1
|
Yadav SR, Gáliková M, Klepsatel P. Temperature-dependent sleep patterns in Drosophila. J Therm Biol 2025; 127:104026. [PMID: 39700683 DOI: 10.1016/j.jtherbio.2024.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Sleep is a fundamental physiological process conserved through evolution, from worms to humans. Understanding how temperature influences sleep is essential for comprehending the complexities of animal behavior, physiology, and their adaptations to thermal environments. This study explores the impact of temperature on sleep behavior and patterns in Drosophila melanogaster. Through a comprehensive analysis, we assessed how temperatures during development and adulthood affect sleep duration and fragmentation. Our results show that exposure to non-optimal temperatures increases overall sleep duration, primarily by extending daytime sleep. Sleep patterns were also substantially modulated by developmental temperature. Flies that developed at 29 °C exhibited longer sleep durations compared to those that developed at either 19 °C or 25 °C. In general, sleep was more prevalent than wakefulness under most conditions, particularly at non-optimal temperatures. At intermediate temperatures, sleep became more fragmented and episodes shorter. The interplay between sleep and wakefulness varied depending on both population and developmental temperature. Developmental and adult temperatures also influenced sleep latency, the time it takes to fall asleep. Interestingly, the impact of temperature on daytime sleep latency differed among populations, whereas nighttime sleep latency consistently increased with temperature for all groups. Flies that developed at 29 °C showed shorter sleep latencies than those from other temperatures, both during the day and night. Finally, a strong negative correlation was observed between total sleep duration and daily locomotor activity across all groups and temperatures. These findings underscore the critical role of environmental temperature in regulating sleep behavior in Drosophila, with potential implications for understanding temperature-dependent sleep mechanisms in other organisms.
Collapse
Affiliation(s)
- Sanjay Ramnarayan Yadav
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia
| | - Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| |
Collapse
|
2
|
Villegas G, Pereira MT, Love CR, Edery I. DAYWAKE implicates novel roles for circulating lipid-binding proteins as extracerebral regulators of daytime wake-sleep behavior. FEBS Lett 2024; 598:321-330. [PMID: 38112219 PMCID: PMC10922413 DOI: 10.1002/1873-3468.14789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Sleep during the midday, commonly referred to as siesta, is a common trait of animals that mainly sleep during the night. Work using Drosophila led to the identification of the daywake (dyw) gene, found to have anti-siesta activity. Herein, we show that the DYW protein undergoes signal peptide-dependent secretion, is present in the circulatory system, and accumulates in multiple organs, but, surprisingly, it is not detected in the brain where wake-sleep centers are located. The abundance of DYW in adult flies is regulated by age, sex, temperature, and the splicing efficiency of a nearby thermosensitive intron. We suggest that DYW regulates daytime wake-sleep balance in an indirect, extracerebral manner, via a multi-organ network that interfaces with the circulatory system.
Collapse
Affiliation(s)
- Gabriel Villegas
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Mathew T Pereira
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Cameron R Love
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Isaac Edery
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
Alpert MH, Gil H, Para A, Gallio M. A thermometer circuit for hot temperature adjusts Drosophila behavior to persistent heat. Curr Biol 2022; 32:4079-4087.e4. [PMID: 35981537 PMCID: PMC9529852 DOI: 10.1016/j.cub.2022.07.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Small poikilotherms such as the fruit fly Drosophila depend on absolute temperature measurements to identify external conditions that are above (hot) or below (cold) their preferred range and to react accordingly. Hot and cold temperatures have a different impact on fly activity and sleep, but the circuits and mechanisms that adjust behavior to specific thermal conditions are not well understood. Here, we use patch-clamp electrophysiology to show that internal thermosensory neurons located within the fly head capsule (the AC neurons1) function as a thermometer active in the hot range. ACs exhibit sustained firing rates that scale with absolute temperature-but only for temperatures above the fly's preferred ∼25°C (i.e., "hot" temperature). We identify ACs in the fly brain connectome and demonstrate that they target a single class of circadian neurons, the LPNs.2 LPNs receive excitatory drive from ACs and respond robustly to hot stimuli, but their responses do not exclusively rely on ACs. Instead, LPNs receive independent drive from thermosensory neurons of the fly antenna via a new class of second-order projection neurons (TPN-IV). Finally, we show that silencing LPNs blocks the restructuring of daytime "siesta" sleep, which normally occurs in response to persistent heat. Our previous work described a distinct thermometer circuit for cold temperature.3 Together, the results demonstrate that the fly nervous system separately encodes and relays absolute hot and cold temperature information, show how patterns of sleep and activity can be adapted to specific temperature conditions, and illustrate how persistent drive from sensory pathways can impact behavior on extended temporal scales.
