1
|
Zhang S, Tong C, Cao N, Tian D, Du L, Xu Y, Wang W, Chen Z, Zhai S. Hippocampal Transcriptome Analysis in a Mouse Model of Chronic Unpredictable Stress Insomnia. Biomedicines 2025; 13:1205. [PMID: 40427032 PMCID: PMC12108738 DOI: 10.3390/biomedicines13051205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Background: This study aimed to develop a model for understanding stress-induced sleep disturbances and to explore the potential interactions between sleep disturbances and mood disturbances. Methods: The chronic unpredictable mild stress (CUMS) group was established using the CUMS method, while the CUMS+Noise group was subjected to an additional 8-h exposure to noise in conjunction with the CUMS protocol. Each group was tested for anxiety and depressive-like behavior using the open-field, elevated plus maze, tail suspension, and forced swimming tests in male C57BL/6J mice. Subsequently, we assessed sleep status using sleep recordings and a standardized scoring system alongside the pentobarbital sodium-induced sleep test. Results: The mice in both model groups exhibited anxiety-like behavior. Sleep disturbances observed in the CUMS+Noise group were characterized by disruptions in sleep duration and circadian rhythm. This observation was supported by a marked reduction in multiple sleep time intervals and single sleep duration, as well as a significant increase in sleep duration at the final time interval of ZT23-24. To further investigate the potential mechanisms of interaction, we conducted an analysis of hub genes present in the hippocampal sequencing data utilizing weighted gene co-expression network analysis (WGCNA). Pearson correlation analysis revealed a significant association between the hub genes Alb, P2rx1, and Npsr1 and key phenotypic traits. However, PCR experiments indicated that only Alb showed a significant difference, which aligns with the sequencing results. Conclusions: Albumin is a crucial transporter protein for thyroid hormones and plays a vital role in their metabolism. The interaction between sleep disorders and anxiety-like behavior may be closely linked to the dysfunctional transportation of thyroid hormones by albumin.
Collapse
Affiliation(s)
- Shuo Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100013, China;
| | - Changqing Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Na Cao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Dong Tian
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Linshan Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Ya Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Weiguang Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Zijie Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Shuangqing Zhai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| |
Collapse
|
2
|
Turton SM, Padgett S, Maisel MT, Johnson CE, Buzinova VA, Barth SE, Kohler K, Spearman HM, Macheda T, Manauis EC, Guo LZ, Whitlock HR, Bachstetter AD, Sunderam S, O'Hara BF, Duncan MJ, Murphy MP. Interactions between daily sleep-wake rhythms, γ-secretase, and amyloid-β peptide pathology point to complex underlying relationships. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167840. [PMID: 40222459 DOI: 10.1016/j.bbadis.2025.167840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Disrupted or insufficient sleep is a well-documented risk factor for Alzheimer's disease (AD) and related dementias. Previous studies in our lab and others have shown that chronic fragmentation of the daily sleep-wake rhythm in mice can accelerate the development of AD-related neuropathology in the brain, including increases in the levels of amyloid-β (Aβ). Although sleep is known to increase clearance of Aβ via the glymphatic system, little is known about the effect of sleep on Aβ production and the role this might play in amyloid deposition. To examine the relationship of Aβ production and its interaction with sleep and sleep dysfunction, we treated mice from an APP × PS1 mutant knock-in line (APPΔNLh/ΔNLh × PS1P264L/P264L) with an inhibitor of γ-secretase (LY-450,139; Semagacestat®) during a protocol of mild sleep fragmentation (SF). Compared to the male mice, the female mice slept less, and had more Aβ pathology. Semagacestat treatment reduced Aβ, but only in the most soluble extractable fraction. Although the female mice showed an increase in the amount of Aβ following SF, this effect was blocked by Semagacestat, an effect that was not seen in the male mice. SF also led to a significant, sex-dependent changes in the relative amounts of C-terminal fragments of the amyloid precursor protein, the immediate substrate of the γ-secretase enzyme. These findings indicate that the relationship between disruption of the daily sleep-wake rhythm and the development of AD-related pathology is complex, and may involve unappreciated interactions with biological sex. Consideration of these factors is necessary for a better understanding of AD risk, especially the elevated risk in women.
Collapse
Affiliation(s)
| | | | | | - Carrie E Johnson
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA
| | - Valeria A Buzinova
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA
| | | | | | | | | | | | | | | | - Adam D Bachstetter
- The Sanders-Brown Center on Aging, USA; The Spinal Cord and Brain Injury Research Center, USA; Department of Neuroscience, USA
| | | | | | | | - M Paul Murphy
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA.
| |
Collapse
|
3
|
Fleming SM, Scott S, Hamad EJ, Herman DE, Holden JG, Yan L, Linning-Duffy K, Kemp CJ, Patterson JR, Miller KM, Kubik M, Kuhn N, Stoll AC, Duffy MF, Steece-Collier K, Cole-Strauss A, Lipton JW, Luk KC, Sortwell CE. Intrastriatal injection of alpha-synuclein preformed fibrils to rats results in L-DOPA reversible sensorimotor impairments and alterations in non-motor function. Front Neurosci 2025; 19:1556447. [PMID: 40236948 PMCID: PMC11996896 DOI: 10.3389/fnins.2025.1556447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction The alpha-synuclein (α-syn) preformed fibril (PFF) model of Parkinson's disease (PD) is widely used in rodents to understand the mechanisms contributing to progression of pathology and neurodegeneration in the disorder. While the time course of pathology in the α-syn PFF rat model has been well characterized, it has been more challenging to determine reliable and reproducible behavior impairments. This is mainly due to α-syn PFF injections resulting in a partial nigrostriatal lesion that make motor anomalies more subtle and difficult to detect, just as in patients with PD. In the present study we sought to examine the effect of increased striatal distribution and injection quantity of α-syn PFFs in rats on accumulation of phosphorylated α-syn inclusions, nigrostriatal degeneration, sensorimotor behavior, and nonmotor function related to PD. Methods Male Fischer 344 rats were injected unilaterally in the striatum with a total of 24μg α-syn PFFs distributed into three sites, or an equal volume of phosphate buffered saline (PBS) as a control condition. Sensorimotor function was assessed using a battery of behavioral tests sensitive to varying degrees of nigrostriatal neurodegeneration. Non-motor testing included assays for olfaction, emotional reactivity, cognitive function, and sleep. Results At six months post injection, α-syn PFF rats displayed significant movement and somatosensory asymmetries compared with control rats. Time to initiate a forelimb step and time to contact an adhesive stimulus on the forepaw took significantly longer with the contralateral limb compared with the ipsilateral limb in α-syn PFF rats. Further, hindlimb stepping in the cylinder was significantly reduced in α-syn PFF-injected rats compared with controls. Cognitive function was also affected in the α-syn PFF rats, with investigation time significantly decreased in an object recognition test. Levodopa reversibility was observed in the movement initiation and cylinder tests. Postmortem analysis revealed a 55% loss of nigral tyrosine hydroxylase immunoreactive neurons and a 63% reduction in striatal dopamine content in α-syn PFF-injected rats. Conclusion Thus, using the present α-syn PFF surgical parameters, sufficient nigrostriatal degeneration can be achieved to manifest significant motor and non-motor deficits. These rat α-syn PFF surgical parameters will be important for preclinical assessment of novel diseasemodifying therapies.
Collapse
Affiliation(s)
- Sheila M. Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sophia Scott
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Edward J. Hamad
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Danielle E. Herman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - John G. Holden
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Katrina Linning-Duffy
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Christopher J. Kemp
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Joseph R. Patterson
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Kathryn M. Miller
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Michael Kubik
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Nathan Kuhn
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Anna C. Stoll
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Megan F. Duffy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Allyson Cole-Strauss
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Jack W. Lipton
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Caryl E. Sortwell
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
4
|
Puech C, Badran M, Barrow MB, Gozal D. Cognitive Function, Sleep, and Neuroinflammatory Markers in Mice Exposed to Very Long-Term Intermittent Hypoxia. Int J Mol Sci 2025; 26:1815. [PMID: 40076441 PMCID: PMC11899729 DOI: 10.3390/ijms26051815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic intermittent hypoxia (IH) is one of the hallmark features of obstructive sleep apnea (OSA) and adversely affects neurocognitive and behavioral functioning. However, how the duration of IH correlates with its deleterious effects remains unexplored. We aimed to assess the effects of IH over a prolonged period of time mimicking untreated OSA. Male C57Bl/6J mice were exposed to IH for 96 weeks. Sleep activity was acquired using a piezoelectric system. Novel object recognition (NOR) and the elevated plus maze test (EPMT) were conducted as measures of cognitive function and anxiety, respectively. Brain inflammation was evaluated by a panel of inflammation marker assays. All tests were performed after 16 and 96 weeks of IH exposure. After 96 weeks, sleep percentages during the dark phase decreased in both IH and room air (RA) compared to 16-week exposure (RA: p = 0.0214; IH: p = 0.0188). In addition to age-dependent declines in NOR performance, the mice after 96 weeks of IH exposure had lower NOR preference scores than RA controls (p = 0.0070). The time spent in open arms of the EPMT was reduced in mice exposed to IH compared to RA. Inflammatory marker expression increased in IH-exposed mice. Thus, aging and IH induce similar alterations in sleep, cognition, and neuroinflammation. However, the effects of aging are exacerbated by concurrent IH, suggesting that OSA is a disease associated with an acceleration in biological aging.
Collapse
Affiliation(s)
- Clementine Puech
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - Mohammad Badran
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - Max B. Barrow
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
5
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of Hepatic Lentiviral Vector Transduction: Implications for Preclinical Studies and Clinical Gene Therapy Protocols. Viruses 2025; 17:276. [PMID: 40007031 PMCID: PMC11861806 DOI: 10.3390/v17020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Lentiviral vector-transduced T cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the effects of host genetic variation on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that the CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, a moderate correlation between mouse-strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intrastrain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes found in the above QTLs are potential targets for personalized gene therapy protocols. Importantly, we identified two mouse strains that open new directions for characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel clinical protocols should be considered for non-fatal diseases.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Kane KM, Iradukunda D, McLouth CJ, Guo LZ, Wang J, Subramoniam A, Huffman D, Donohue KD, O'Hara BF, Sunderam S, Wang QJ. Characterisation of sleep in a mouse model of CLN3 disease revealed sex-specific sleep disturbances. J Sleep Res 2025:e14461. [PMID: 39873354 DOI: 10.1111/jsr.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease. The current study utilised PiezoSleep, a non-invasive, automated piezoelectric motion sensing system, to classify sleep and wakefulness in a Cln3Δex1-6/Δex1-6 (Cln3KO) mouse model and age- and sex-matched wild-type (WT) controls. The sleep-wake classification by PiezoSleep was found to be about 90% accurate when validated against simultaneous polysomnographic recordings including electroencephalography (EEG) and electromyography (EMG) in a small cohort of WT and Cln3KO mice. Our large cohort PiezoSleep study revealed sleep abnormalities during the light period in male Cln3KO mice compared with WT male mice, and more subtle differences in Cln3KO female mice in the dark period compared with WT female mice. Our characterisation of sleep in the Cln3KO mouse model aligns with sleep abnormalities seen in CLN3 disease patients and serves as a basis to continue examining sleep disturbances commonly reported for CLN3 disease and other NCLs. As the first animal model study capturing sleep disturbances in CLN3 disease, our work will facilitate future studies into the potential mechanism behind sleep disturbances associated with the disease and the potential treatment strategies.
