1
|
Li S, Wang C, Wu S. Spindle oscillations emerge at the critical state of electrically coupled networks in the thalamic reticular nucleus. Cell Rep 2024; 43:114790. [PMID: 39356636 DOI: 10.1016/j.celrep.2024.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
Spindle oscillation is a waxing-and-waning neural oscillation observed in the brain, initiated at the thalamic reticular nucleus (TRN) and typically occurring at 7-15 Hz. Experiments have shown that in the adult brain, electrical synapses, rather than chemical synapses, dominate between TRN neurons, suggesting that the traditional view of spindle generation via chemical synapses may need reconsideration. Based on known experimental data, we develop a computational model of the TRN network, where heterogeneous neurons are connected by electrical synapses. The model shows that the interplay between synchronizing electrical synapses and desynchronizing heterogeneity leads to multiple synchronized clusters with slightly different oscillation frequencies whose summed-up activity produces spindle oscillation as seen in local field potentials. Our results suggest that during spindle oscillation, the network operates at the critical state, which is known for facilitating efficient information processing. This study provides insights into the underlying mechanism of spindle oscillation and its functional significance.
Collapse
Affiliation(s)
- Shangyang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Chaoming Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Si Wu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China.
| |
Collapse
|
2
|
Blanco-Duque C, Bond SA, Krone LB, Dufour JP, Gillen ECP, Purple RJ, Kahn MC, Bannerman DM, Mann EO, Achermann P, Olbrich E, Vyazovskiy VV. Oscillatory-Quality of sleep spindles links brain state with sleep regulation and function. SCIENCE ADVANCES 2024; 10:eadn6247. [PMID: 39241075 PMCID: PMC11378912 DOI: 10.1126/sciadv.adn6247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Here, we characterized the dynamics of sleep spindles, focusing on their damping, which we estimated using a metric called oscillatory-Quality (o-Quality), derived by fitting an autoregressive model to electrophysiological signals, recorded from the cortex in mice. The o-Quality of sleep spindles correlates weakly with their amplitude, shows marked laminar differences and regional topography across cortical regions, reflects the level of synchrony within and between cortical networks, is strongly modulated by sleep-wake history, reflects the degree of sensory disconnection, and correlates with the strength of coupling between spindles and slow waves. As most spindle events are highly localized and not detectable with conventional low-density recording approaches, o-Quality thus emerges as a valuable metric that allows us to infer the spread and dynamics of spindle activity across the brain and directly links their spatiotemporal dynamics with local and global regulation of brain states, sleep regulation, and function.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - Suraya A. Bond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- UK Dementia Research Institute at UCL, University College London, WC1E 6BT London, UK
| | - Lukas B. Krone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Jean-Phillipe Dufour
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Edward C. P. Gillen
- Astrophysics Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB30HE, UK
- Astronomy Unit, Queen Mary University of London, Mile End Road, London E14NS, UK
| | - Ross J. Purple
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- School of Physiology Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Martin C. Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Edward O. Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany
| | - Vladyslav V. Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Sleep and Circadian Neuroscience Institute, University of Oxford, Sherrington Rd, Oxford OX1 3QU, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Sherrington Rd, Oxford OX1 3QU, UK
| |
Collapse
|
3
|
Brown A, Gervais NJ, Gravelsins L, O'Byrne J, Calvo N, Ramana S, Shao Z, Bernardini M, Jacobson M, Rajah MN, Einstein G. Effects of early midlife ovarian removal on sleep: Polysomnography-measured cortical arousal, homeostatic drive, and spindle characteristics. Horm Behav 2024; 165:105619. [PMID: 39178647 DOI: 10.1016/j.yhbeh.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) prior to age 48 is associated with elevated risk for both Alzheimer's disease (AD) and sleep disorders such as insomnia and sleep apnea. In early midlife, individuals with BSO show reduced hippocampal volume, function, and hippocampal-dependent verbal episodic memory performance associated with changes in sleep. It is unknown whether BSO affects fine-grained sleep measurements (sleep microarchitecture) and how these changes might relate to hippocampal-dependent memory. We recruited thirty-six early midlife participants with BSO. Seventeen of these participants were taking 17β-estradiol therapy (BSO+ET) and 19 had never taken ET (BSO). Twenty age-matched control participants with intact ovaries (AMC) were also included. Overnight at-home polysomnography recordings were collected, along with subjective sleep quality and hot flash frequency. Multivariate Partial Least Squares (PLS) analysis was used to assess how sleep varied between groups. Compared to AMC, BSO without ET was associated with significantly decreased time spent in non-rapid eye movement (NREM) stage 2 sleep as well as increased NREM stage 2 and 3 beta power, NREM stage 2 delta power, and spindle power and maximum amplitude. Increased spindle maximum amplitude was negatively correlated with verbal episodic memory performance. Decreased sleep latency, increased sleep efficiency, and increased time spent in rapid eye movement sleep were observed for BSO+ET. Findings suggest there is an association between ovarian hormone loss and sleep microarchitecture, which may contribute to poorer cognitive outcomes and be ameliorated by ET.
Collapse
Affiliation(s)
- Alana Brown
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9712 CP, the Netherlands.
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Jordan O'Byrne
- Psychology Department, University of Montreal, Montreal H3T 1J4, Canada; Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal H3G 1M8, Canada.
| | - Noelia Calvo
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Zhuo Shao
- Genetics Program, North York General Hospital, Toronto M2K 1E1, Canada; Department of Pediatrics, University of Toronto, Toronto M5G 1X8, Canada.
| | | | - Michelle Jacobson
- Princess Margaret Hospital, Toronto M5G 2C4, Canada; Women's College Hospital, Toronto M5S 1B2, Canada.
| | - M Natasha Rajah
- Department of Psychology, Toronto Metropolitan University, Toronto M5B 2K3, Canada.
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Baycrest Academy of Research and Education, Baycrest Health Sciences, Toronto M6A 2E1, Canada; Tema Genus, Linköping University, Linköping 581 83, Sweden.
| |
Collapse
|
4
|
Ulgen Temel E, Ozbudak P, Serdaroglu A, Arhan E. Sleep Spindle Alterations in Children With Migraine. Pediatr Neurol 2024; 152:184-188. [PMID: 38301321 DOI: 10.1016/j.pediatrneurol.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The modulation of thalamocortical activity is the most important site of several levels of interference between sleep spindles and migraine. Thalamocortical circuits are responsible for the electrophysiological phenomenon of sleep spindles. Spindle alterations may be used as a beneficial marker in the diagnosis and follow-up of children with migraine. We aimed to formulate the hypothesis that there is a shared mechanism that underlies migraine and sleep spindle activity. METHODS We analyzed the amplitude, frequency, duration, density, and activity of sleep spindles in non-rapid eye movement stage 2 sleep in patients with migraine without aura when compared with healthy control subjects. RESULTS The amplitudes of average, slow, and fast sleep spindles were higher in children with migraine without aura (P = 0.020, 0.013, and 0.033, respectively). The frequency of fast spindles was lower in children with migraines without aura when compared with the control group (P = 0.03). Although not statistically significant, the fast sleep spindle duration in the migraine group was shorter (P = 0.055). Multivariate analysis revealed an increased risk of migraine associated with increased mean spindle amplitude and decreased fast spindle frequency and duration. CONCLUSIONS Our data suggest that spindle alterations may correlate with the vulnerability to develop migraine and may be used as a model for future research about the association between the thalamocortical networks and migraine.