Collapse
Affiliation(s)
- Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Hamin Gil
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
4
|
Abstract
Sleep is critical for diverse aspects of brain function in animals ranging from invertebrates to humans. Powerful genetic tools in the fruit fly Drosophila melanogaster have identified - at an unprecedented level of detail - genes and neural circuits that regulate sleep. This research has revealed that the functions and neural principles of sleep regulation are largely conserved from flies to mammals. Further, genetic approaches to studying sleep have uncovered mechanisms underlying the integration of sleep and many different biological processes, including circadian timekeeping, metabolism, social interactions, and aging. These findings show that in flies, as in mammals, sleep is not a single state, but instead consists of multiple physiological and behavioral states that change in response to the environment, and is shaped by life history. Here, we review advances in the study of sleep in Drosophila, discuss their implications for understanding the fundamental functions of sleep that are likely to be conserved among animal species, and identify important unanswered questions in the field.
Collapse
Affiliation(s)
- Orie T Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA.
| | - Alex C Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
5
|
Breda C, Rosato E, Kyriacou CP. Norpa Signalling and the Seasonal Circadian Locomotor Phenotype in Drosophila. BIOLOGY 2020; 9:biology9060130. [PMID: 32560221 PMCID: PMC7345481 DOI: 10.3390/biology9060130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Abstract
In this paper, we review the role of the norpA-encoded phospholipase C in light and thermal entrainment of the circadian clock in Drosophila melanogaster. We extend our discussion to the role of norpA in the thermo-sensitive splicing of the per 3′ UTR, which has significant implications for seasonal adaptations of circadian behaviour. We use the norpA mutant-generated enhancement of per splicing and the corresponding advance that it produces in the morning (M) and evening (E) locomotor component to dissect out the neurons that are contributing to this norpA phenotype using GAL4/UAS. We initially confirmed, by immunocytochemistry and in situ hybridisation in adult brains, that norpA expression is mostly concentrated in the eyes, but we were unable to unequivocally reveal norpA expression in the canonical clock cells using these methods. In larval brains, we did see some evidence for co-expression of NORPA with PDF in clock neurons. Nevertheless, downregulation of norpA in clock neurons did generate behavioural advances in adults, with the eyes playing a significant role in the norpA seasonal phenotype at high temperatures, whereas the more dorsally located CRYPTOCHROME-positive clock neurons are the likely candidates for generating the norpA behavioural effects in the cold. We further show that knockdown of the related plc21C encoded phospholipase in clock neurons does not alter per splicing nor generate any of the behavioural advances seen with norpA. Our results with downregulating norpA and plc21C implicate the rhodopsins Rh2/Rh3/Rh4 in the eyes as mediating per 3′ UTR splicing at higher temperatures and indicate that the CRY-positive LNds, also known as ‘evening’ cells are likely mediating the low-temperature seasonal effects on behaviour via altering per 3′UTR splicing.
Collapse
|
6
|
Daywake, an Anti-siesta Gene Linked to a Splicing-Based Thermostat from an Adjoining Clock Gene. Curr Biol 2019; 29:1728-1734.e4. [PMID: 31080079 DOI: 10.1016/j.cub.2019.04.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 04/12/2019] [Indexed: 01/25/2023]
Abstract
Sleep is fundamental to animal survival but is a vulnerable state that also limits how much time can be devoted to critical wake-dependent activities [1]. Although many animals are day-active and sleep at night, they exhibit a midday nap, or "siesta," that can vary in intensity and is usually more prominent on warm days. In humans, the balance between maintaining the wake state or sleeping during the day has important health implications [2], but the mechanisms underlying this dynamic regulation are poorly understood. Using the well-established Drosophila melanogaster animal model to study sleep [3], we identify a new wake-sleep regulator that we term daywake (dyw). dyw encodes a juvenile hormone-binding protein [4] that functions in neurons as a day-specific anti-siesta gene, with little effect on sleep levels during the nighttime or in the absence of light. Remarkably, dyw expression is stimulated in trans via cold-enhanced splicing of the dmpi8 intron [5] from the reverse-oriented but slightly overlapping period (per) clock gene [6]. The functionally integrated dmpi8-dyw genetic unit operates as a "behavioral temperate acclimator" by increasingly counterbalancing siesta-promoting pathways as daily temperatures become cooler and carry reduced risks from daytime heat exposure. While daily patterns of when animals are awake and when they sleep are largely scheduled by the circadian timing system, dyw implicates a less recognized class of modulatory wake-sleep regulators that primarily function to enhance flexibility in wake-sleep preference, a behavioral plasticity that is commonly observed in animals during the midday, raising the possibility of shared mechanisms.