Collapse
Affiliation(s)
- Kelby M Kane
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Diane Iradukunda
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | | | - Landys Z Guo
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun Wang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- Signal Solutions LLC, Lexington, Kentucky, USA
| | - Sridhar Sunderam
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Noya SB, Sengupta A, Yue Z, Weljie A, Sehgal A. Balancing brain metabolic states during sickness and recovery sleep. Eur J Neurosci 2024; 60:6605-6616. [PMID: 39542871 PMCID: PMC11612838 DOI: 10.1111/ejn.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Sickness sleep and rebound following sleep deprivation share humoral signals including the rise of cytokines, in particular interleukins. Nevertheless, they represent unique physiological states with unique brain firing patterns and involvement of specific circuitry. Here, we performed untargeted metabolomics of mouse cortex and hippocampus to uncover changes with sickness and rebound sleep as compared with normal daily sleep. We found that the three settings are biochemically unique with larger differences in the cortex than in the hippocampus. Both sickness and rebound sleep shared an increase in tryptophan. Surprisingly, these two sleep conditions showed opposite modulation of the methionine-homocysteine cycle and differences in terms of the energetic signature, with sickness impinging on glycolysis intermediates whilst rebound increased the triphosphorylated form of nucleotides. These findings indicate that rebound following sleep deprivation stimulates an energy rich setting in the brain that is devoid during sickness sleep.
Collapse
Affiliation(s)
- Sara B. Noya
- Howard Hughes Medical InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Translational Medicine and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zhifeng Yue
- Chronobiology and Sleep Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aalim Weljie
- Department of Systems Pharmacology and Translational TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Translational Medicine and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amita Sehgal
- Howard Hughes Medical InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
8
|
Mannino GS, Green TRF, Murphy SM, Donohue KD, Opp MR, Rowe RK. The importance of including both sexes in preclinical sleep studies and analyses. Sci Rep 2024; 14:23622. [PMID: 39406742 PMCID: PMC11480430 DOI: 10.1038/s41598-024-70996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
A significant effort in biomedical sciences has been made to examine relationships between sex and the mechanisms underlying various disease states and behaviors, including sleep. Here, we investigated biological sex differences in sleep using male and female C57BL/6J mice (n = 267). Physiological parameters were recorded for 48-h using non-invasive piezoelectric cages to determine total sleep, non-rapid eye movement (NREM) sleep, rapid eye movement (REM)-like sleep, and wakefulness (WAKE). We fit hierarchical generalized linear mixed models with nonlinear time effects and found substantial sex differences in sleep. Female mice slept less overall, with less NREM sleep compared to males. Females also exhibited more REM-like sleep and WAKE and had shorter NREM sleep bout lengths. We also conducted a simulation exercise where we simulated a hypothetical treatment that altered the sleep of female mice, but not male mice. In models that included an appropriate sex by treatment interaction, a female-specific treatment response was accurately estimated when sample sizes were equal but was not detected when sample sizes were unequal, and females were underrepresented. Failure to include both sexes in experimental designs or appropriately account for sex during analysis could lead to inaccurate translational recommendations in pre-clinical sleep studies.
Collapse
Affiliation(s)
- Grant S Mannino
- Department of Integrative Physiology, University of Colorado - Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO, USA
| | - Tabitha R F Green
- Department of Integrative Physiology, University of Colorado - Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA
| | - Sean M Murphy
- Cumberland Biological and Ecological Researchers, Longmont, CO, USA
| | - Kevin D Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY, USA
- Signal Solutions, LLC, Lexington, KY, USA
| | - Mark R Opp
- Department of Integrative Physiology, University of Colorado - Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, University of Colorado - Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA.
| |
Collapse
|
9
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608805. [PMID: 39229157 PMCID: PMC11370356 DOI: 10.1101/2024.08.20.608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lentiviral vector-transduced T-cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the host genetic variation effects on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge-gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, moderate correlation between mouse strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intra-strain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes comprised in the above QTLs are potential targets to personalize gene therapy protocols. Importantly, we identified two mouse strains that open new directions in characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel escalating dose-based clinical protocols should be considered.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Carolina Institute for developmental disabilities, 27510 Carrboro, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, 27599 Chapel Hill, North Carolina
| |
Collapse
|
10
|
Burek DJ, Ibrahim KM, Hall AG, Sharma A, Musiek ES, Morón JA, Carlezon WA. Inflammatory pain in mice induces light cycle-dependent effects on sleep architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610124. [PMID: 39257818 PMCID: PMC11383991 DOI: 10.1101/2024.08.28.610124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
As a syndrome, chronic pain comprises physical, emotional, and cognitive symptoms such as disability, negative affect, feelings of stress, and fatigue. A rodent model of long-term inflammatory pain, induced by complete Freund's adjuvant (CFA) injection, has previously been shown to cause anhedonia and dysregulated naturalistic behaviors, in a manner similar to animal models of stress. We examined whether this extended to alterations in circadian rhythms and sleep, such as those induced by chronic social defeat stress, using actigraphy and wireless EEG. CFA-induced inflammatory pain profoundly altered sleep architecture in male and female mice. Injection of the hind paw, whether with CFA or saline, reduced some measures of circadian rhythmicity such as variance, period, and amplitude. CFA increased sleep duration primarily in the dark phase, while sleep bout length was decreased in the light and increased in the dark phase. Additionally, CFA reduced wake bout length, especially during the dark phase. Increases in REM and SWS duration and bouts were most significant in the dark phase, regardless of whether CFA had been injected at its onset or 12 hours prior. Taken together, these results indicate that inflammatory pain acutely promotes but also fragments sleep.
Collapse
|
11
|
Downs AM, Kmiec G, McElligott ZA. Oral Fentanyl Consumption and Withdrawal Impairs Fear Extinction Learning and Enhances Basolateral Amygdala Principal Neuron Excitatory-Inhibitory Balance in Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569085. [PMID: 38076868 PMCID: PMC10705490 DOI: 10.1101/2023.11.28.569085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The number of opioid overdose deaths has increased over the past several years, mainly driven by an increase in the availability of highly potent synthetic opioids, like fentanyl, in the un-regulated drug supply. Over the last few years, changes in the drug supply, and in particular the availability of counterfeit pills containing fentanyl, have made oral use of opioids a more common route of administration. Here, we used a drinking in the dark (DiD) paradigm to model oral fentanyl self-administration using increasing fentanyl concentrations in male and female mice over 5 weeks. Fentanyl consumption peaked in both female and male mice at the 30 µg/mL dose, with female mice consuming significantly more fentanyl than male mice. Mice consumed sufficient fentanyl such that withdrawal was precipitated with naloxone, with males having more withdrawal symptoms, despite lower pharmacological exposure. We also performed behavioral assays to measure avoidance behavior and reward-seeking during fentanyl abstinence. Female mice displayed reduced avoidance behaviors in the open field assay, whereas male mice showed increased avoidance in the light/dark box assay. Female mice also exhibited increased reward-seeking in the sucrose preference test. Fentanyl-consuming mice of both sexes showed impaired cued fear extinction learning following fear conditioning and increased excitatory synaptic drive and increased excitability of BLA principal neurons. Our experiments demonstrate that long-term oral fentanyl consumption results in wide-ranging physiological and behavioral disruptions. This model could be useful to further study fentanyl withdrawal syndrome and behaviors and neuroplasticity associated with protracted fentanyl withdrawal.
Collapse
|
12
|
Gamble MC, Miracle S, Williams BR, Logan RW. Endocannabinoid agonist 2-arachidonoylglycerol differentially alters diurnal activity and sleep during fentanyl withdrawal in male and female mice. Pharmacol Biochem Behav 2024; 240:173791. [PMID: 38761993 PMCID: PMC11166043 DOI: 10.1016/j.pbb.2024.173791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses in the United States. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigated the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity measured via actigraphy was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. We found that female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl administration increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24-h of withdrawal. On withdrawal day 2, only females showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
Affiliation(s)
- Mackenzie C Gamble
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sophia Miracle
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Benjamin R Williams
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Martin SC, Joyce KK, Lord JS, Harper KM, Nikolova VD, Cohen TJ, Moy SS, Diering GH. Sleep Disruption Precedes Forebrain Synaptic Tau Burden and Contributes to Cognitive Decline in a Sex-Dependent Manner in the P301S Tau Transgenic Mouse Model. eNeuro 2024; 11:ENEURO.0004-24.2024. [PMID: 38858068 PMCID: PMC11209651 DOI: 10.1523/eneuro.0004-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
Sleep disruption and impaired synaptic processes are common features in neurodegenerative diseases, including Alzheimer's disease (AD). Hyperphosphorylated Tau is known to accumulate at neuronal synapses in AD, contributing to synapse dysfunction. However, it remains unclear how sleep disruption and synapse pathology interact to contribute to cognitive decline. Here, we examined sex-specific onset and consequences of sleep loss in AD/tauopathy model PS19 mice. Using a piezoelectric home-cage monitoring system, we showed PS19 mice exhibited early-onset and progressive hyperarousal, a selective dark-phase sleep disruption, apparent at 3 months in females and 6 months in males. Using the Morris water maze test, we report that chronic sleep disruption (CSD) accelerated the onset of decline of hippocampal spatial memory in PS19 males only. Hyperarousal occurs well in advance of robust forebrain synaptic Tau burden that becomes apparent at 6-9 months. To determine whether a causal link exists between sleep disruption and synaptic Tau hyperphosphorylation, we examined the correlation between sleep behavior and synaptic Tau, or exposed mice to acute or chronic sleep disruption at 6 months. While we confirm that sleep disruption is a driver of Tau hyperphosphorylation in neurons of the locus ceruleus, we were unable to show any causal link between sleep loss and Tau burden in forebrain synapses. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption. We conclude sleep disruption interacts with the synaptic Tau burden to accelerate the onset of cognitive decline with greater vulnerability in males.