Collapse
Affiliation(s)
- Esra Ulgen Temel
- Division of Child Neurology, Cengiz Gökçek Maternity and Children's Hospital, Gaziantep, Turkey
| | - Pinar Ozbudak
- Division of Child Neurology, Etlik City Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ayse Serdaroglu
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ebru Arhan
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
5
|
Chauvin RJ, Newbold DJ, Nielsen AN, Miller RL, Krimmel SR, Metoki A, Wang A, Van AN, Montez DF, Marek S, Suljic V, Baden NJ, Ramirez-Perez N, Scheidter KM, Monk JS, Whiting FI, Adeyemo B, Snyder AZ, Kay BP, Raichle ME, Laumann TO, Gordon EM, Dosenbach NU. Disuse-driven plasticity in the human thalamus and putamen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566031. [PMID: 37987000 PMCID: PMC10659348 DOI: 10.1101/2023.11.07.566031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Motor adaptation in cortico-striato-thalamo-cortical loops has been studied mainly in animals using invasive electrophysiology. Here, we leverage functional neuroimaging in humans to study motor circuit plasticity in the human subcortex. We employed an experimental paradigm that combined two weeks of upper-extremity immobilization with daily resting-state and motor task fMRI before, during, and after the casting period. We previously showed that limb disuse leads to decreased functional connectivity (FC) of the contralateral somatomotor cortex (SM1) with the ipsilateral somatomotor cortex, increased FC with the cingulo-opercular network (CON) as well as the emergence of high amplitude, fMRI signal pulses localized in the contralateral SM1, supplementary motor area and the cerebellum. From our prior observations, it remains unclear whether the disuse plasticity affects the thalamus and striatum. We extended our analysis to include these subcortical regions and found that both exhibit strengthened cortical FC and spontaneous fMRI signal pulses induced by limb disuse. The dorsal posterior putamen and the central thalamus, mainly CM, VLP and VIM nuclei, showed disuse pulses and FC changes that lined up with fmri task activations from the Human connectome project motor system localizer, acquired before casting for each participant. Our findings provide a novel understanding of the role of the cortico-striato-thalamo-cortical loops in human motor plasticity and a potential link with the physiology of sleep regulation. Additionally, similarities with FC observation from Parkinson Disease (PD) questions a pathophysiological link with limb disuse.
Collapse
Affiliation(s)
- Roselyne J. Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Dillan J. Newbold
- Department of Neurology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Ashley N. Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryland L. Miller
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
| | - Samuel R. Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Anxu Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130
| | - Andrew N. Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Division of Computation and Data Science, Washington University School of Medicine, St. Louis, MO 63110
| | - David F. Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Vahdeta Suljic
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Noah J. Baden
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Kristen M. Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julia S. Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Forrest I. Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin P. Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcus E. Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy O. Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nico U.F. Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
6
|
Özbudak P, Özaslan A, Temel EÜ, Güney E, Serdaroğlu A, Arhan E. New Electrographic Marker? Evaluation of Sleep Spindles in Children with Attention Deficit Hyperactivity Disorder. Clin EEG Neurosci 2024; 55:4-10. [PMID: 36259661 DOI: 10.1177/15500594221134025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Attention deficit and hyperactivity disorder (ADHD) is one of the most common developmental disorders in childhood which lasts lifelong. Sleep structure and sleep spindle features are disorganized in ADHD. In this study, we aimed to look for a new, simple, inexpensive, and an easily detectable electrographic marker in the diagnosis of ADHD by using electroencephalography (EEG). Method: We included treatment free 35 patients with ADHD and 32 healthy children (HC) who were examined by polysomnography (PSG) and EEG for sleep disorders. The ADHD group were separated into three groups according to predominant presentations of ADHD. We determined the sleep staging and slow and fast sleep spindles, calculated each spindle's amplitude, frequency, activity, duration and density at non rapid eye movement (REM) sleep stage 2. Results: Slow sleep spindle's amplitude, duration, density and activity are significantly higher in ADHD group (most significant in ADHD-I) than the HC group (p < 0,05). Sleep spindle's features are not statistically significant between in ADHD subgroups. Conclusions: In children with ADHD, slow sleep spindles showed higher amplitude, activity, density and duration in the frontal regions. These results indicate that slow sleep spindles in children with ADHD may reflect executive dysfunction and slow frontal spindles may be useful as a new electrographic marker in children with ADHD. This is the first study of its kind evaluating all aspects of sleep spindles in ADHD patients.
Collapse
Affiliation(s)
- Pınar Özbudak
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Özaslan
- Department of Child and Adolescent Psychiatry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Esra Ülgen Temel
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Esra Güney
- Department of Child and Adolescent Psychiatry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ayşe Serdaroğlu
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ebru Arhan
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
D'Rozario AL, Kao CH, Phillips CL, Mullins AE, Memarian N, Yee BJ, Duffy SL, Cho G, Wong KKH, Kremerskothen K, Chapman J, Haroutonian C, Bartlett DJ, Naismith SL, Grunstein RR. Region-specific changes in brain activity and memory after continuous positive airway pressure therapy in obstructive sleep apnea: a pilot high-density electroencephalography study. Sleep 2023; 46:zsad255. [PMID: 37777337 DOI: 10.1093/sleep/zsad255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/24/2023] [Indexed: 10/02/2023] Open
Abstract
STUDY OBJECTIVES Limited channel electroencephalography (EEG) investigations in obstructive sleep apnea (OSA) have revealed deficits in slow wave activity (SWA) and spindles during sleep and increased EEG slowing during resting wakefulness. High-density EEG (Hd-EEG) has also detected local parietal deficits in SWA (delta power) during NREM. It is unclear whether effective continuous positive airway pressure (CPAP) treatment reverses regional SWA deficits, and other regional sleep and wake EEG abnormalities, and whether any recovery relates to improved overnight memory consolidation. METHODS A clinical sample of men with moderate-severe OSA underwent sleep and resting wake recordings with 256-channel Hd-EEG before and after 3 months of CPAP. Declarative and procedural memory tasks were administered pre- and post-sleep. Topographical spectral power maps and differences between baseline and treatment were compared using t-tests and statistical nonparametric mapping (SnPM). RESULTS In 11 compliant CPAP users (5.2 ± 1.1 hours/night), total sleep time did not differ after CPAP but N1 and N2 sleep were lower and N3 was higher. Centro-parietal gamma power during N3 increased and fronto-central slow spindle activity during N2 decreased (SnPM < 0.05). No other significant differences in EEG power were observed. When averaged specifically within the parietal region, N3 delta power increased after CPAP (p = 0.0029) and was correlated with the change in overnight procedural memory consolidation (rho = 0.79, p = 0.03). During resting wakefulness, there were trends for reduced delta and theta power. CONCLUSIONS Effective CPAP treatment of OSA may correct regional EEG abnormalities, and regional recovery of SWA may relate to procedural memory improvements in the short term.
