooneratne
- Division of Geriatric Medicine, Department of Medicine, University of Pennsylvania, 3615 Chestnut Street, Philadelphia, PA 19104, USA; Division of Sleep Medicine, Center for Sleep and Circadian Neurobiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael V Vitiello
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
G-protein β3 subunit genetic variation moderates five-year depressive symptom trajectories of primary care attendees. J Affect Disord 2014; 165:64-8. [PMID: 24882179 DOI: 10.1016/j.jad.2014.04.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetic variation in the G-protein β3 subunit (GNB3) has previously been associated with gene splicing that has been further linked to increased signal transduction and major depressive disorder. However, the effect of GNB3 genetic variation on depressive symptom trajectories is currently unknown. The aim of the present study is to examine whether genetic variation in GNB3 moderates depressive symptom trajectories among 301 primary care attendees enrolled in the Diagnosis, Management and Outcomes of Depression in Primary Care (diamond) prospective cohort study. METHODS Depressive symptoms were assessed using three measures: (1) DSM-IV criteria, (2) Primary Care Evaluation of Mental Disorders Patient Health Questionnaire-9 (PHQ-9), and (3) Center for Epidemiologic Studies Depression Scale (CESD). DSM-IV criteria were measured at baseline, 24, 36, 48, and 60 months post-baseline, whereas, PHQ-9 and CESD measurements were taken at baseline, 12, 24, 36, 48, and 60 months post-baseline. Two haplotype-tagging single nucleotide polymorphisms [rs5443 (C825T) and rs5440] spanning the GNB3 gene including ~1Kb upstream and downstream of the gene boundaries were genotyped. RESULTS Five-year PHQ-9 and CESD depressive symptom trajectories were moderated by rs5440. Carriers of the rs5440 GG genotype had more favourable depressive symptom trajectories compared to AG or AA genotype carriers. The rs5443 polymorphism did not moderate depressive symptom trajectories, regardless of the measure used. LIMITATIONS Generalizability to depressed populations outside of the primary care setting may be limited. CONCLUSIONS These results provide novel evidence suggesting genetic variation in the 5-prime region of GNB3 moderates depressive symptom trajectories among primary care attendees.
Collapse
|
35
|
Maciukiewicz M, Dmitrzak-Weglarz M, Pawlak J, Leszczynska-Rodziewicz A, Zaremba D, Skibinska M, Hauser J. Analysis of genetic association and epistasis interactions between circadian clock genes and symptom dimensions of bipolar affective disorder. Chronobiol Int 2014; 31:770-8. [PMID: 24673294 DOI: 10.3109/07420528.2014.899244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bipolar affective disorder (BD) is a severe psychiatric disorder characterized by periodic changes in mood from depression to mania. Disruptions of biological rhythms increase risk of mood disorders. Because clinical representation of disease is heterogeneous, homogenous sets of patients are suggested to use in the association analyses. In our study, we aimed to apply previously computed structure of bipolar disorder symptom dimension for analyses of genetic association. We based quantitative trait on: main depression, sleep disturbances, appetite disturbances, excitement and psychotic dimensions consisted of OPCRIT checklist items. We genotyped 42 polymorphisms from circadian clock genes: PER3, ARNTL, CLOCK and TIMELSSS from 511 patients BD (n = 292 women and n = 219 men). As quantitative trait we used clinical dimensions, described above. Genetic associations between alleles and quantitative trait were performed using applied regression models applied in PLINK. In addition, we used the Kruskal-Wallis test to look for associations between genotypes and quantitative trait. During second stage of our analyses, we used multidimensional scaling (multifactor dimensionality reduction) for quantitative trait to compute pairwise epistatic interactions between circadian gene variants. We found association between ARNTL variant rs11022778 main depression (p = 0.00047) and appetite disturbances (p = 0.004). In epistatic interaction analyses, we observed two locus interactions between sleep disturbances (p = 0.007; rs11824092 of ARNTL and rs11932595 of CLOCK) as well as interactions of subdimension in main depression and ARNTL variants (p = 0.0011; rs3789327, rs10766075) and appetite disturbances in depression and ARNTL polymorphism (p = 7 × 10(-4); rs11022778, rs156243).