Collapse
Affiliation(s)
- Shenée C Martin
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathryn K Joyce
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Julia S Lord
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathryn M Harper
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Viktoriya D Nikolova
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Todd J Cohen
- Neurology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sheryl S Moy
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, Carrboro, North Carolina 27510
| | - Graham H Diering
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, Carrboro, North Carolina 27510
| |
Collapse
|
14
|
Leu CL, Lam DD, Salminen AV, Wefers B, Becker L, Garrett L, Rozman J, Wurst W, Hrabě de Angelis M, Hölter SM, Winkelmann J, Williams RH. A patient-enriched MEIS1 coding variant causes a restless legs syndrome-like phenotype in mice. Sleep 2024; 47:zsae015. [PMID: 38314840 PMCID: PMC11502956 DOI: 10.1093/sleep/zsae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/10/2023] [Indexed: 02/07/2024] Open
Abstract
Restless legs syndrome (RLS) is a neurological disorder characterized by uncomfortable or unpleasant sensations in the legs during rest periods. To relieve these sensations, patients move their legs, causing sleep disruption. While the pathogenesis of RLS has yet to be resolved, there is a strong genetic association with the MEIS1 gene. A missense variant in MEIS1 is enriched sevenfold in people with RLS compared to non-affected individuals. We generated a mouse line carrying this mutation (p.Arg272His/c.815G>A), referred to herein as Meis1R272H/R272H (Meis1 point mutation), to determine whether it would phenotypically resemble RLS. As women are more prone to RLS, driven partly by an increased risk of developing RLS during pregnancy, we focused on female homozygous mice. We evaluated RLS-related outcomes, particularly sensorimotor behavior and sleep, in young and aged mice. Compared to noncarrier littermates, homozygous mice displayed very few differences. Significant hyperactivity occurred before the lights-on (rest) period in aged female mice, reflecting the age-dependent incidence of RLS. Sensory experiments involving tactile feedback (rotarod, wheel running, and hotplate) were only marginally different. Overall, RLS-like phenomena were not recapitulated except for the increased wake activity prior to rest. This is likely due to the focus on young mice. Nevertheless, the Meis1R272H mouse line is a potentially useful RLS model, carrying a clinically relevant variant and showing an age-dependent phenotype.
Collapse
Affiliation(s)
- Chia-Luen Leu
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel D Lam
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aaro V Salminen
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benedikt Wefers
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Neuherberg, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Munich, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität, München, Freising, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rhîannan H Williams
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
15
|
Gay SM, Chartampila E, Lord JS, Grizzard S, Maisashvili T, Ye M, Barker NK, Mordant AL, Mills CA, Herring LE, Diering GH. Developing forebrain synapses are uniquely vulnerable to sleep loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565853. [PMID: 37986967 PMCID: PMC10659326 DOI: 10.1101/2023.11.06.565853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sleep is an essential behavior that supports lifelong brain health and cognition. Neuronal synapses are a major target for restorative sleep function and a locus of dysfunction in response to sleep deprivation (SD). Synapse density is highly dynamic during development, becoming stabilized with maturation to adulthood, suggesting sleep exerts distinct synaptic functions between development and adulthood. Importantly, problems with sleep are common in neurodevelopmental disorders including autism spectrum disorder (ASD). Moreover, early life sleep disruption in animal models causes long lasting changes in adult behavior. Different plasticity engaged during sleep necessarily implies that developing and adult synapses will show differential vulnerability to SD. To investigate distinct sleep functions and mechanisms of vulnerability to SD across development, we systematically examined the behavioral and molecular responses to acute SD between juvenile (P21-28), adolescent (P42-49) and adult (P70-100) mice of both sexes. Compared to adults, juveniles lack robust adaptations to SD, precipitating cognitive deficits in the novel object recognition test. Subcellular fractionation, combined with proteome and phosphoproteome analysis revealed the developing synapse is profoundly vulnerable to SD, whereas adults exhibit comparative resilience. SD in juveniles, and not older mice, aberrantly drives induction of synapse potentiation, synaptogenesis, and expression of peri-neuronal nets. Our analysis further reveals the developing synapse as a convergent node between vulnerability to SD and ASD genetic risk. Together, our systematic analysis supports a distinct developmental function of sleep and reveals how sleep disruption impacts key aspects of brain development, providing mechanistic insights for ASD susceptibility.
Collapse
|
16
|
Shannon T, Cotter C, Fitzgerald J, Houle S, Levine N, Shen Y, Rajjoub N, Dobres S, Iyer S, Xenakis J, Lynch R, de Villena FPM, Kokiko-Cochran O, Gu B. Genetic diversity drives extreme responses to traumatic brain injury and post-traumatic epilepsy. Exp Neurol 2024; 374:114677. [PMID: 38185315 DOI: 10.1016/j.expneurol.2024.114677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Traumatic brain injury (TBI) is a complex and heterogeneous condition that can cause wide-spectral neurological sequelae such as behavioral deficits, sleep abnormalities, and post-traumatic epilepsy (PTE). However, understanding the interaction of TBI phenome is challenging because few animal models can recapitulate the heterogeneity of TBI outcomes. We leveraged the genetically diverse recombinant inbred Collaborative Cross (CC) mice panel and systematically characterized TBI-related outcomes in males from 12 strains of CC and the reference C57BL/6J mice. We identified unprecedented extreme responses in multiple clinically relevant traits across CC strains, including weight change, mortality, locomotor activity, cognition, and sleep. Notably, we identified CC031 mouse strain as the first rodent model of PTE that exhibit frequent and progressive post-traumatic seizures after moderate TBI induced by lateral fluid percussion. Multivariate analysis pinpointed novel biological interactions and three principal components across TBI-related modalities. Estimate of the proportion of TBI phenotypic variability attributable to strain revealed large range of heritability, including >70% heritability of open arm entry time of elevated plus maze. Our work provides novel resources and models that can facilitate genetic mapping and the understanding of the pathobiology of TBI and PTE.
Collapse
Affiliation(s)
- Tyler Shannon
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Christopher Cotter
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Julie Fitzgerald
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Samuel Houle
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Noah Levine
- Electrical and Computer Engineering Program, Ohio State University, Columbus, USA
| | - Yuyan Shen
- Department of Neuroscience, Ohio State University, Columbus, USA; College of Veterinary Medicine, Ohio State University, Columbus, USA
| | - Noora Rajjoub
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Shannon Dobres
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Sidharth Iyer
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - James Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Rachel Lynch
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Olga Kokiko-Cochran
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA; Chronic Brain Injury Program, Ohio State University, Columbus, USA
| | - Bin Gu
- Department of Neuroscience, Ohio State University, Columbus, USA; Chronic Brain Injury Program, Ohio State University, Columbus, USA.
| |
Collapse
|
17
|
Martin SC, Joyce KK, Harper KM, Harp SJ, Cohen TJ, Moy SS, Diering GH. Evaluating Fatty Acid Amide Hydrolase as a Suitable Target for Sleep Promotion in a Transgenic TauP301S Mouse Model of Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:319. [PMID: 38543105 PMCID: PMC10975243 DOI: 10.3390/ph17030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Sleep disruption is an expected component of aging and neurodegenerative conditions, including Alzheimer's disease (AD). Sleep disruption has been demonstrated as a driver of AD pathology and cognitive decline. Therefore, treatments designed to maintain sleep may be effective in slowing or halting AD progression. However, commonly used sleep aid medications are associated with an increased risk of AD, highlighting the need for sleep aids with novel mechanisms of action. The endocannabinoid system holds promise as a potentially effective and novel sleep-enhancing target. By using pharmacology and genetic knockout strategies, we evaluated fatty acid amide hydrolase (FAAH) as a therapeutic target to improve sleep and halt disease progression in a transgenic Tau P301S (PS19) model of Tauopathy and AD. We have recently shown that PS19 mice exhibit sleep disruption in the form of dark phase hyperarousal as an early symptom that precedes robust Tau pathology and cognitive decline. Acute FAAH inhibition with PF3845 resulted in immediate improvements in sleep behaviors in male and female PS19 mice, supporting FAAH as a potentially suitable sleep-promoting target. Moreover, sustained drug dosing for 5-10 days resulted in maintained improvements in sleep. To evaluate the effect of chronic FAAH inhibition as a possible therapeutic strategy, we generated FAAH-/- PS19 mice models. Counter to our expectations, FAAH knockout did not protect PS19 mice from progressive sleep loss, neuroinflammation, or cognitive decline. Our results provide support for FAAH as a novel target for sleep-promoting therapies but further indicate that the complete loss of FAAH activity may be detrimental.
Collapse
Affiliation(s)
- Shenée C. Martin
- Department of Cell Biology and Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn K. Joyce
- Department of Cell Biology and Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn M. Harper
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel J. Harp
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Todd J. Cohen
- Department of Neurology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sheryl S. Moy
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| |
Collapse
|
18
|
Kostiew KN, Tuli D, Coborn JE, Sinton CM, Teske JA. Behavioral phenotyping based on physical inactivity can predict sleep in female rats before, during, and after sleep disruption. J Neurosci Methods 2024; 402:110030. [PMID: 38042303 DOI: 10.1016/j.jneumeth.2023.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND A noninvasive method that can accurately quantify sleep before, during, and after sleep disruption (SD) has not been validated in female rats across their estrous cycle. In female rats, we hypothesized that the duration of physical inactivity (PIA) required to predict sleep would 1) change with the differences in baseline sleep between the circadian and estrous cycle phases and 2) predict sleep and the change in sleep (Δsleep) before, during, and after SD independent of circadian and estrous cycle phase. NEW METHODS EEG, EMG, physical activity and estrous cycle phase were measured in female Sprague-Dawley rats before, during, and after SD. Sleep was determined by two methods [EEG/EMG and a duration of continuous PIA (i.e., PIA criterion)]. Reliability between the methods was tested with a previously validated criterion (40 s). Sensitivity analyses and criterion-related validity analyses for sleep during SD and recovery were conducted across multiple PIA criteria (10 s-120 s). Predictability between the two methods and Δsleep was calculated. RESULTS/COMPARISON WITH EXISTING METHODS Three criteria (10 s, 20 s, 30 s) predicted baseline sleep independent of circadian and estrous cycle phase. Sleep during SD and recovery were predicted by two criteria (30 s and 10 s). Δsleep between study periods was not reliably predicted by a single PIA criterion. CONCLUSION PIA predicted sleep independent of estrous cycle phase in female rats. However, the specific criterion was dependent upon the study period (before, during, and after SD) and circadian phase. Thus, prior work validating a PIA criterion in male rodents is not applicable to the female rat.
Collapse
Affiliation(s)
- Kora N Kostiew
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Diya Tuli
- Keep Engaging Youth in Science, University of Arizona, Tucson, Arizona, USA
| | - Jamie E Coborn
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Christopher M Sinton
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Jennifer A Teske
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA; School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
19
|
Shivashankar P, Nocera N, Livadiotis S, Mozaffar S, Drew MR, Salamone S. Methodology of using acoustic emissions for enhancing rodent behavioral analysis. ULTRASONICS 2024; 136:107170. [PMID: 37806079 PMCID: PMC10956639 DOI: 10.1016/j.ultras.2023.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Rodent models of behavior used in the fields of neuroscience and psychology generate a wealth of multimodal data. For instance, as a rodent moves and behaves in its environment, muscle contractions apply subtle forces to any surface the animal contacts. These forces generate acoustic waves that propagate through the waveguide as Lamb and shear horizontal (SH) waves and contain information about the rodent's physiology, behavior, and underlying psychological state. If the information in these waves were to be tapped, it would provide a novel, non-invasive way to study rodent behavior. This article lays the foundations for using guided ultrasonic waves generated by a mouse's movement on an aluminum plate for detecting behavior and drawing inferences about acoustic startle responses. The experimental setup involves piezoelectric sensors capturing the waves generated by the rodent's movement, which are then stored as discrete acoustic emission (AE) hits using an amplitude threshold-based data acquisition system. This method of data acquisition ensures that data collection occurs only when the animal moves or behaves, and each movement/behavior is represented by values of features within the generated wavepackets (AE hits). Through open field tests with C57BL/6J mice, utilizing piezoelectric sensors and the DAQ system, it was observed that every movement/behavior of the animal generated Lamb wavepackets within the frequency range of 20 kHz to 100 kHz. Furthermore, rearing behavior in the animals also led to the generation of SH wavepackets in the frequency range of 75 kHz to 230 kHz. This criterion was subsequently employed to detect rearing behavior. In the acoustic startle response test, where the animals' responses to intense sound pulse were recorded, AE hits' features proved useful in quantifying the response. These experimental findings validate the proposed technology's practicality and demonstrate its capability to enhance studies of rodent behavior.