Collapse
Affiliation(s)
- Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Chien-Hui Kao
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Craig L Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anna E Mullins
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine, New York City, NY, USA
| | - Negar Memarian
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Brendon J Yee
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health University of Sydney, Sydney, NSW, Australia
| | - Shantel L Duffy
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Garry Cho
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Keith K H Wong
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health University of Sydney, Sydney, NSW, Australia
| | - Kyle Kremerskothen
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Julia Chapman
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Carla Haroutonian
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Delwyn J Bartlett
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health University of Sydney, Sydney, NSW, Australia
| | - Sharon L Naismith
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ron R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Sheroziya M, Khazipov R. Synaptic Origin of Early Sensory-evoked Oscillations in the Immature Thalamus. Neuroscience 2023; 532:50-64. [PMID: 37769898 DOI: 10.1016/j.neuroscience.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
During the critical period of postnatal development, brain maturation is extremely sensitive to external stimuli. Newborn rodents already have functional somatosensory pathways and the thalamus, but the cortex is still forming. Immature thalamic synapses may produce large postsynaptic potentials in immature neurons, while non-synaptic membrane currents remain relatively weak and slow. The thalamocortical system generates spontaneous and evoked early gamma and spindle-burst oscillations in newborn rodents. How relatively strong synapses and weak intrinsic currents interact with each other and how they contribute to early thalamic activities remains largely unknown. Here, we performed local field potential (LFP), juxtacellular, and patch-clamp recordings in the somatosensory thalamus of urethane-anesthetized rat pups at postnatal days 6-7 with one whisker stimulation. We removed the overlying cortex and hippocampus to reach the thalamus with electrodes. Deflection of only one (the principal) whisker induced spikes in a particular thalamic cell. Whisker deflection evoked a group of large-amplitude excitatory events, likely originating from lemniscal synapses and multiple inhibitory postsynaptic events in thalamocortical cells. Large-amplitude excitatory events produced a group of spike bursts and could evoke a depolarization block. Juxtacellular recordings confirmed the partial inactivation of spikes. Inhibitory events prevented inactivation of action potentials and gamma-modulated neuronal firing. We conclude that the interplay of strong excitatory and inhibitory synapses and relatively weak intrinsic currents produces sensory-evoked early gamma oscillations in thalamocortical cells. We also propose that sensory-evoked large-amplitude excitatory events contribute to evoked spindle-bursts.
Collapse
Affiliation(s)
- Maxim Sheroziya
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia; Aix Marseille University, INSERM, INMED, Marseille, France
| |
Collapse
|
9
|
Thalamic control of sensory processing and spindles in a biophysical somatosensory thalamoreticular circuit model of wakefulness and sleep. Cell Rep 2023; 42:112200. [PMID: 36867532 PMCID: PMC10066598 DOI: 10.1016/j.celrep.2023.112200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.
Collapse
|
10
|
Czekus C, Steullet P, Orero López A, Bozic I, Rusterholz T, Bandarabadi M, Do KQ, Gutierrez Herrera C. Alterations in TRN-anterodorsal thalamocortical circuits affect sleep architecture and homeostatic processes in oxidative stress vulnerable Gclm -/- mice. Mol Psychiatry 2022; 27:4394-4406. [PMID: 35902628 PMCID: PMC9734061 DOI: 10.1038/s41380-022-01700-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.
Collapse
Affiliation(s)
- Christina Czekus
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Albert Orero López
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Ivan Bozic
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Mojtaba Bandarabadi
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Bukhtiyarova O, Chauvette S, Seigneur J, Timofeev I. Brain states in freely behaving marmosets. Sleep 2022; 45:6586531. [PMID: 35576961 PMCID: PMC9366652 DOI: 10.1093/sleep/zsac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Study Objectives We evaluated common marmosets as a perspective animal model to study human sleep and wake states. Methods Using wireless neurologger recordings, we performed longitudinal multichannel local field potential (LFP) cortical, hippocampal, neck muscle, and video recordings in three freely behaving marmosets. The brain states were formally identified using self-organizing maps. Results Marmosets were generally awake during the day with occasional 1–2 naps, and they slept during the night. Major electrographic patterns fall in five clearly distinguished categories: wakefulness, drowsiness, light and deep NREM sleep, and REM. Marmosets typically had 14–16 sleep cycles per night, with either gradually increasing or relatively low, but stable delta power within the cycle. Overall, the delta power decreased throughout the night sleep. Marmosets demonstrated prominent high amplitude somatosensory mu-rhythm (10–15 Hz), accompanied with neocortical ripples, and alternated with occipital alpha rhythm (10–15 Hz). NREM sleep was characterized with the presence of high amplitude slow waves, sleep spindles and ripples in neocortex, and sharp-wave-ripple complexes in CA1. Light and deep stages differed in levels of delta and sigma power and muscle tone. REM sleep was defined with low muscle tone and activated LFP with predominant beta-activity and rare spindle-like or mu-like events. Conclusions Multiple features of sleep–wake state distribution and electrographic patterns associated with behavioral states in marmosets closely match human states, although marmoset have shorter sleep cycles. This demonstrates that marmosets represent an excellent model to study origin of human electrographical rhythms and brain states.
Collapse
Affiliation(s)
- Olga Bukhtiyarova
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval , Québec (Québec) , Canada
- CERVO Brain Research Centre , Québec (Québec) , Canada
| | | | | | - Igor Timofeev
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval , Québec (Québec) , Canada
- CERVO Brain Research Centre , Québec (Québec) , Canada
| |
Collapse
|
12
|
Gonzalez C, Jiang X, Gonzalez-Martinez J, Halgren E. Human Spindle Variability. J Neurosci 2022; 42:4517-4537. [PMID: 35477906 PMCID: PMC9172080 DOI: 10.1523/jneurosci.1786-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
In humans, sleep spindles are 10- to 16-Hz oscillations lasting approximately 0.5-2 s. Spindles, along with cortical slow oscillations, may facilitate memory consolidation by enabling synaptic plasticity. Early recordings of spindles at the scalp found anterior channels had overall slower frequency than central-posterior channels. This robust, topographical finding led to dichotomizing spindles as "slow" versus "fast," modeled as two distinct spindle generators in frontal versus posterior cortex. Using a large dataset of intracranial stereoelectroencephalographic (sEEG) recordings from 20 patients (13 female, 7 male) and 365 bipolar recordings, we show that the difference in spindle frequency between frontal and parietal channels is comparable to the variability in spindle frequency within the course of individual spindles, across different spindles recorded by a given site, and across sites within a given region. Thus, fast and slow spindles only capture average differences that obscure a much larger underlying overlap in frequency. Furthermore, differences in mean frequency are only one of several ways that spindles differ. For example, compared with parietal, frontal spindles are smaller, tend to occur after parietal when both are engaged, and show a larger decrease in frequency within-spindles. However, frontal and parietal spindles are similar in being longer, less variable, and more widespread than occipital, temporal, and Rolandic spindles. These characteristics are accentuated in spindles which are highly phase-locked to posterior hippocampal spindles. We propose that rather than a strict parietal-fast/frontal-slow dichotomy, spindles differ continuously and quasi-independently in multiple dimensions, with variability due about equally to within-spindle, within-region, and between-region factors.SIGNIFICANCE STATEMENT Sleep spindles are 10- to 16-Hz neural oscillations generated by cortico-thalamic circuits that promote memory consolidation. Spindles are often dichotomized into slow-anterior and fast-posterior categories for cognitive and clinical studies. Here, we show that the anterior-posterior difference in spindle frequency is comparable to that observed between different cycles of individual spindles, between spindles from a given site, or from different sites within a region. Further, we show that spindles vary on other dimensions such as duration, amplitude, spread, primacy and consistency, and that these multiple dimensions vary continuously and largely independently across cortical regions. These findings suggest that multiple continuous variables rather than a strict frequency dichotomy may be more useful biomarkers for memory consolidation or psychiatric disorders.