Collapse
Affiliation(s)
- Malgorzata Maciukiewicz
- Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences , Poznan , Poland
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/ Children's Nutrition Research Center, Baylor College of Medicine , Houston, TX , USA
| | | | | |
Collapse
|
37
|
Abstract
The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.
Collapse
|
38
|
Idzikowski C. The pharmacology of human sleep, a work in progress? Curr Opin Pharmacol 2014; 14:90-6. [PMID: 24524996 DOI: 10.1016/j.coph.2014.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/24/2022]
Abstract
More is now known about the human pharmacology of sleep than a decade ago, but there are still enormous gaps in our understanding and there is still a lack of effective, specific, goal-directed therapeutic agents. Perhaps this is not surprising considering sleep's plurality its patterns and internal structure varying across animal species and humans (changes through life span, variations across cultures and historical differences), not understanding the function or functions of sleep and the risk-aversive regulatory frameworks currently in place.
Collapse
Affiliation(s)
- Chris Idzikowski
- Sleep Assessment & Advisory Service (C. Idzikowski & Co), Holywood House, 1 Innis Court, Holywood, Co Down BT18 9HF, UK.
| |
Collapse
|
39
|
Watson NF, Harden KP, Buchwald D, Vitiello MV, Pack AI, Strachan E, Goldberg J. Sleep duration and depressive symptoms: a gene-environment interaction. Sleep 2014; 37:351-8. [PMID: 24497663 DOI: 10.5665/sleep.3412] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE We used quantitative genetic models to assess whether sleep duration modifies genetic and environmental influences on depressive symptoms. METHOD Participants were 1,788 adult twins from 894 same-sex twin pairs (192 male and 412 female monozygotic [MZ] pairs, and 81 male and 209 female dizygotic [DZ] pairs] from the University of Washington Twin Registry. Participants self-reported habitual sleep duration and depressive symptoms. Data were analyzed using quantitative genetic interaction models, which allowed the magnitude of additive genetic, shared environmental, and non-shared environmental influences on depressive symptoms to vary with sleep duration. RESULTS Within MZ twin pairs, the twin who reported longer sleep duration reported fewer depressive symptoms (ec = -0.17, SE = 0.06, P < 0.05). There was a significant gene × sleep duration interaction effect on depressive symptoms (a'c = 0.23, SE = 0.08, P < 0.05), with the interaction occurring on genetic influences that are common to both sleep duration and depressive symptoms. Among individuals with sleep duration within the normal range (7-8.9 h/night), the total heritability (h2) of depressive symptoms was approximately 27%. However, among individuals with sleep duration within the low (< 7 h/night) or high (≥ 9 h/night) range, increased genetic influence on depressive symptoms was observed, particularly at sleep duration extremes (5 h/night: h2 = 53%; 10 h/night: h2 = 49%). CONCLUSION Genetic contributions to depressive symptoms increase at both short and long sleep durations.
Collapse
Affiliation(s)
- Nathaniel F Watson
- Department of Neurology, University of Washington, Seattle, WA ; UW Medicine Sleep Center, University of Washington, Seattle, WA ; Center for Research on the Management of Sleep Disturbances, University of Washington, Seattle, WA
| | | | - Dedra Buchwald
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Michael V Vitiello
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA ; Center for Research on the Management of Sleep Disturbances, University of Washington, Seattle, WA
| | - Allan I Pack
- Division of Sleep Medicine/Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eric Strachan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Jack Goldberg
- Department of Epidemiology, University of Washington, Seattle, WA ; Vietnam Era Twin Registry, VA Epidemiologic Research and Information Center, Seattle, WA
| |
Collapse
|
40
|
Partonen T. Sleep needs a MOP, or two MOPs! Sleep 2013; 36:309-10. [PMID: 23450902 PMCID: PMC3571745 DOI: 10.5665/sleep.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|