Collapse
Affiliation(s)
- P Shivashankar
- Civil Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - N Nocera
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - S Livadiotis
- Civil Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - S Mozaffar
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - M R Drew
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | - S Salamone
- Civil Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Shankar A, Deal CK, McCahon S, Callegari K, Seitz T, Yan L, Drown DM, Williams CT. SAD rats: Effects of short photoperiod and carbohydrate consumption on sleep, liver steatosis, and the gut microbiome in diurnal grass rats. Chronobiol Int 2024; 41:93-104. [PMID: 38047486 PMCID: PMC10843721 DOI: 10.1080/07420528.2023.2288223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Seasonal affective disorder (SAD) is a recurrent depression triggered by exposure to short photoperiods, with a subset of patients reporting hypersomnia, increased appetite, and carbohydrate craving. Dysfunction of the microbiota - gut - brain axis is frequently associated with depressive disorders, but its role in SAD is unknown. Nile grass rats (Arvicanthis niloticus) are potentially useful for exploring the pathophysiology of SAD, as they are diurnal and have been found to exhibit anhedonia and affective-like behavior in response to short photoperiods. Further, given grass rats have been found to spontaneously develop metabolic syndrome, they may be particularly susceptible to environmental triggers of metabolic dysbiosis. We conducted a 2 × 2 factorial design experiment to test the effects of short photoperiod (4 h:20 h Light:Dark (LD) vs. neutral 12:12 LD), access to a high concentration (8%) sucrose solution, and the interaction between the two, on activity, sleep, liver steatosis, and the gut microbiome of grass rats. We found that animals on short photoperiods maintained robust diel rhythms and similar subjective day lengths as controls in neutral photoperiods but showed disrupted activity and sleep patterns (i.e. a return to sleep after an initial bout of activity that occurs ~ 13 h before lights off). We found no evidence that photoperiod influenced sucrose consumption. By the end of the experiment, some grass rats were overweight and exhibited signs of non-alcoholic fatty liver disease (NAFLD) with micro- and macro-steatosis. However, neither photoperiod nor access to sucrose solution significantly affected the degree of liver steatosis. The gut microbiome of grass rats varied substantially among individuals, but most variation was attributable to parental effects and the microbiome was unaffected by photoperiod or access to sucrose. Our study indicates short photoperiod leads to disrupted activity and sleep in grass rats but does not impact sucrose consumption or exacerbate metabolic dysbiosis and NAFLD.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK 99775, USA
- Current: Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Cole K. Deal
- Department of Biology, Colorado State University, Fort Collins, CO 80526, USA
| | - Shelby McCahon
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks AK 99775, USA
| | - Kyle Callegari
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks AK 99775, USA
| | - Taylor Seitz
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks AK 99775, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Devin M. Drown
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK 99775, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks AK 99775, USA
| | - Cory T. Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80526, USA
| |
Collapse
|
21
|
Wang Y, Zhang Y, Wu X, Ren C, Zhang Z, Yang Q, Li X, Chen G. Feasibility of applying a noninvasive method for sleep monitoring based on mouse behaviors. Brain Behav 2023; 13:e3311. [PMID: 37932957 PMCID: PMC10726919 DOI: 10.1002/brb3.3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
INTRODUCTION Currently, electroencephalogram (EEG)/electromyogram (EMG) system is widely regarded as the "golden standard" for sleep monitoring. Imperfectly, its invasive monitoring may somehow interfere with the natural state of sleep. Up to now, noninvasive methods for sleep monitoring have developed, which could preserve the undisturbed and naïve sleep state of mice to the greatest extent, but the feasibility of their application under different conditions should be extensive validated. METHODS Based on existing research, we verified the feasibility of a sleep monitoring system based on mouse behaviors under different conditions. The experimental mice were exposed to various stresses and placed into a combined device comprising noninvasive sleep monitoring equipment and an EEG/EMG system, and the sleep status was recorded under different physiological, pharmacological, and pathophysiological conditions. The consistency of the parameters obtained from the different systems was calculated using the Bland-Altman statistical method. RESULTS The results demonstrated that the physiological sleep times determined by noninvasive sleep monitoring system were highly consistent with those obtained from the EEG/EMG system, and the coefficients were 94.4% and 95.1% in C57BL/6J and CD-1 mice, respectively. The noninvasive sleep monitoring system exhibited high sensitivity under the sleep-promoting effect of diazepam and caffeine-induced wakefulness, which was indicated by its ability to detect the effect of dosage on sleep times, and accurate determination of the sleep/wakeful status of mice under different pathophysiological conditions. After combining the data obtained from all the mice, the coefficient between the sleep times detected by behavior-based sleep monitoring system and those obtained from the EEG/EMG equipment was determined to .94. CONCLUSION The results suggested that behavior-based sleep monitoring system could accurately evaluate the sleep/wakeful states of mice under different conditions.
Collapse
Affiliation(s)
- Ya‐Tao Wang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xu Wu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiP. R. China
| | - Chong‐Yang Ren
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
- Departments of Anesthesiology, General Practice, or Critical CareThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Zhe‐Zhe Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Qi‐Gang Yang
- Departments of Anesthesiology, General Practice, or Critical CareThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
22
|
Piilgaard L, Rose L, Justinussen JL, Hviid CG, Lemcke R, Wellendorph P, Kornum BR. Non-invasive detection of narcolepsy type I phenotypical features and disease progression by continuous home-cage monitoring of activity in two mouse models: the HCRT-KO and DTA model. Sleep 2023; 46:zsad144. [PMID: 37210587 DOI: 10.1093/sleep/zsad144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Narcolepsy type 1 (NT1) is a neurological disorder caused by disruption of hypocretin (HCRT; or orexin) neurotransmission leading to fragmented sleep/wake states, excessive daytime sleepiness, and cataplexy (abrupt muscle atonia during wakefulness). Electroencephalography and electromyography (EEG/EMG) monitoring is the gold standard to assess NT1 phenotypical features in both humans and mice. Here, we evaluated the digital ventilated home-cage (DVC®) activity system as an alternative to detect NT1 features in two NT1 mouse models: the genetic HCRT-knockout (-KO) model, and the inducible HCRT neuron-ablation hcrt-tTA;TetO-DTA (DTA) model, including both sexes. NT1 mice exhibited an altered dark phase activity profile and increased state transitions, compared to the wild-type (WT) phenotype. An inability to sustain activity periods >40 min represented a robust activity-based NT1 biomarker. These features were observable within the first weeks of HCRT neuron degeneration in DTA mice. We also created a nest-identification algorithm to differentiate between inactivity and activity, inside and outside the nest as a sleep and wake proxy, respectively, showing significant correlations with EEG/EMG-assessed sleep/wake behavior. Lastly, we tested the sensitivity of the activity system to detect behavioral changes in response to interventions such as repeated saline injection and chocolate. Surprisingly, daily consecutive saline injections significantly reduced activity and increased nest time of HCRT-WT mice. Chocolate increased total activity in all mice, and increased the frequency of short out-of-nest inactivity episodes in HCRT-KO mice. We conclude that the DVC® system provides a useful tool for non-invasive monitoring of NT1 phenotypical features, and has the potential to monitor drug effects in NT1 mice.
Collapse
Affiliation(s)
- Louise Piilgaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Rose
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jessica L Justinussen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camille Gylling Hviid
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Lemcke
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Kim AB, Beaver EM, Collins SG, Kriegsfeld LJ, Lockley SW, Wong KY, Yan L. S-Cone Photoreceptors Regulate Daily Rhythms and Light-Induced Arousal/Wakefulness in Diurnal Grass Rats ( Arvicanthis niloticus). J Biol Rhythms 2023; 38:366-378. [PMID: 37222434 PMCID: PMC10364626 DOI: 10.1177/07487304231170068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Beyond visual perception, light has non-image-forming effects mediated by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). The present study first used multielectrode array recordings to show that in a diurnal rodent, Nile grass rats (Arvicanthis niloticus), ipRGCs generate rod/cone-driven and melanopsin-based photoresponses that stably encode irradiance. Subsequently, two ipRGC-mediated non-image-forming effects, namely entrainment of daily rhythms and light-induced arousal, were examined. Animals were first housed under a 12:12 h light/dark cycle (lights-on at 0600 h) with the light phase generated by a low-irradiance fluorescent light (F12), a daylight spectrum (D65) stimulating all photoreceptors, or a narrowband 480 nm spectrum (480) that maximized melanopsin stimulation and minimized S-cone stimulation (λmax 360 nm) compared to D65. Daily rhythms of locomotor activities showed onset and offset closer to lights-on and lights-off, respectively, in D65 and 480 than in F12, and higher day/night activity ratio under D65 versus 480 and F12, suggesting the importance of S-cone stimulation. To assess light-induced arousal, 3-h light exposures using 4 spectra that stimulated melanopsin equally but S-cones differentially were superimposed on F12 background lighting: D65, 480, 480 + 365 (narrowband 365 nm), and D65 - 365. Compared to the F12-only condition, all four pulses increased in-cage activity and promoted wakefulness, with 480 + 365 having the greatest and longest-lasting wakefulness-promoting effects, again indicating the importance of stimulating S-cones as well as melanopsin. These findings provide insights into the temporal dynamics of photoreceptor contributions to non-image-forming photoresponses in a diurnal rodent that may help guide future studies of lighting environments and phototherapy protocols that promote human health and productivity.