Collapse
Affiliation(s)
- Christopher Gonzalez
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs San Diego Healthcare System/University of California San Diego, San Diego, California 92161
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jorge Gonzalez-Martinez
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio 44106
- Epilepsy and Movement Disorders Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Eric Halgren
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
- Department of Radiology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
13
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D'Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [PMID: 35313262 DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Sleep spindles are key electroencephalogram (EEG) oscillatory events that occur during non-rapid eye movement (NREM) sleep. Deficits in sleep spindles are present in populations with sleep and neurological disorders, and in severe mental illness. Pharmacological manipulation of these waveforms is of growing interest with therapeutic potential in targeting spindle deficits relating to memory impairment. This review integrates studies that provide insight into the feasibility of manipulating sleep spindles by using psychoactive drug classes, with consequent effects on sleep-dependent memory. Most studies showed that benzodiazepines and Z-drugs consistently enhanced sleep spindle activity unlike other psychoactive drug classes reviewed. However, how these spindle enhancements translate into improved sleep-dependent memory remains to be fully elucidated. From the few studies that examined both spindles and memory, preliminary evidence suggests that zolpidem may have some therapeutic potential to enhance declarative memory through boosting sleep spindle activity. There is a greater need to standardise methodological approaches for identifying and quantifying spindle activity as well as more exploratory studies to elucidate the role of spindle enhancement for other types of memory.
Collapse
Affiliation(s)
- Celeste W Y Leong
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Josiah W S Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, and Sydney Health Partners, NSW; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Jun Z Teh
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia.
| | - Bandana Saini
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Timofeev I. Just a sound: A non-pharmacological treatment approach in epilepsy. Cell Rep Med 2021; 2:100451. [PMID: 34841296 PMCID: PMC8607007 DOI: 10.1016/j.xcrm.2021.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Benign epilepsy with centro-temporal spikes is typically not treated by antiepileptic drugs, but it leads to cognitive disfunctions. In this issue, Klinzing et al.1 demonstrate that closed-loop auditory stimulation delivered after paroxysmal spikes reduces the total number of paroxysmal spikes.
Collapse
Affiliation(s)
- Igor Timofeev
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec, QC G1J2G3, Canada
| |
Collapse
|
15
|
Foroutannia A, Nazarimehr F, Ghasemi M, Jafari S. Chaos in memory function of sleep: A nonlinear dynamical analysis in thalamocortical study. J Theor Biol 2021; 528:110837. [PMID: 34273361 DOI: 10.1016/j.jtbi.2021.110837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
Studying the dynamical behaviors of neuronal models may help in better understanding of real nervous system. In addition, it can help researchers to understand some specific phenomena in neuronal system. The thalamocortical network is made of neurons in the thalamus and cortex. In it, the memory function is consolidated in sleep by creating up and down state oscillations (1 Hz) and fast (13-17 Hz) - slow (8-12 Hz) spindles. Recently, a nonlinear biological model for up-down oscillations and fast-slow spindles of the thalamocortical network has been proposed. In this research, the power spectral for the fast-slow spindle of the model is extracted. Dynamical properties of the model, such as the bifurcation diagrams, and attractors are investigated. The results show that the variation of the synaptic power between the excitatory neurons of the cortex and the reticular neurons in the thalamus changes the spindles' activity. According to previous experimental findings, it is an essential rule for consolidating the memory function during sleep. It is also pointed out that when the fast-slow spindles of the brain increase, the dynamics of the thalamocortical system tend to chaos.
Collapse
Affiliation(s)
- Ali Foroutannia
- Neural Engineering Laboratory, Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran
| | - Fahimeh Nazarimehr
- Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 159163-4311, Iran
| | - Mahdieh Ghasemi
- Neural Engineering Laboratory, Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran.
| | - Sajad Jafari
- Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 159163-4311, Iran; Health Technology Research Institute, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 159163-4311, Iran
| |
Collapse
|
16
|
Joechner AK, Wehmeier S, Werkle-Bergner M. Electrophysiological indicators of sleep-associated memory consolidation in 5- to 6-year-old children. Psychophysiology 2021; 58:e13829. [PMID: 33951193 DOI: 10.1111/psyp.13829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
In adults, the synchronized interplay of sleep spindles (SP) and slow oscillations (SO) supports memory consolidation. Given tremendous developmental changes in SP and SO morphology, it remains elusive whether across childhood the same mechanisms as identified in adults are functional. Based on topography and frequency, we characterize slow and fast SPs and their temporal coupling to SOs in 24 pre-school children. Further, we ask whether slow and fast SPs and their modulation during SOs are associated with behavioral indicators of declarative memory consolidation as suggested by the literature on adults. Employing an individually tailored approach, we reliably identify an inherent, development-specific fast centro-parietal SP type, nested in the adult-like slow SP frequency range, along with a dominant slow frontal SP type. Further, we provide evidence that the modulation of fast centro-parietal SPs during SOs is already present in pre-school children. However, the temporal coordination between fast centro-parietal SPs and SOs is weaker and less precise than expected from research on adults. While we do not find evidence for a critical contribution of SP-SO coupling for memory consolidation, crucially, slow frontal and fast centro-parietal SPs are each differentially related to sleep-associated consolidation of items of varying quality. Whereas a higher number of slow frontal SPs is associated with stronger maintenance of medium-quality memories, a higher number of fast centro-parietal SPs is linked to a greater gain of low-quality items. Our results demonstrate two functionally relevant inherent SP types in pre-school children although SP-SO coupling is not yet fully mature.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sarah Wehmeier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
17
|
Iotchev IB, Kubinyi E. Shared and unique features of mammalian sleep spindles - insights from new and old animal models. Biol Rev Camb Philos Soc 2021; 96:1021-1034. [PMID: 33533183 DOI: 10.1111/brv.12688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
Sleep spindles are phasic events observed in mammalian non-rapid eye movement sleep. They are relevant today in the study of memory consolidation, sleep quality, mental health and ageing. We argue that our advanced understanding of their mechanisms has not exhausted the utility and need for animal model work. This is both because some topics, like cognitive ageing, have not yet been addressed sufficiently in comparative efforts and because the evolutionary history of this oscillation is still poorly understood. Comparisons across species often are either limited to referencing the classical cat and rodent models, or are over-inclusive, uncritically including reports of sleep spindles in rarely studied animals. In this review, we discuss the emergence of new (dog and sheep) models for sleep spindles and compare the strengths and shortcomings of new and old models based on the three validation criteria for animal models - face, predictive, and construct validity. We conclude that an emphasis on cognitive ageing might dictate the future of comparative sleep spindle studies, a development that is already becoming visible in studies on dogs. Moreover, reconstructing the evolutionary history of sleep spindles will require more stringent criteria for their identification, across more species. In particular, a stronger emphasis on construct and predictive validity can help verify if spindle-like events in other species are actual sleep spindles. Work in accordance with such stricter validation suggests that sleep spindles display more universally shared features, like defining frequency, than previously thought.
Collapse
Affiliation(s)
- Ivaylo Borislavov Iotchev
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
18
|
Ujma PP, Hajnal B, Bódizs R, Gombos F, Erőss L, Wittner L, Halgren E, Cash SS, Ulbert I, Fabó D. The laminar profile of sleep spindles in humans. Neuroimage 2020; 226:117587. [PMID: 33249216 PMCID: PMC9113200 DOI: 10.1016/j.neuroimage.2020.117587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles are functionally important NREM sleep EEG oscillations which are generated in thalamocortical, corticothalamic and possibly cortico-cortical circuits. Previous hypotheses suggested that slow and fast spindles or spindles with various spatial extent may be generated in different circuits with various cortical laminar innervation patterns. We used NREM sleep EEG data recorded from four human epileptic patients undergoing presurgical electrophysiological monitoring with subdural electrocorticographic grids (ECoG) and implanted laminar microelectrodes penetrating the cortex (IME). The position of IMEs within cortical layers was confirmed using postsurgical histological reconstructions. Many spindles detected on the IME occurred only in one layer and were absent from the ECoG, but with increasing amplitude simultaneous detection in other layers and on the ECoG became more likely. ECoG spindles were in contrast usually accompanied by IME spindles. Neither IME nor ECoG spindle cortical profiles were strongly associated with sleep spindle frequency or globality. Multiple-unit and single-unit activity during spindles, however, was heterogeneous across spindle types, but also across layers and patients. Our results indicate that extremely local spindles may occur in any cortical layer, but co-occurrence at other locations becomes likelier with increasing amplitude and the relatively large spindles detected on ECoG channels have a stereotypical laminar profile. We found no compelling evidence that different spindle types are associated with different laminar profiles, suggesting that they are generated in cortical and thalamic circuits with similar cortical innervation patterns. Local neuronal activity is a stronger candidate mechanism for driving functional differences between spindles subtypes.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, 1089 Budapest, Hungary; Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Boglárka Hajnal
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; School of P.h.D. studies, Semmelweis University, 1085 Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, 1089 Budapest, Hungary; Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, 1088 Budapest, Hungary; MTA-PPKE Adolescent Development Research Group, Hungarian Academy of Sciences, 1088 Budapest, Hungary
| | - Loránd Erőss
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Lucia Wittner
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network 1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, 92093 San Diego CA, USA
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery (CNTR), Department of Neurology, Massachusetts General Hospital, 02114 Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, 02115 MA, USA
| | - István Ulbert
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network 1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Dániel Fabó
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| |
Collapse
|
19
|
Weber FD, Supp GG, Klinzing JG, Mölle M, Engel AK, Born J. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study. Neuroimage 2020; 224:117452. [PMID: 33059050 DOI: 10.1016/j.neuroimage.2020.117452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
Sleep spindles are crucial to memory consolidation. Cortical gamma oscillations (30-100 Hz) are considered to reflect processing of memory in local cortical networks. The temporal and regulatory relationship between spindles and gamma activity might therefore provide clues into how sleep strengthens cortical memory representations. Here, combining EEG with MEG recordings during sleep in healthy humans (n = 12), we investigated the temporal relationships of cortical gamma band activity, always measured by MEG, during fast (12-16 Hz) and slow (8-12 Hz) sleep spindles detected in the EEG or MEG. Time-frequency distributions did not show a consistent coupling of gamma to the spindle oscillation, although activity in the low gamma (30-40 Hz) and neighboring beta range (<30 Hz) was generally increased during spindles. However, more fine-grained analyses of cross-frequency interactions revealed that both low and high gamma power (30-100 Hz) was coupled to the phase of slow and fast EEG spindles, importantly, with this coupling at a fixed phase only for the oscillations within an individual spindle, but with variable phase across spindles. We did not observe any coupling of gamma activity for spindles detected solely in the MEG and not in parallel EEG recordings, raising the possibility that these are more local spindles of different quality. Similar to fast spindle activity, low gamma band power followed a ~0.025 Hz infraslow rhythm during sleep whose frequency, however, was significantly faster than that of spindle activity. Our findings suggest a general function of fast and slow spindles that by spanning larger cortical networks might serve to synchronize gamma band activity occurring in more local but distributed networks. Thereby, spindles might help linking local memory processing between distributed networks.
Collapse
Affiliation(s)
- Frederik D Weber
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany.
| | - Gernot G Supp
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Martinistraße 52, Building N43, Germany
| | - Jens G Klinzing
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany
| | - Matthias Mölle
- Department of Neuroendocrinology, University of Lübeck, 23538 Lübeck, Ratzeburger Allee 160, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Martinistraße 52, Building N43, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany; Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany.
| |
Collapse
|
20
|
Hong J, Ha GE, Kwak H, Lee Y, Jeong H, Suh PG, Cheong E. Destabilization of light NREM sleep by thalamic PLCβ4 deletion impairs sleep-dependent memory consolidation. Sci Rep 2020; 10:8813. [PMID: 32483199 PMCID: PMC7264240 DOI: 10.1038/s41598-020-64377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/15/2020] [Indexed: 01/20/2023] Open
Abstract
Sleep abnormality often accompanies the impairment of cognitive function. Both rapid eye movement (REM) and non-REM (NREM) sleep have associated with improved memory performance. However, the role of composition in NREM sleep, consisting of light and deep NREM, for memory formation is not fully understood. We investigated how the dynamics of NREM sleep states influence memory consolidation. Thalamocortical (TC) neuron-specific phospholipase C β4 (PLCβ4) knockout (KO) increased the total duration of NREM sleep, consisting of destabilized light NREM and stabilized deep NREM. Surprisingly, the longer NREM sleep did not improve memory consolidation but rather impaired it in TC-specific PLCβ4 KO mice. Memory function was positively correlated with the stability of light NREM and spindle activity occurring in maintained light NREM period. Our study suggests that a single molecule, PLCβ4, in TC neurons is critical for tuning the NREM sleep states and thus affects sleep-dependent memory formation.
Collapse
Affiliation(s)
- Joohyeon Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Go Eun Ha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yelin Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyeonyeong Jeong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Science, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
21
|
Muehlroth BE, Werkle-Bergner M. Understanding the interplay of sleep and aging: Methodological challenges. Psychophysiology 2020; 57:e13523. [PMID: 31930523 DOI: 10.1111/psyp.13523] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/21/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
In quest of new avenues to explain, predict, and treat pathophysiological conditions during aging, research on sleep and aging has flourished. Despite the great scientific potential to pinpoint mechanistic pathways between sleep, aging, and pathology, only little attention has been paid to the suitability of analytic procedures applied to study these interrelations. On the basis of electrophysiological sleep and structural brain data of healthy younger and older adults, we identify, illustrate, and resolve methodological core challenges in the study of sleep and aging. We demonstrate potential biases in common analytic approaches when applied to older populations. We argue that uncovering age-dependent alterations in the physiology of sleep requires the development of adjusted and individualized analytic procedures that filter out age-independent interindividual differences. Age-adapted methodological approaches are thus required to foster the development of valid and reliable biomarkers of age-associated cognitive pathologies.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
22
|
Saito Y, Kaga Y, Nakagawa E, Okubo M, Kohashi K, Omori M, Fukuda A, Inagaki M. Association of inattention with slow-spindle density in sleep EEG of children with attention deficit-hyperactivity disorder. Brain Dev 2019; 41:751-759. [PMID: 31204192 DOI: 10.1016/j.braindev.2019.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We evaluated the power of slow sleep spindles during sleep stage 2 to clarify their relationship with executive function, especially with attention, in children with attention deficit-hyperactivity disorder (ADHD). METHODS Subjects were 21 children with ADHD and 18 aged-matched, typically developing children (TDC). ADHD subjects were divided into groups of only ADHD and ADHD + autism spectrum disorder (ASD). We employed the Continuous Performance Test (CPT) to measure attention. We focused on sleep spindle frequencies (12-14 Hz) in sleep stage 2 and performed a power spectral analysis using fast Fourier transform techniques and compared sleep spindles with the variability of reaction time in CPT. RESULTS In the CPT, reaction variabilities in ADHD and ADHD + ASD significantly differed from those in TDC. Twelve-hertz spindles were mainly distributed in the frontal pole and frontal area and 14-Hz spindles in the central area. The ratio of 12-Hz frontal spindle power was higher in ADHD than in TDC, especially in ADHD + ASD. Significant correlation between the ratio of 12-Hz spindles and reaction time variability was observed. CONCLUSIONS Twelve-hertz frontal spindle EEG activity may have positive associations with sustained attention function. Slow frontal spindles may be useful as a biomarker of inattention in children with ADHD.