Collapse
Affiliation(s)
- Antony B. Kim
- Department of Architecture, University of California,
Berkeley, Berkeley, California
| | - Emma M. Beaver
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Stephen G. Collins
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California,
Berkeley, Berkeley, California
- Department of Integrative Biology, University of
California, Berkeley, Berkeley, California
- The Helen Wills Neuroscience Institute, University of
California, Berkeley, Berkeley, California
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders,
Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston,
Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston,
Massachusetts
| | - Kwoon Y. Wong
- Department of Ophthalmology & Visual Sciences, Kellogg
Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular &
Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University,
East Lansing, Michigan
- Neuroscience Program, Michigan State
University, East Lansing, Michigan
| |
Collapse
|
24
|
Alvente S, Matteoli G, Miglioranza E, Zoccoli G, Bastianini S. How to study sleep apneas in mouse models of human pathology. J Neurosci Methods 2023; 395:109923. [PMID: 37459897 DOI: 10.1016/j.jneumeth.2023.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sleep apnea, the most widespread sleep-related breathing disorder (SBD), consists of recurrent episodes of breathing cessation during sleep. This condition can be classified as either central (CSA) or obstructive (OSA) sleep apnea, with the latest being the most common and toxic. Due to the complexity of living organisms, animal models and, particularly, mice still represent an essential tool for the study of SBD. In the present review we first discuss the methodological pros and cons in the use of whole-body plethysmography to coupling respiratory and sleep measurements and to characterize CSA and OSA in mice; then, we draw an updated and objective picture of the methods used so far in the study of sleep apnea in mice. Most of the studies present in the literature used intermittent hypoxia to mimic OSA in mice and to investigate consequent pathological correlates. On the contrary, few studies using genetic manipulation or high-fat diets investigated the pathogenesis or potential treatments of sleep apnea. To date, mice lacking orexins, hemeoxygenase-2, monoamine oxidase A, Phox2b or Cdkl5 can be considered validated mouse models of sleep apnea. Moreover, genetically- or diet-induced obese mice, and mice recapitulating Down syndrome were proposed as OSA models. In conclusion, our review shows that despite the growing interest in the field and the need of new therapeutical approaches, technical complexity and inter-study variability strongly limit the availability of validated mouse of sleep apnea, which are essential in biomedical research.
Collapse
Affiliation(s)
- Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elena Miglioranza
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
25
|
Wang C, Nambiar A, Strickland MR, Lee C, Parhizkar S, Moore AC, Musiek ES, Ulrich JD, Holtzman DM. APOE-ε4 synergizes with sleep disruption to accelerate Aβ deposition and Aβ-associated tau seeding and spreading. J Clin Invest 2023; 133:e169131. [PMID: 37279069 PMCID: PMC10351966 DOI: 10.1172/jci169131] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. The APOE-ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset AD. The APOE genotype modulates the effect of sleep disruption on AD risk, suggesting a possible link between apoE and sleep in AD pathogenesis, which is relatively unexplored. We hypothesized that apoE modifies Aβ deposition and Aβ plaque-associated tau seeding and spreading in the form of neuritic plaque-tau (NP-tau) pathology in response to chronic sleep deprivation (SD) in an apoE isoform-dependent fashion. To test this hypothesis, we used APPPS1 mice expressing human APOE-ε3 or -ε4 with or without AD-tau injection. We found that SD in APPPS1 mice significantly increased Aβ deposition and peri-plaque NP-tau pathology in the presence of APOE4 but not APOE3. SD in APPPS1 mice significantly decreased microglial clustering around plaques and aquaporin-4 (AQP4) polarization around blood vessels in the presence of APOE4 but not APOE3. We also found that sleep-deprived APPPS1:E4 mice injected with AD-tau had significantly altered sleep behaviors compared with APPPS1:E3 mice. These findings suggest that the APOE-ε4 genotype is a critical modifier in the development of AD pathology in response to SD.
Collapse
|
26
|
Costello A, Linning-Duffy K, Vandenbrook C, Donohue K, O'Hara BF, Kim A, Lonstein JS, Yan L. Effects of light therapy on sleep/wakefulness, daily rhythms, and the central orexin system in a diurnal rodent model of seasonal affective disorder. J Affect Disord 2023; 332:299-308. [PMID: 37060954 PMCID: PMC10161688 DOI: 10.1016/j.jad.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Bright light therapy (BLT) is the first-line treatment for seasonal affective disorder. However, the neural mechanisms underlying BLT are unclear. To begin filling this gap, the present study examined the impact of BLT on sleep/wakefulness, daily rhythms, and the wakefulness-promoting orexin/hypocretin system in a diurnal rodent, Nile grass rats (Arvicanthis niloticus). METHODS Male and female grass rats were housed under a 12:12 h light/dark cycle with dim light (50 lx) during the day. The experimental group received daily 1-h early morning BLT (full-spectrum white light, 10,000 lx), while the control group received narrowband red light for 4 weeks. Sleep/wakefulness and in-cage locomotor activity were monitored, followed by examination of hypothalamic prepro-orexin and orexin receptors OX1R and OX2R expression in corticolimbic brain regions. RESULTS The BLT group had higher wakefulness during light treatment, better nighttime sleep quality, and improved daily rhythm entrainment compared to controls. The impact of BLT on the orexin system was sex- and brain region-specific, with males showing higher OX1R and OX2R in the CA1, while females showed higher prepro-orexin but lower OX1R and OX2R in the BLA, compared to same-sex controls. LIMITATIONS The present study focused on the orexin system in a limited number of brain regions at a single time point. Sex wasn't a statistical factor, as male and female cohorts were run independently. CONCLUSIONS The diurnal grass rats show similar behavioral responses to BLT as humans, thus could be a good model for further elucidating the neural mechanisms underlying the therapeutic effects of BLT.
Collapse
Affiliation(s)
- Allison Costello
- Department of Psychology, Michigan State University, United States of America.
| | | | | | - Kevin Donohue
- Department of Electrical and Computer Engineering, Michigan State University, United States of America
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, United States of America
| | - Antony Kim
- Department of Architecture, UC Berkeley, United States of America
| | - Joseph S Lonstein
- Department of Psychology, Michigan State University, United States of America; Neuroscience Program, Michigan State University, United States of America
| | - Lily Yan
- Department of Psychology, Michigan State University, United States of America; Neuroscience Program, Michigan State University, United States of America
| |
Collapse
|
27
|
Badran M, Puech C, Barrow MB, Runion AR, Gozal D. Solriamfetol enhances wakefulness and improves cognition and anxiety in a murine model of OSA. Sleep Med 2023; 107:89-99. [PMID: 37137196 PMCID: PMC11556240 DOI: 10.1016/j.sleep.2023.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH). Excessive daytime sleepiness (EDS) is a common consequence of OSA and is associated with cognitive deficits and anxiety. Modafinil (MOD) and Solriamfetol (SOL) are potent wake-promoting agents clinically used to improve wakefulness in OSA patients with EDS. METHODS Male C57Bl/6J mice were exposed to either IH or room air (RA) controls during the light phase for 16 weeks. Both groups were then randomly assigned to receive once-daily intraperitoneal injections of SOL (200 mg/kg), MOD (200 mg/kg) or vehicle (VEH) for 9 days while continuing IH exposures. Sleep/wake activity was assessed during the dark (active) phase. Novel object recognition (NOR), elevated-plus maze test (EPMT), and forced swim test (FST) were performed before and after drug treatment. RESULTS IH exposure increased dark phase sleep percentage and reduced wake bouts lengths and induced cognitive deficits and anxiogenic effects. Both SOL and MOD treatments decreased sleep propensity under IH conditions, but only SOL promoted improvements in NOR performance (explicit memory) and reduced anxiety-like behaviors. CONCLUSION Chronic IH, a hallmark feature of OSA, induces EDS in young adult mice that is ameliorated by both SOL and MOD. SOL, but not MOD, significantly improves IH-induced cognitive deficits and promotes anxiolytic effects. Thus, SOL could potentially benefit OSA patients beyond EDS management.
Collapse
Affiliation(s)
- Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
28
|
Osanai H, Yamamoto J, Kitamura T. Extracting electromyographic signals from multi-channel LFPs using independent component analysis without direct muscular recording. CELL REPORTS METHODS 2023; 3:100482. [PMID: 37426755 PMCID: PMC10326347 DOI: 10.1016/j.crmeth.2023.100482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 07/11/2023]
Abstract
Electromyography (EMG) has been commonly used for the precise identification of animal behavior. However, it is often not recorded together with in vivo electrophysiology due to the need for additional surgeries and setups and the high risk of mechanical wire disconnection. While independent component analysis (ICA) has been used to reduce noise from field potential data, there has been no attempt to proactively use the removed "noise," of which EMG signals are thought to be one of the major sources. Here, we demonstrate that EMG signals can be reconstructed without direct EMG recording using the "noise" ICA component from local field potentials. The extracted component is highly correlated with directly measured EMG, termed IC-EMG. IC-EMG is useful for measuring an animal's sleep/wake, freezing response, and non-rapid eye movement (NREM)/REM sleep states consistently with actual EMG. Our method has advantages in precise and long-term behavioral measurement in wide-ranging in vivo electrophysiology experiments.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
29
|
Bedard ML, Lord JS, Perez PJ, Bravo IM, Teklezghi AT, Tarantino LM, Diering GH, McElligott ZA. Probing different paradigms of morphine withdrawal on sleep behavior in male and female C57BL/6J mice. Behav Brain Res 2023; 448:114441. [PMID: 37075956 PMCID: PMC10278096 DOI: 10.1016/j.bbr.2023.114441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Opioid misuse has dramatically increased over the last few decades resulting in many people suffering from opioid use disorder (OUD). The prevalence of opioid overdose has been driven by the development of new synthetic opioids, increased availability of prescription opioids, and more recently, the COVID-19 pandemic. Coinciding with increases in exposure to opioids, the United States has also observed increases in multiple Narcan (naloxone) administrations as a life-saving measures for respiratory depression, and, thus, consequently, naloxone-precipitated withdrawal. Sleep dysregulation is a main symptom of OUD and opioid withdrawal syndrome, and therefore, should be a key facet of animal models of OUD. Here we examine the effect of precipitated and spontaneous morphine withdrawal on sleep behaviors in C57BL/6 J mice. We find that morphine administration and withdrawal dysregulate sleep, but not equally across morphine exposure paradigms. Furthermore, many environmental triggers promote relapse to drug-seeking/taking behavior, and the stress of disrupted sleep may fall into that category. We find that sleep deprivation dysregulates sleep in mice that had previous opioid withdrawal experience. Our data suggest that the 3-day precipitated withdrawal paradigm has the most profound effects on opioid-induced sleep dysregulation and further validates the construct of this model for opioid dependence and OUD.
Collapse
Affiliation(s)
- Madigan L Bedard
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia Sparks Lord
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patric J Perez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Isabel M Bravo
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adonay T Teklezghi
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa M Tarantino
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Graham H Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Martin SC, Joyce KK, Harper KM, Nikolova VD, Cohen TJ, Moy SS, Diering GH. Sleep disruption precedes forebrain synaptic Tau burden and contributes to cognitive decline in a sex-dependent manner in the P301S Tau transgenic mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544101. [PMID: 37333395 PMCID: PMC10274785 DOI: 10.1101/2023.06.07.544101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Sleep is an essential process that supports brain health and cognitive function in part through the modification of neuronal synapses. Sleep disruption, and impaired synaptic processes, are common features in neurodegenerative diseases, including Alzheimer's disease (AD). However, the casual role of sleep disruption in disease progression is not clear. Neurofibrillary tangles, made from hyperphosphorylated and aggregated Tau protein, form one of the major hallmark pathologies seen in AD and contribute to cognitive decline, synapse loss and neuronal death.Tau has been shown to aggregate in synapses which may impair restorative synapse processes occurring during sleep. However, it remains unclear how sleep disruption and synaptic Tau pathology interact to drive cognitive decline. It is also unclear whether the sexes show differential vulnerability to the effects of sleep loss in the context of neurodegeneration. Methods We used a piezoelectric home-cage monitoring system to measure sleep behavior in 3-11month-old transgenic hTau P301S Tauopathy model mice (PS19) and littermate controls of both sexes. Subcellular fractionation and Western blot was used to examine Tau pathology in mouse forebrain synapse fractions. To examine the role of sleep disruption in disease progression, mice were exposed to acute or chronic sleep disruption. The Morris water maze test was used to measure spatial learning and memory performance. Results PS19 mice exhibited a selective loss of sleep during the dark phase, referred to as hyperarousal, as an early symptom with an onset of 3months in females and 6months in males. At 6months, forebrain synaptic Tau burden did not correlate with sleep measures and was not affected by acute or chronic sleep disruption. Chronic sleep disruption accelerated the onset of decline of hippocampal spatial memory in PS19 males, but not females. Conclusions Dark phase hyperarousal is an early symptom in PS19 mice that precedes robust Tau aggregation. We find no evidence that sleep disruption is a direct driver of Tau pathology in the forebrain synapse. However, sleep disruption synergized with Tau pathology to accelerate the onset of cognitive decline in males. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption.