Collapse
Affiliation(s)
- Yoshihiko Saito
- Department of Child Neurology, National Center Hospital, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8551, Japan
| | - Yoshimi Kaga
- Department of Developmental Disorders, National Institute of Mental Health, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8553, Japan.
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8551, Japan; Department of Developmental Disorders, National Institute of Mental Health, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8553, Japan
| | - Mariko Okubo
- Department of Child Neurology, National Center Hospital, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8551, Japan
| | - Kosuke Kohashi
- Department of Child Neurology, National Center Hospital, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8551, Japan
| | - Mikimasa Omori
- Department of Developmental Disorders, National Institute of Mental Health, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8553, Japan
| | - Ayako Fukuda
- Department of Developmental Disorders, National Institute of Mental Health, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8553, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, NCNP of National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8553, Japan
| |
Collapse
|
23
|
Iotchev IB, Kis A, Turcsán B, Tejeda Fernández de Lara DR, Reicher V, Kubinyi E. Age-related differences and sexual dimorphism in canine sleep spindles. Sci Rep 2019; 9:10092. [PMID: 31300672 PMCID: PMC6626048 DOI: 10.1038/s41598-019-46434-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022] Open
Abstract
Non-REM bursts of activity in the sigma range (9-16 Hz) typical of sleep spindles predict learning in dogs, similar to humans and rats. Little is known, however, about the age-related changes in amplitude, density (spindles/minute) and frequency (waves/second) of canine spindles. We investigated a large sample (N = 155) of intact and neutered pet dogs of both sexes, varying in breed and age, searching for spindles in segments of non-REM sleep. We recorded EEG from both a frontal midline electrode (Fz) and a central midline electrode (Cz) in 55.5% of the dogs, in the remaining animals only the Fz electrode was active (bipolar derivation). A similar topography was observed for fast (≥13 Hz) spindle occurrence as in humans (fast spindle number, density on Cz > Fz). For fast spindles, density was higher in females, and increased with age. These effects were more pronounced among intact animals and on Fz. Slow spindle density declined and fast spindle frequency increased with age on Cz, while on Fz age-related amplitude decline was observed. The frequency of fast spindles on Fz and slow spindles on Cz was linked to both sex and neutering, suggesting modulation by sexual hormones. Intact females displayed higher frequencies than males and neutered females. Our findings support the argument that sigma bursts in the canine non-REM sleep are analogous to human sleep spindles, and suggest that slow and fast spindles display different trajectories related to age, of which an increase in frontal fast spindles is unique to dogs.
Collapse
Affiliation(s)
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Borbála Turcsán
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | | - Vivien Reicher
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
24
|
Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Shing YL, Werkle-Bergner M. Precise Slow Oscillation-Spindle Coupling Promotes Memory Consolidation in Younger and Older Adults. Sci Rep 2019; 9:1940. [PMID: 30760741 PMCID: PMC6374430 DOI: 10.1038/s41598-018-36557-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/25/2018] [Indexed: 01/17/2023] Open
Abstract
Memory consolidation during sleep relies on the precisely timed interaction of rhythmic neural events. Here, we investigate differences in slow oscillations (SO; 0.5-1 Hz), sleep spindles (SP), and their coupling across the adult human lifespan and ask whether observed alterations relate to the ability to retain associative memories across sleep. We demonstrate that older adults do not show the fine-tuned coupling of fast SPs (12.5-16 Hz) to the SO peak present in younger adults but, instead, are characterized most by a slow SP power increase (9-12.5 Hz) at the end of the SO up-state. This slow SP power increase, typical for older adults, coincides with worse memory consolidation in young age already, whereas the tight precision of SO-fast SP coupling promotes memory consolidation across younger and older adults. Crucially, brain integrity in source regions of SO and SP generation, including the medial prefrontal cortex, thalamus, hippocampus and entorhinal cortex, reinforces this beneficial SO-SP coupling in old age. Our results reveal that cognitive functioning is not only determined by maintaining structural brain integrity across the adult lifespan, but also by the preservation of precisely timed neural interactions during sleep that enable the consolidation of declarative memories.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Yee Lee Shing
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Developmental Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
25
|
Gonzalez CE, Mak-McCully RA, Rosen BQ, Cash SS, Chauvel PY, Bastuji H, Rey M, Halgren E. Theta Bursts Precede, and Spindles Follow, Cortical and Thalamic Downstates in Human NREM Sleep. J Neurosci 2018; 38:9989-10001. [PMID: 30242045 PMCID: PMC6234298 DOI: 10.1523/jneurosci.0476-18.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/03/2023] Open
Abstract
Since their discovery, slow oscillations have been observed to group spindles during non-REM sleep. Previous studies assert that the slow-oscillation downstate (DS) is preceded by slow spindles (10-12 Hz) and followed by fast spindles (12-16 Hz). Here, using both direct transcortical recordings in patients with intractable epilepsy (n = 10, 8 female), as well as scalp EEG recordings from a healthy cohort (n = 3, 1 female), we find in multiple cortical areas that both slow and fast spindles follow the DS. Although discrete oscillations do precede DSs, they are theta bursts (TBs) centered at 5-8 Hz. TBs were more pronounced for DSs in NREM stage 2 (N2) sleep compared with N3. TB with similar properties occur in the thalamus, but unlike spindles they have no clear temporal relationship with cortical TB. These differences in corticothalamic dynamics, as well as differences between spindles and theta in coupling high-frequency content, are consistent with NREM theta having separate generative mechanisms from spindles. The final inhibitory cycle of the TB coincides with the DS peak, suggesting that in N2, TB may help trigger the DS. Since the transition to N1 is marked by the appearance of theta, and the transition to N2 by the appearance of DS and thus spindles, a role of TB in triggering DS could help explain the sequence of electrophysiological events characterizing sleep. Finally, the coordinated appearance of spindles and DSs are implicated in memory consolidation processes, and the current findings redefine their temporal coupling with theta during NREM sleep.SIGNIFICANCE STATEMENT Sleep is characterized by large slow waves which modulate brain activity. Prominent among these are downstates (DSs), periods of a few tenths of a second when most cells stop firing, and spindles, oscillations at ∼12 times a second lasting for ∼a second. In this study, we provide the first detailed description of another kind of sleep wave: theta bursts (TBs), a brief oscillation at ∼six cycles per second. We show, recording during natural sleep directly from the human cortex and thalamus, as well as on the scalp, that TBs precede, and spindles follow DSs. TBs may help trigger DSs in some circumstances, and could organize cortical and thalamic activity so that memories can be consolidated during sleep.