Collapse
|
31
|
Puech C, Badran M, Runion AR, Barrow MB, Cataldo K, Gozal D. Cognitive Impairments, Neuroinflammation and Blood-Brain Barrier Permeability in Mice Exposed to Chronic Sleep Fragmentation during the Daylight Period. Int J Mol Sci 2023; 24:9880. [PMID: 37373028 DOI: 10.3390/ijms24129880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). In murine models, chronic SF can impair endothelial function and induce cognitive declines. These deficits are likely mediated, at least in part, by alterations in Blood-brain barrier (BBB) integrity. Male C57Bl/6J mice were randomly assigned to SF or sleep control (SC) conditions for 4 or 9 weeks and in a subset 2 or 6 weeks of normal sleep recovery. The presence of inflammation and microglia activation were evaluated. Explicit memory function was assessed with the novel object recognition (NOR) test, while BBB permeability was determined by systemic dextran-4kDA-FITC injection and Claudin 5 expression. SF exposures resulted in decreased NOR performance and in increased inflammatory markers and microglial activation, as well as enhanced BBB permeability. Explicit memory and BBB permeability were significantly associated. BBB permeability remained elevated after 2 weeks of sleep recovery (p < 0.01) and returned to baseline values only after 6 weeks. Chronic SF exposures mimicking the fragmentation of sleep that characterizes patients with OSA elicits evidence of inflammation in brain regions and explicit memory impairments in mice. Similarly, SF is also associated with increased BBB permeability, the magnitude of which is closely associated with cognitive functional losses. Despite the normalization of sleep patterns, BBB functional recovery is a protracted process that merits further investigation.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO 65201, USA
| | - Max B Barrow
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Kylie Cataldo
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
32
|
Liu X, Irwin DA, Huang C, Gu Y, Chen L, Donohue KD, Chen L, Yu G. A Wearable Fiber-Free Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Freely Behaving Mice. IEEE Trans Biomed Eng 2023; 70:1838-1848. [PMID: 37015409 PMCID: PMC10542964 DOI: 10.1109/tbme.2022.3229513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Wearable technologies for functional brain monitoring in freely behaving subjects can advance our understanding of cognitive processing and adaptive behavior. Existing technologies are lacking in this capability or need procedures that are invasive and/or otherwise impede brain assessments during social behavioral conditions, exercise, and sleep. METHODS In response a complete system was developed to combine relative cerebral blood flow (rCBF) measurement, O2 and CO2 supplies, and behavior recording for use on conscious, freely behaving mice. An innovative diffuse speckle contrast flowmetry (DSCF) device and associated hardware were miniaturized and optimized for rCBF measurements in small subject applications. The use of this wearable, fiber-free, near-infrared DSCF head-stage/probe allowed no craniotomy, minimally invasive probe implantation, and minimal restraint of the awake animal. RESULTS AND CONCLUSIONS Significant correlations were found between measurements with the new DSCF design and an optical standard. The system successfully detected rCBF responses to CO2-induced hypercapnia in both anesthetized and freely behaving mice. SIGNIFICANCE Collecting rCBF and activity information together during natural behaviors provides realistic physiological results and opens the path to exploring their correlations with pathophysiological conditions.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Daniel A. Irwin
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Yutong Gu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Li Chen
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Kevin D. Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY, USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
33
|
Puech C, Badran M, Barrow MB, Runion AR, Gozal D. Solriamfetol improves chronic sleep fragmentation-induced increases in sleep propensity and ameliorates explicit memory in male mice. Sleep 2023; 46:zsad057. [PMID: 36866452 PMCID: PMC10413435 DOI: 10.1093/sleep/zsad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent condition characterized by episodes of partial or complete breath cessation during sleep that induces sleep fragmentation (SF). One of the frequent manifestations of OSA is the presence of excessive daytime sleepiness (EDS) associated with cognitive deficits. Solriamfetol (SOL) and modafinil (MOD) are wake-promoting agents commonly prescribed to improve wakefulness in OSA patients with EDS. This study aimed to assess the effects of SOL and MOD in a murine model of OSA characterized by periodic SF. Male C57Bl/6J mice were exposed to either control sleep (SC) or SF (mimicking OSA) during the light period (06:00 h to 18:00 h) for 4 weeks, which consistently induces sustained excessive sleepiness during the dark phase. Both groups were then randomly assigned to receive once-daily intraperitoneal injections of SOL (200 mg/kg), MOD (200 mg/kg), or vehicle for 1 week while continuing exposures to SF or SC. Sleep/wake activity and sleep propensity were assessed during the dark phase. Novel Object Recognition test, Elevated-Plus Maze Test, and Forced Swim Test were performed before and after treatment. SOL or MOD decreased sleep propensity in SF, but only SOL induced improvements in explicit memory, while MOD exhibited increased anxiety behaviors. Chronic SF, a major hallmark of OSA, induces EDS in young adult mice that is mitigated by both SOL and MOD. SOL, but not MOD, significantly improves SF-induced cognitive deficits. Increased anxiety behaviors are apparent in MOD-treated mice. Further studies aiming to elucidate the beneficial cognitive effects of SOL are warranted.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
34
|
Wendrich KS, Azimi H, Ripperger JA, Ravussin Y, Rainer G, Albrecht U. Deletion of the Circadian Clock Gene Per2 in the Whole Body, but Not in Neurons or Astroglia, Affects Sleep in Response to Sleep Deprivation. Clocks Sleep 2023; 5:204-225. [PMID: 37092429 PMCID: PMC10123656 DOI: 10.3390/clockssleep5020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
The sleep-wake cycle is a highly regulated behavior in which a circadian clock times sleep and waking, whereas a homeostatic process controls sleep need. Both the clock and the sleep homeostat interact, but to what extent they influence each other is not understood. There is evidence that clock genes, in particular Period2 (Per2), might be implicated in the sleep homeostatic process. Sleep regulation depends also on the proper functioning of neurons and astroglial cells, two cell-types in the brain that are metabolically dependent on each other. In order to investigate clock-driven contributions to sleep regulation we non-invasively measured sleep of mice that lack the Per2 gene either in astroglia, neurons, or all body cells. We observed that mice lacking Per2 in all body cells (Per2Brdm and TPer2 animals) display earlier onset of sleep after sleep deprivation (SD), whereas neuronal and astroglial Per2 knock-out animals (NPer2 and GPer2, respectively) were normal in that respect. It appears that systemic (whole body) Per2 expression is important for physiological sleep architecture expressed by number and length of sleep bouts, whereas neuronal and astroglial Per2 weakly impacts night-time sleep amount. Our results suggest that Per2 contributes to the timing of the regulatory homeostatic sleep response by delaying sleep onset after SD and attenuating the early night rebound response.
Collapse
Affiliation(s)
- Katrin S Wendrich
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Hamid Azimi
- Section of Medicine, Department of Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Yann Ravussin
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland
| | - Gregor Rainer
- Section of Medicine, Department of Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
35
|
Bedard ML, Lord JS, Perez PJ, Bravo IM, Teklezghi AT, Tarantino L, Diering G, McElligott ZA. Probing different paradigms of morphine withdrawal on sleep behavior in male and female C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.04.06.487380. [PMID: 36415467 PMCID: PMC9681041 DOI: 10.1101/2022.04.06.487380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Opioid misuse has dramatically increased over the last few decades resulting in many people suffering from opioid use disorder (OUD). The prevalence of opioid overdose has been driven by the development of new synthetic opioids, increased availability of prescription opioids, and more recently, the COVID-19 pandemic. Coinciding with increases in exposure to opioids, the United States has also observed increases in multiple Narcan (naloxone) administrations as life-saving measures for respiratory depression, and, thus, consequently, naloxone-precipitated withdrawal. Sleep dysregulation is a main symptom of OUD and opioid withdrawal syndrome, and therefore, should be a key facet of animal models of OUD. Here we examine the effect of precipitated and spontaneous morphine withdrawal on sleep behaviors in C57BL/6J mice. We find that morphine administration and withdrawal dysregulate sleep, but not equally across morphine exposure paradigms. Furthermore, many environmental triggers promote relapse to drug-seeking/taking behavior, and the stress of disrupted sleep may fall into that category. We find that sleep deprivation dysregulates sleep in mice that had previous opioid withdrawal experience. Our data suggest that the 3-day precipitated withdrawal paradigm has the most profound effects on opioid-induced sleep dysregulation and further validates the construct of this model for opioid dependence and OUD. Highlights Morphine withdrawal differentially dysregulates the sleep of male and female mice3-day precipitated withdrawal results in larger changes than spontaneous withdrawalOpioid withdrawal affects responses to future sleep deprivation differently between sexes.
Collapse
Affiliation(s)
- Madigan L. Bedard
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia Sparks Lord
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patric J. Perez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Isabel M. Bravo
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adonay T. Teklezghi
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa Tarantino
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Graham Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Lee YY, Endale M, Wu G, Ruben MD, Francey LJ, Morris AR, Choo NY, Anafi RC, Smith DF, Liu AC, Hogenesch JB. Integration of genome-scale data identifies candidate sleep regulators. Sleep 2023; 46:zsac279. [PMID: 36462188 PMCID: PMC9905783 DOI: 10.1093/sleep/zsac279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
STUDY OBJECTIVES Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. METHODS We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. RESULTS Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model impacted the sleep-wake patterns. CONCLUSION Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.