Collapse
Affiliation(s)
- Christopher E Gonzalez
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093,
| | | | - Burke Q Rosen
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02114
| | | | - Hélène Bastuji
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, Université Claude Bernard, Lyon, Bron, France, and
| | - Marc Rey
- Aix-Marseille Université, Marseille 13385, France
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, San Diego, California 92093
| |
Collapse
|
26
|
Léger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: From the cell to the clinic. Sleep Med Rev 2018; 41:113-132. [DOI: 10.1016/j.smrv.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
27
|
Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders. Transl Psychiatry 2018; 8:154. [PMID: 30108203 PMCID: PMC6092338 DOI: 10.1038/s41398-018-0199-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/03/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
Sleep EEG spindles have been implicated in attention, sensory processing, synaptic plasticity and memory consolidation. In humans, deficits in sleep spindles have been reported in a wide range of neurological and psychiatric disorders, including schizophrenia. Genome-wide association studies have suggested a link between schizophrenia and genes associated with synaptic plasticity, including the Gria1 gene which codes for the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Gria1-/- mice exhibit a phenotype relevant for neuropsychiatric disorders, including reduced synaptic plasticity and, at the behavioural level, attentional deficits leading to aberrant salience. In this study we report a striking reduction of EEG power density including the spindle-frequency range (10-15 Hz) during sleep in Gria1-/- mice. The reduction of spindle-activity in Gria1-/- mice was accompanied by longer REM sleep episodes, increased EEG slow-wave activity in the occipital derivation during baseline sleep, and a reduced rate of decline of EEG slow wave activity (0.5-4 Hz) during NREM sleep after sleep deprivation. These data provide a novel link between glutamatergic dysfunction and sleep abnormalities in a schizophrenia-relevant mouse model.
Collapse
|
28
|
Ohki T, Takei Y. Neural mechanisms of mental schema: a triplet of delta, low beta/spindle and ripple oscillations. Eur J Neurosci 2018; 48:2416-2430. [PMID: 29405470 DOI: 10.1111/ejn.13844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
Abstract
Schemas are higher-level knowledge structures that integrate and organise lower-level representations. As internal templates, schemas are formed according to how events are perceived, interpreted and remembered. Although these higher-level units are assumed to play a fundamental role in our daily life from an early age, the neuronal basis and mechanisms of schema formation and use remain largely unknown. It is important to elucidate how the brain constructs and maintains these higher-level units. In order to examine the possible neural underpinnings of schema, we recapitulate previous work and discuss their findings related to schemas as the brain template. We specifically focused on low beta/spindle oscillations, which are assumed to be the key components of schemas, and propose that the brain template is implemented with a triplet of neural oscillations, that is delta, low beta/spindle and ripple oscillations.
Collapse
Affiliation(s)
- Takefumi Ohki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan.,Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
29
|
Olbrich E, Rusterholz T, LeBourgeois MK, Achermann P. Developmental Changes in Sleep Oscillations during Early Childhood. Neural Plast 2017; 2017:6160959. [PMID: 28845310 PMCID: PMC5563422 DOI: 10.1155/2017/6160959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Although quantitative analysis of the sleep electroencephalogram (EEG) has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n = 8; 3 males) at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., "ultrafast" spindle-like oscillations, theta oscillation incidence/frequency) also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.
Collapse
Affiliation(s)
- Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Thomas Rusterholz
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Monique K. LeBourgeois
- Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Fogel S, Vien C, Karni A, Benali H, Carrier J, Doyon J. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation. Neurobiol Aging 2016; 49:154-164. [PMID: 27815989 DOI: 10.1016/j.neurobiolaging.2016.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/08/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022]
Abstract
Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults.
Collapse
Affiliation(s)
- Stuart Fogel
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; School of Psychology, University of Ottawa, Ottawa, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| | - Catherine Vien
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada
| | - Avi Karni
- Laboratory for Human Brain & Learning, Sagol Department of Neurobiology & the E.J. Safra Brain Research Center, University of Haifa, Haifa, Israel
| | - Habib Benali
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Functional Neuroimaging Laboratory, INSERM, Paris, France
| | - Julie Carrier
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre d'études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada.
| |
Collapse
|
31
|
Jing W, Wang Y, Fang G, Chen M, Xue M, Guo D, Yao D, Xia Y. EEG Bands of Wakeful Rest, Slow-Wave and Rapid-Eye-Movement Sleep at Different Brain Areas in Rats. Front Comput Neurosci 2016; 10:79. [PMID: 27536231 PMCID: PMC4971061 DOI: 10.3389/fncom.2016.00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence reveals that neuronal oscillations with various frequency bands in the brain have different physiological functions. However, the frequency band divisions in rats were typically based on empirical spectral distribution from limited channels information. In the present study, functionally relevant frequency bands across vigilance states and brain regions were identified using factor analysis based on 9 channels EEG signals recorded from multiple brain areas in rats. We found that frequency band divisions varied both across vigilance states and brain regions. In particular, theta oscillations during REM sleep were subdivided into two bands, 5–7 and 8–11 Hz corresponding to the tonic and phasic stages, respectively. The spindle activities of SWS were different along the anterior-posterior axis, lower oscillations (~16 Hz) in frontal regions and higher in parietal (~21 Hz). The delta and theta activities co-varied in the visual and auditory cortex during wakeful rest. In addition, power spectra of beta oscillations were significantly decreased in association cortex during REM sleep compared with wakeful rest. These results provide us some new insights into understand the brain oscillations across vigilance states, and also indicate that the spatial factor should not be ignored when considering the frequency band divisions in rats.
Collapse
Affiliation(s)
- Wei Jing
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yanran Wang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, China
| | - Mingming Chen
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Miaomiao Xue
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Daqing Guo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| |
Collapse
|
32
|
Spindle Activity Orchestrates Plasticity during Development and Sleep. Neural Plast 2016; 2016:5787423. [PMID: 27293903 PMCID: PMC4884844 DOI: 10.1155/2016/5787423] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/13/2016] [Indexed: 11/17/2022] Open
Abstract
Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research.
Collapse
|
33
|
The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles. Neural Plast 2016; 2016:3024342. [PMID: 27144033 PMCID: PMC4842069 DOI: 10.1155/2016/3024342] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles arise from the interaction of thalamic and cortical neurons. Neurons in the thalamic reticular nucleus (TRN) inhibit thalamocortical neurons, which in turn excite the TRN and cortical neurons. A fundamental principle of anatomical organization of the thalamocortical projections is the presence of two pathways: the diffuse matrix pathway and the spatially selective core pathway. Cortical layers are differentially targeted by these two pathways with matrix projections synapsing in superficial layers and core projections impinging on middle layers. Based on this anatomical observation, we propose that spindles can be classified into two classes, those arising from the core pathway and those arising from the matrix pathway, although this does not exclude the fact that some spindles might combine both pathways at the same time. We find evidence for this hypothesis in EEG/MEG studies, intracranial recordings, and computational models that incorporate this difference. This distinction will prove useful in accounting for the multiple functions attributed to spindles, in that spindles of different types might act on local and widespread spatial scales. Because spindle mechanisms are often hijacked in epilepsy and schizophrenia, the classification proposed in this review might provide valuable information in defining which pathways have gone awry in these neurological disorders.
Collapse
|
34
|
Chen Z, Wimmer RD, Wilson MA, Halassa MM. Thalamic Circuit Mechanisms Link Sensory Processing in Sleep and Attention. Front Neural Circuits 2016; 9:83. [PMID: 26778969 PMCID: PMC4700269 DOI: 10.3389/fncir.2015.00083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/11/2015] [Indexed: 01/09/2023] Open
Abstract
The correlation between sleep integrity and attentional performance is normally interpreted as poor sleep causing impaired attention. Here, we provide an alternative explanation for this correlation: common thalamic circuits regulate sensory processing across sleep and attention, and their disruption may lead to correlated dysfunction. Using multi-electrode recordings in mice, we find that rate and rhythmicity of thalamic reticular nucleus (TRN) neurons are predictive of their functional organization in sleep and suggestive of their participation in sensory processing across states. Surprisingly, TRN neurons associated with spindles in sleep are also associated with alpha oscillations during attention. As such, we propose that common thalamic circuit principles regulate sensory processing in a state-invariant manner and that in certain disorders, targeting these circuits may be a more viable therapeutic strategy than considering individual states in isolation.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Psychiatry, NYU Langone Medical CenterNew York, NY, USA; Department of Neuroscience and Physiology, NYU School of MedicineNew York, NY, USA
| | - Ralf D Wimmer
- Department of Neuroscience and Physiology, NYU School of MedicineNew York, NY, USA; The Neuroscience Institute, NYU School of MedicineNew York, NY, USA
| | - Matthew A Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Michael M Halassa
- Department of Psychiatry, NYU Langone Medical CenterNew York, NY, USA; Department of Neuroscience and Physiology, NYU School of MedicineNew York, NY, USA; The Neuroscience Institute, NYU School of MedicineNew York, NY, USA; Center for Neural Science, New York UniversityNew York, NY, USA
| |
Collapse
|
35
|
Looking for a precursor of spontaneous Sleep Slow Oscillations in human sleep: The role of the sigma activity. Int J Psychophysiol 2015; 97:99-107. [PMID: 26003553 DOI: 10.1016/j.ijpsycho.2015.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/23/2022]
Abstract
Sleep Slow Oscillations (SSOs), paradigmatic EEG markers of cortical bistability (alternation between cellular downstates and upstates), and sleep spindles, paradigmatic EEG markers of thalamic rhythm, are two hallmarks of sleeping brain. Selective thalamic lesions are reportedly associated to reductions of spindle activity and its spectrum ~14 Hz (sigma), and to alterations of SSO features. This apparent, parallel behavior suggests that thalamo-cortical entrainment favors cortical bistability. Here we investigate temporally-causal associations between thalamic sigma activity and shape, topology, and dynamics of SSOs. We recorded sleep EEG and studied whether spatio-temporal variability of SSO amplitude, negative slope (synchronization in downstate falling) and detection rate are driven by cortical-sigma-activity expression (12-18Hz), in 3 consecutive 1s-EEG-epochs preceding each SSO event (Baselines). We analyzed: (i) spatial variability, comparing maps of baseline sigma power and of SSO features, averaged over the first sleep cycle; (ii) event-by-event shape variability, computing for each electrode correlations between baseline sigma power and amplitude/slope of related SSOs; (iii) event-by-event spreading variability, comparing baseline sigma power in electrodes showing an SSO event with the homologous ones, spared by the event. The scalp distribution of baseline sigma power mirrored those of SSO amplitude and slope; event-by-event variability in baseline sigma power was associated with that in SSO amplitude in fronto-central areas; within each SSO event, electrodes involved in cortical bistability presented higher baseline sigma activity than those free of SSO. In conclusion, spatio-temporal variability of thalamocortical entrainment, measured by background sigma activity, is a reliable estimate of the cortical proneness to bistability.
Collapse
|
36
|
Abstract
All brain normal or pathological activities occur in one of the states of vigilance: wake, slow-wave sleep, or REM sleep. Neocortical seizures preferentially occur during slow-wave sleep. We provide a description of neuronal behavior and mechanisms mediating such a behavior within neocortex taking place in natural states of vigilance as well as during seizures pointing to similarities and differences exhibited during sleep and seizures. A concept of epileptic focus is described using a model of cortical undercut, because in that model, the borders of the focus are well defined. In this model, as in other models of acquired epilepsy, the main factor altering excitability is deafferentation, which upregulates neuronal excitability that promotes generation of seizures. Periods of disfacilitation recorded during slow-wave sleep further upregulate neuronal excitability. It appears that the state of neurons and neuronal network in the epileptic focus produced by deafferentation are such that seizures cannot be generated there. Instead, seizures always start around the perimeter of the undercut cortex. Therefore, we define these areas as the seizure focus. In this zone, neuronal connectivity and excitability are moderately enhanced, lowering the threshold for seizure generation.
Collapse
|
37
|
Lemieux M, Chauvette S, Timofeev I. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation. J Neurophysiol 2014; 113:768-79. [PMID: 25392176 DOI: 10.1152/jn.00858.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During slow-wave sleep, neurons of the thalamocortical network are engaged in a slow oscillation (<1 Hz), which consists of an alternation between the active and the silent states. Several studies have provided insights on the transition from the silent, which are essentially periods of disfacilitation, to the active states. However, the conditions leading to the synchronous onset of the silent state remain elusive. We hypothesized that a synchronous input to local inhibitory neurons could contribute to the transition to the silent state in the cat suprasylvian gyrus during natural sleep and under ketamine-xylazine anesthesia. After partial and complete deafferentation of the cortex, we found that the silent state onset was more variable among remote sites. We found that the transition to the silent state was preceded by a reduction in excitatory postsynaptic potentials and firing probability in cortical neurons. We tested the impact of chloride-mediated inhibition in the silent-state onset. We uncovered a long-duration (100-300 ms) inhibitory barrage occurring about 250 ms before the silent state onset in 3-6% of neurons during anesthesia and in 12-15% of cases during natural sleep. These inhibitory activities caused a decrease in cortical firing that reduced the excitatory drive in the neocortical network. That chain reaction of disfacilitation ends up on the silent state. Electrical stimuli could trigger a network silent state with a maximal efficacy in deep cortical layers. We conclude that long-range afferents to the neocortex and chloride-mediated inhibition play a role in the initiation of the silent state.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Canada; and
| | - Sylvain Chauvette
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Canada; and
| | - Igor Timofeev
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Canada; and Department of Psychiatry and Neuroscience, Université Laval, Quebec, Canada
| |
Collapse
|
38
|
Zerouali Y, Lina JM, Sekerovic Z, Godbout J, Dube J, Jolicoeur P, Carrier J. A time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings. Front Neurosci 2014; 8:310. [PMID: 25389381 PMCID: PMC4211563 DOI: 10.3389/fnins.2014.00310] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/13/2014] [Indexed: 11/13/2022] Open
Abstract
Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging the synchronous oscillatory cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles on the EEG and extracted the corresponding frequency-locked MEG activity under the form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013). Secondly, we performed source reconstruction of the ridge signal within the Maximum Entropy on the Mean framework (Amblard et al., 2004), yielding a robust estimate of the cortical sources producing observed oscillations. Lastly, we quantified functional connectivity among cortical sources using phase-locking values. The main innovations of this methodology are (1) to reveal the dynamic behavior of functional networks resolved in the time-frequency plane and (2) to characterize functional connectivity among MEG sources through phase interactions. We showed, for the first time, that the switch from fast to slow oscillatory mode during sleep spindles is required for the emergence of specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles was associated with mainly intra-hemispheric connectivity whereas later synchrony was associated with global long-range connectivity. We propose that our methodology can be a valuable tool for studying the connectivity underlying neural processes involving sleep spindles, such as memory, plasticity or aging.
Collapse
Affiliation(s)
- Younes Zerouali
- Department of Electrical Engineering, Ecole de Technologie SupérieureMontreal, QC, Canada
| | - Jean-Marc Lina
- Department of Electrical Engineering, Ecole de Technologie SupérieureMontreal, QC, Canada
- Centre de Recherches Mathématiques, Université de MontréalMontreal, QC, Canada
| | - Zoran Sekerovic
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-CoeurMontreal, QC, Canada
- Department of Psychology, Université de MontréalMontreal, QC, Canada
| | - Jonathan Godbout
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-CoeurMontreal, QC, Canada
| | - Jonathan Dube
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-CoeurMontreal, QC, Canada
- Department of Psychology, Université de MontréalMontreal, QC, Canada
| | - Pierre Jolicoeur
- Department of Psychology, Université de MontréalMontreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-CoeurMontreal, QC, Canada
- Department of Psychology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|