Collapse
Affiliation(s)
- Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew R Morris
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Natalie Y Choo
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ron C Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Portillo E, Zi X, Kim Y, Tucker LB, Fu A, Miller LA, Valenzuela KS, Sullivan GM, Gauff AK, Yu F, Radomski KL, McCabe JT, Armstrong RC. Persistent hypersomnia following repetitive mild experimental traumatic brain injury: Roles of chronic stress and sex differences. J Neurosci Res 2023; 101:843-865. [PMID: 36624699 DOI: 10.1002/jnr.25165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) is often more complicated than a single head injury. An extreme example of this point may be military service members who experience a spectrum of exposures over a prolonged period under stressful conditions. Understanding the effects of complex exposures can inform evaluation and care to prevent persistent symptoms. We designed a longitudinal series of non-invasive procedures in adult mice to evaluate the effects of prolonged mild stress and head injury exposures. We assessed anxiety, depression, and sleep-wake dysfunction as symptoms that impact long-term outcomes after mild TBI. Unpredictable chronic mild stress (UCMS) was generated from a varied sequence of environmental stressors distributed within each of 21 days. Subsequently, mice received a mild blast combined with closed-head mild TBI on 5 days at 24-h intervals. In males and females, UCMS induced anxiety without depressive behavior. A major finding was reproducible sleep-wake dysfunction through 6- to 12-month time points in male mice that received UCMS with repetitive blast plus TBI events, or surprisingly after just UCMS alone. Specifically, male mice exhibited hypersomnia with increased sleep during the active/dark phase and fragmentation of longer wake bouts. Sleep-wake dysfunction was not found with TBI events alone, and hypersomnia was not found in females under any conditions. These results identify prolonged stress and sex differences as important considerations for sleep-wake dysfunction. Furthermore, this reproducible hypersomnia with impaired wakefulness is similar to the excessive daytime sleepiness reported in patients, including patients with TBI, which warrants further clinical screening, care, and treatment development.
Collapse
Affiliation(s)
- Edwin Portillo
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Xiaomei Zi
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Yeonho Kim
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amanda Fu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Lauren A Miller
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Krystal S Valenzuela
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Amina K Gauff
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Fengshan Yu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Kryslaine L Radomski
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Joseph T McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA.,Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Sleep and wake cycles dynamically modulate hippocampal inhibitory synaptic plasticity. PLoS Biol 2022; 20:e3001812. [PMID: 36318572 PMCID: PMC9624398 DOI: 10.1371/journal.pbio.3001812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 01/01/2023] Open
Abstract
Sleep is an essential process that consolidates memories by modulating synapses through poorly understood mechanisms. Here, we report that GABAergic synapses in hippocampal CA1 pyramidal neurons undergo daily rhythmic alterations. Specifically, wake inhibits phasic inhibition, whereas it promotes tonic inhibition compared to sleep. We further utilize a model of chemically induced inhibitory long-term potentiation (iLTP) to examine inhibitory plasticity. Intriguingly, while CA1 pyramidal neurons in both wake and sleep mice undergo iLTP, wake mice have a much higher magnitude. We also employ optogenetics and observe that inhibitory inputs from parvalbumin-, but not somatostatin-, expressing interneurons contribute to dynamic iLTP during sleep and wake. Finally, we demonstrate that synaptic insertion of α5-GABAA receptors underlies the wake-specific enhancement of iLTP at parvalbumin-synapses, which is independent of time of the day. These data reveal a previously unappreciated daily oscillation of inhibitory LTP in hippocampal neurons and uncover a dynamic contribution of inhibitory synapses in memory mechanisms across sleep and wake.
Collapse
|
40
|
Wu K, Shepard RD, Castellano D, Han W, Tian Q, Dong L, Lu W. Shisa7 phosphorylation regulates GABAergic transmission and neurodevelopmental behaviors. Neuropsychopharmacology 2022; 47:2160-2170. [PMID: 35534528 PMCID: PMC9556544 DOI: 10.1038/s41386-022-01334-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
GABA-A receptors (GABAARs) are crucial for development and function of the brain. Altered GABAergic transmission is hypothesized to be involved in neurodevelopmental disorders. Recently, we identified Shisa7 as a GABAAR auxiliary subunit that modulates GABAAR trafficking and GABAergic transmission. However, the underlying molecular mechanisms remain elusive. Here we generated a knock-in (KI) mouse line that is phospho-deficient at a phosphorylation site in Shisa7 (S405) and combined with electrophysiology, imaging and behavioral assays to illustrate the role of this site in GABAergic transmission and plasticity as well as behaviors. We found that expression of phospho-deficient mutants diminished α2-GABAAR trafficking in heterologous cells. Additionally, α1/α2/α5-GABAAR surface expression and GABAergic inhibition were decreased in hippocampal neurons in KI mice. Moreover, chemically induced inhibitory long-term potentiation was abolished in KI mice. Lastly, KI mice exhibited hyperactivity, increased grooming and impaired sleep homeostasis. Collectively, our study reveals a phosphorylation site critical for Shisa7-dependent GABAARs trafficking which contributes to behavioral endophenotypes displayed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Endogenous Circadian Clock Machinery in Cortical NG2-Glia Regulates Cellular Proliferation. eNeuro 2022; 9:ENEURO.0110-22.2022. [PMID: 36123116 PMCID: PMC9536852 DOI: 10.1523/eneuro.0110-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
The molecular circadian clock can be found throughout the body and is essential for the synchronizing cellular physiology with the 24 h day. However, the role of the clock in regulating the regenerative potential of the brain has not been explored. We report here that murine NG2-glia, the largest population of proliferative cells in the mature central nervous system, rhythmically express circadian clock genes in a 24 h period, including the critical clock component Bmal1 RNA and BMAL1 protein. Interestingly, daily NG2-glia proliferation preferentially occurs during the time of day in which Bmal1 expression is high, while conditional knockout of Bmal1 decreases both cortical NG2-glia density and cellular proliferation. Furthermore, in a neurotrauma model, we show that pathology-induced NG2-glia proliferation is also dependent on Bmal1 expression. Because circadian rhythm disturbances are common in neurologic disorders across the life span, including in traumatic brain injury, these findings bear significant implications for cellular regeneration in brain injuries and disease.
Collapse
|
42
|
Lord JS, Gay SM, Harper KM, Nikolova VD, Smith KM, Moy SS, Diering GH. Early life sleep disruption potentiates lasting sex-specific changes in behavior in genetically vulnerable Shank3 heterozygous autism model mice. Mol Autism 2022; 13:35. [PMID: 36038911 PMCID: PMC9425965 DOI: 10.1186/s13229-022-00514-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Patients with autism spectrum disorder (ASD) experience high rates of sleep disruption beginning early in life; however, the developmental consequences of this disruption are not understood. We examined sleep behavior and the consequences of sleep disruption in developing mice bearing C-terminal truncation mutation in the high-confidence ASD risk gene SHANK3 (Shank3ΔC). We hypothesized that sleep disruption may be an early sign of developmental divergence, and that clinically relevant Shank3WT/ΔC mice may be at increased risk of lasting deleterious outcomes following early life sleep disruption. Methods We recorded sleep behavior in developing Shank3ΔC/ΔC, Shank3WT/ΔC, and wild-type siblings of both sexes using a noninvasive home-cage monitoring system. Separately, litters of Shank3WT/ΔC and wild-type littermates were exposed to automated mechanical sleep disruption for 7 days prior to weaning (early life sleep disruption: ELSD) or post-adolescence (PASD) or undisturbed control (CON) conditions. All groups underwent standard behavioral testing as adults. Results Male and female Shank3ΔC/ΔC mice slept significantly less than wild-type and Shank3WT/ΔC siblings shortly after weaning, with increasing sleep fragmentation in adolescence, indicating that sleep disruption has a developmental onset in this ASD model. ELSD treatment interacted with genetic vulnerability in Shank3WT/ΔC mice, resulting in lasting, sex-specific changes in behavior, whereas wild-type siblings were largely resilient to these effects. Male ELSD Shank3WT/ΔC subjects demonstrated significant changes in sociability, sensory processing, and locomotion, while female ELSD Shank3WT/ΔC subjects had a significant reduction in risk aversion. CON Shank3WT/ΔC mice, PASD mice, and all wild-type mice demonstrated typical behavioral responses in most tests. Limitations This study tested the interaction between developmental sleep disruption and genetic vulnerability using a single ASD mouse model: Shank3ΔC (deletion of exon 21). The broader implications of this work should be supported by additional studies using ASD model mice with distinct genetic vulnerabilities. Conclusion Our study shows that sleep disruption during sensitive periods of early life interacts with underlying genetic vulnerability to drive lasting and sex-specific changes in behavior. As individuals progress through maturation, they gain resilience to the lasting effects of sleep disruption. This work highlights developmental sleep disruption as an important vulnerability in ASD susceptibility. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00514-5.
Collapse
Affiliation(s)
- Julia S Lord
- Department of Cell Biology and Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sean M Gay
- Department of Cell Biology and Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kathryn M Harper
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kirsten M Smith
- Department of Cell Biology and Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Graham H Diering
- Department of Cell Biology and Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Rowe RK, Green TRF, Giordano KR, Ortiz JB, Murphy SM, Opp MR. Microglia Are Necessary to Regulate Sleep after an Immune Challenge. BIOLOGY 2022; 11:1241. [PMID: 36009868 PMCID: PMC9405260 DOI: 10.3390/biology11081241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022]
Abstract
Microglia play a critical role in the neuroimmune response, but little is known about the role of microglia in sleep following an inflammatory trigger. Nevertheless, decades of research have been predicated on the assumption that an inflammatory trigger increases sleep through microglial activation. We hypothesized that mice (n = 30) with depleted microglia using PLX5622 (PLX) would sleep less following the administration of lipopolysaccharide (LPS) to induce inflammation. Brains were collected and microglial morphology was assessed using quantitative skeletal analyses and physiological parameters were recorded using non-invasive piezoelectric cages. Mice fed PLX diet had a transient increase in sleep that dissipated by week 2. Subsequently, following a first LPS injection (0.4 mg/kg), mice with depleted microglia slept more than mice on the control diet. All mice were returned to normal rodent chow to repopulate microglia in the PLX group (10 days). Nominal differences in sleep existed during the microglia repopulation period. However, following a second LPS injection, mice with repopulated microglia slept similarly to control mice during the dark period but with longer bouts during the light period. Comparing sleep after the first LPS injection to sleep after the second LPS injection, controls exhibited temporal changes in sleep patterns but no change in cumulative minutes slept, whereas cumulative sleep in mice with repopulated microglia decreased during the dark period across all days. Repopulated microglia had a reactive morphology. We conclude that microglia are necessary to regulate sleep after an immune challenge.
Collapse
Affiliation(s)
- Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80301, USA
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Tabitha R. F. Green
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Katherine R. Giordano
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - J. Bryce Ortiz
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mark R. Opp
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80301, USA
| |
Collapse
|
44
|
Martin SC, Gay SM, Armstrong ML, Pazhayam NM, Reisdorph N, Diering GH. Tonic endocannabinoid signaling supports sleep through development in both sexes. Sleep 2022; 45:6565640. [PMID: 35395682 PMCID: PMC9366650 DOI: 10.1093/sleep/zsac083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Sleep is an essential behavior that supports brain function and cognition throughout life, in part by acting on neuronal synapses. The synaptic signaling pathways that mediate the restorative benefits of sleep are not fully understood, particularly in the context of development. Endocannabinoids (eCBs) including 2-arachidonyl glycerol (2-AG) and anandamide (AEA), are bioactive lipids that activate cannabinoid receptor, CB1, to regulate synaptic transmission and mediate cognitive functions and many behaviors, including sleep. We used targeted mass spectrometry to measure changes in forebrain synaptic eCBs during the sleep/wake cycle in juvenile and adolescent mice of both sexes. We find that eCBs lack a daily rhythm in juvenile mice, while in adolescents AEA and related oleoyl ethanolamide are increased during the sleep phase in a circadian manner. Next, we manipulated the eCB system using selective pharmacology and measured the effects on sleep behavior in developing and adult mice of both sexes using a noninvasive piezoelectric home-cage recording apparatus. Enhancement of eCB signaling through inhibition of 2-AG or AEA degradation, increased dark-phase sleep amount and bout length in developing and adult males, but not in females. Inhibition of CB1 by injection of the antagonist AM251 reduced sleep time and caused sleep fragmentation in developing and adult males and females. Our data suggest that males are more sensitive to the sleep-promoting effects of enhanced eCBs but that tonic eCB signaling supports sleep behavior through multiple stages of development in both sexes. This work informs the further development of cannabinoid-based therapeutics for sleep disruption.
Collapse
Affiliation(s)
- Shenée C Martin
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Sean M Gay
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Michael L Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Nila M Pazhayam
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Graham H Diering
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
- Carolina Institute for Developmental Disabilities , Carrboro, NC , USA
| |
Collapse
|
45
|
Bell BJ, Hollinger KR, Deme P, Sakamoto S, Hasegawa Y, Volsky D, Kamiya A, Haughey N, Zhu X, Slusher BS. Glutamine antagonist JHU083 improves psychosocial behavior and sleep deficits in EcoHIV-infected mice. Brain Behav Immun Health 2022; 23:100478. [PMID: 35734753 PMCID: PMC9207540 DOI: 10.1016/j.bbih.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 10/31/2022] Open
Abstract
Combined antiretroviral therapy ushered an era of survivable HIV infection in which people living with HIV (PLH) conduct normal life activities and enjoy measurably extended lifespans. However, despite viral control, PLH often experience a variety of cognitive, emotional, and physical phenotypes that diminish their quality of life, including cognitive impairment, depression, and sleep disruption. Recently, accumulating evidence has linked persistent CNS immune activation to the overproduction of glutamate and upregulation of glutaminase (GLS) activity, particularly in microglial cells, driving glutamatergic imbalance with neurological consequences. Our lab has developed a brain-penetrant prodrug of the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON), JHU083, that potently inhibits brain GLS activity in mice following oral administration. To assess the therapeutic potential of JHU083, we infected mice with EcoHIV and characterized their neurobehavioral phenotypes. EcoHIV-infected mice exhibited decreased social interaction, suppressed sucrose preference, disrupted sleep during the early rest period, and increased sleep fragmentation, similar to what has been reported in PLH but not yet observed in murine models. At doses shown to inhibit microglial GLS, JHU083 treatment ameliorated all of the abnormal neurobehavioral phenotypes. To explore potential mechanisms underlying this effect, hippocampal microglia were isolated for RNA sequencing. The dysregulated genes and pathways in EcoHIV-infected hippocampal microglia pointed to disruptions in immune functions of these cells, which were partially restored by JHU083 treatment. These findings suggest that upregulation of microglial GLS may affect immune functions of these cells. Thus, brain-penetrable GLS inhibitors like JHU083 could act as a potential therapeutic modality for both glutamate excitotoxicity and aberrant immune activation in microglia in chronic HIV infection.
Collapse
|
46
|
Moore Z, Avsar P, O'Connor T, Budri A, Bader DL, Worsley P, Caggiari S, Patton D. A systematic review of movement monitoring devices to aid the prediction of pressure ulcers in at-risk adults. Int Wound J 2022; 20:579-608. [PMID: 35906857 PMCID: PMC9885455 DOI: 10.1111/iwj.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/03/2023] Open
Abstract
The present study sought to explore the impact of movement monitoring devices on risk prediction and prevention of pressure ulcers (PU) among adults. Using systematic review methodology, we included original research studies using a prospective design, written in English, assessing adult patients' movement in bed, using a movement monitoring device. The search was conducted in March 2021, using PubMed, CINAHL, Scopus, Cochrane, and EMBASE databases, and returned 1537 records, of which 25 met the inclusion criteria. Data were extracted using a pre-designed extraction tool and quality appraisal was undertaken using the evidence-based librarianship (EBL). In total, 19 different movement monitoring devices were used in the studies, using a range of physical sensing principles. The studies focused on quantifying the number and types of movements. In four studies the authors compared the monitoring system with PU risk assessment tools, with a variety of high and low correlations observed. Four studies compared the relationship between movement magnitude and frequency and the development of PUs, with variability in results also identified. Two of these studies showed, as expected, that those who made less movements developed more PU; however, the two studies also unexpectedly found that PUs occurred in both low movers and high movers. In the final two studies, the authors focused on the concordance with recommended repositioning based on the results of the monitoring device. Overall, concordance with repositioning increased with the use of a monitoring device. The synthesis of the literature surrounding bed monitoring technologies for PU risk prediction showed that a range of physical sensors can be used to detect the frequency of movement. Clinical studies showed some correlation between parameters of movement and PU risk/incidence, although the heterogeneity of approaches limits generalisable recommendations.
Collapse
Affiliation(s)
- Zena Moore
- The Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinIreland,Fakeeh College of Health SciencesJeddahSaudi Arabia,Department of Public Health, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Lida InstituteShanghaiChina,University of WalesCardiffUK
| | - Pinar Avsar
- The Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinIreland
| | - Tom O'Connor
- The Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinIreland,Fakeeh College of Health SciencesJeddahSaudi Arabia,Lida InstituteShanghaiChina
| | - Aglecia Budri
- The Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinIreland
| | | | | | | | - Declan Patton
- The Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinIreland,Fakeeh College of Health SciencesJeddahSaudi Arabia,Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
47
|
Wang Z, Huang Y, Zhou Z, Huang J, He Y, Qiu P. Local iron deficiency in the substantia nigra directly contributes to hyperlocomotion phenotypes. Neurobiol Dis 2022; 168:105693. [PMID: 35304229 DOI: 10.1016/j.nbd.2022.105693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/31/2022] Open
Abstract
Brain iron is precisely regulated, and disrupted brain iron homeostasis is implicated in neuropsychological disease. Mounting evidence connects the iron status of the substantia nigra (SN) with locomotion-related neural symptomatology. Researchers in this field have long speculated that iron deficiency in the SN directly causes the high-locomotion symptoms observed in neuropsychiatric disorders. However, no direct experimental evidence of a causal relationship has been presented. To explore the relationship between iron deficiency in the SN and locomotion-related phenotypes, we stereotaxically injected the well-documented iron chelator, deferiprone (DFP) into the SN of mice to induce regional brain iron deprivation and subsequently performed behavioral tests. Altered expression of iron metabolism-related molecules was detected in the brain regions with interventions, and behavioral changes were observed. Targeted iron chelation effectively decreased the local iron content of the SN. Among the brain regions examined, only DFP injected into the SN resulted in the hyperlocomotion phenotype. Upon SN iron chelation, transferrin receptor (Tfr) expression was found to be upregulated. Conversely, viral vector-mediated SN-Tfr knockdown was sufficient to induce SN iron deficiency and mimic the hyperlocomotion phenotype. All locomotion changes had a significant negative correlation with iron alteration in the SN. Furthermore, SN iron disturbance also contributed to poor sleep efficiency. Thus, SN iron deficiency directly contributed to triggering both hyperlocomotion and sleep disturbances. This study offers a promising research and therapeutic direction for iron-linked neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Yanjun Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhihua Zhou
- Department of Neurology, The first affiliated hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
48
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
49
|
Detecting fine and elaborate movements with piezo sensors provides non-invasive access to overlooked behavioral components. Neuropsychopharmacology 2022; 47:933-943. [PMID: 34764433 PMCID: PMC8882191 DOI: 10.1038/s41386-021-01217-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023]
Abstract
Behavioral phenotyping devices have been successfully used to build ethograms, but many aspects of behavior remain out of reach of available phenotyping systems. We now report on a novel device, which consists in an open-field platform resting on highly sensitive piezoelectric (electromechanical) pressure-sensors, with which we could detect the slightest movements (up to individual heart beats during rest) from freely moving rats and mice. The combination with video recordings and signal analysis based on time-frequency decomposition, clustering, and machine learning algorithms provided non-invasive access to previously overlooked behavioral components. The detection of shaking/shivering provided an original readout of fear, distinct from but complementary to behavioral freezing. Analyzing the dynamics of momentum in locomotion and grooming allowed to identify the signature of gait and neurodevelopmental pathological phenotypes. We believe that this device represents a significant progress and offers new opportunities for the awaited advance of behavioral phenotyping.
Collapse
|
50
|
Duncan M, Guerriero L, Kohler K, Beechem L, Gillis B, Salisbury F, Wessel C, Wang J, Sunderam S, Bachstetter A, O’Hara B, Murphy M. Chronic Fragmentation of the Daily Sleep-Wake Rhythm Increases Amyloid-beta Levels and Neuroinflammation in the 3xTg-AD Mouse Model of Alzheimer's Disease. Neuroscience 2022; 481:111-122. [PMID: 34856352 PMCID: PMC8941625 DOI: 10.1016/j.neuroscience.2021.11.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/17/2023]
Abstract
Fragmentation of the daily sleep-wake rhythm with increased nighttime awakenings and more daytime naps is correlated with the risk of development of Alzheimer's disease (AD). To explore whether a causal relationship underlies this correlation, the present study tested the hypothesis that chronic fragmentation of the daily sleep-wake rhythm stimulates brain amyloid-beta (Aβ) levels and neuroinflammation in the 3xTg-AD mouse model of AD. Female 3xTg-AD mice were allowed to sleep undisturbed or were subjected to chronic sleep fragmentation consisting of four daily sessions of enforced wakefulness (one hour each) evenly distributed during the light phase, five days a week for four weeks. Piezoelectric sleep recording revealed that sleep fragmentation altered the daily sleep-wake rhythm to resemble the pattern observed in AD. Levels of amyloid-beta (Aβ40 and Aβ42) determined by ELISA were higher in hippocampal tissue collected from sleep-fragmented mice than from undisturbed controls. In contrast, hippocampal levels of tau and phospho-tau differed minimally between sleep fragmented and undisturbed control mice. Sleep fragmentation also stimulated neuroinflammation as shown by increased expression of markers of microglial activation and proinflammatory cytokines measured by q-RT-PCR analysis of hippocampal samples. No significant effects of sleep fragmentation on Aβ, tau, or neuroinflammation were observed in the cerebral cortex. These studies support the concept that improving sleep consolidation in individuals at risk for AD may be beneficial for slowing the onset or progression of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- M.J. Duncan
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536,Co-senior authors, address correspondence to M.J. Duncan at
| | - L.E. Guerriero
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - K. Kohler
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536
| | - L.E. Beechem
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536
| | - B.D. Gillis
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536
| | - F. Salisbury
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - C. Wessel
- Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536
| | - J. Wang
- Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506
| | - S. Sunderam
- Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506
| | - A.D. Bachstetter
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536
| | - B.F. O’Hara
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - M.P. Murphy
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536,Co-senior authors, address correspondence to M.J. Duncan at
| |
Collapse
|