Collapse
|
7
|
Yang Y, Edery I. Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection. PLoS Genet 2018; 14:e1007612. [PMID: 30180162 PMCID: PMC6138418 DOI: 10.1371/journal.pgen.1007612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 09/14/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
Similar to many diurnal animals, Drosophila melanogaster exhibits a mid-day siesta that is more robust as ambient temperature rises, an adaptive response aimed at minimizing exposure to heat. Mid-day siesta levels are partly regulated by the thermosensitive splicing of a small intron (termed dmpi8) found in the 3’ untranslated region (UTR) of the circadian clock gene period (per). Using the well-studied D. melanogaster latitudinal cline along the eastern coast of Australia, we show that flies from temperate populations sleep less during the day compared to those from tropical regions. We identified combinations of four single nucleotide polymorphisms (SNPs) in the 3’ UTR of per that yield several different haplotypes. The two most abundant of these haplotypes exhibit a reciprocal tropical-temperate distribution in relative frequency. Intriguingly, transgenic flies with the major tropical isoform manifest increased daytime sleep and reduced dmpi8 splicing compared to those carrying the temperate variant. Our results strongly suggest that for a major portion of D. melanogaster in Australia, thermal adaptation of daily sleep behavior included spatially varying selection on ancestrally derived polymorphisms in the per 3’ UTR that differentially control dmpi8 splicing efficiency. Prior work showed that African flies from high altitudes manifest reduced mid-day siesta levels, indicative of parallel latitudinal and altitudinal adaptation across continents. However, geographical variation in per 3’ UTR haplotypes was not observed for African flies, providing a compelling case for inter-continental variation in factors targeted by natural selection in attaining a parallel adaptation. We propose that the ability to calibrate mid-day siesta levels to better match local temperature ranges is a key adaptation contributing to the successful colonization of D. melanogaster beyond its ancestral range in the lowlands of Sub-Saharan Africa. In warm climates many animals, including humans, exhibit a mid-day siesta, almost certainly a behavior meant to minimize the harm from prolonged exposure to the hot mid-day sun. But what about animals that adapted to cooler more temperate climates, might they have a less pronounced siesta? Indeed, we show that in the common fruit fly, Drosophila melanogaster, those from temperate regions in Australia exhibit less mid-day siesta compared to their tropical counterparts. Prior work showed that mid-day sleep levels are partially regulated by a ‘clock’ gene called period (per), which controls the timing of wake-sleep cycles in addition to other daily rhythms. We identified several DNA differences in the per gene that show geographical variation and contribute to the daytime sleep differences in flies from tropical and temperate regions via a mechanism that involves how well a temperature-sensitive intron in per is removed. A similar reduction in mid-day sleep was previously observed in African flies that adapted to the cooler temperatures found at high altitudes. Together, our findings provide a rare example where latitude and altitude lead to a similar behavioral adaptation to temperature. Moreover, the results suggest inter-continental differences in the evolutionary solutions used to attain the same thermal adaptation to cooler climates.
Collapse
Affiliation(s)
- Yong Yang
- Rutgers University, Center for Advanced Biotechnology and Medicine, New Jersey, United States of America
| | - Isaac Edery
- Rutgers University, Center for Advanced Biotechnology and Medicine, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhang Z, Cao W, Edery I. The SR protein B52/SRp55 regulates splicing of the period thermosensitive intron and mid-day siesta in Drosophila. Sci Rep 2018; 8:1872. [PMID: 29382842 PMCID: PMC5789894 DOI: 10.1038/s41598-017-18167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/06/2017] [Indexed: 11/24/2022] Open
Abstract
Similar to many diurnal animals, Drosophila melanogaster exhibits a mid-day siesta that is more robust as temperature increases, an adaptive response that aims to minimize the deleterious effects from exposure to heat. This temperature-dependent plasticity in mid-day sleep levels is partly based on the thermal sensitive splicing of an intron in the 3' untranslated region (UTR) of the circadian clock gene termed period (per). In this study, we evaluated a possible role for the serine/arginine-rich (SR) splicing factors in the regulation of dmpi8 splicing efficiency and mid-day siesta. Using a Drosophila cell culture assay we show that B52/SRp55 increases dmpi8 splicing efficiency, whereas other SR proteins have little to no effect. The magnitude of the stimulatory effect of B52 on dmpi8 splicing efficiency is modulated by natural variation in single nucleotide polymorphisms (SNPs) in the per 3' UTR that correlate with B52 binding levels. Down-regulating B52 expression in clock neurons increases mid-day siesta and reduces dmpi8 splicing efficiency. Our results establish a novel role for SR proteins in sleep and suggest that polymorphisms in the per 3' UTR contribute to natural variation in sleep behavior by modulating the binding efficiencies of SR proteins.
Collapse
Affiliation(s)
- Zhichao Zhang
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA
- Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Huimin Road 211#, Chengdu, Sichuan Province, 611130, P. R. China
| | - Weihuan Cao
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA
- Human Genetics Institute of New Jersey, Nelson Biology Laboratories, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Isaac Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature. Int J Mol Sci 2017; 18:ijms18102028. [PMID: 28972543 PMCID: PMC5666710 DOI: 10.3390/ijms18102028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022] Open
Abstract
trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel) that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster. Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network) in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour.
Collapse
|
10
|
Gotic I, Schibler U. Posttranscriptional mechanisms controlling diurnal gene expression cycles by body temperature rhythms. RNA Biol 2017; 14:1294-1298. [PMID: 28267416 DOI: 10.1080/15476286.2017.1285481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In mammals, body temperature oscillates in a daily fashion around a set point of 36°C-37°C. These fluctuations are controlled by the circadian master clock residing in the brain's suprachiasmatic nucleus and, despite their small amplitudes, contribute to the diurnal expression of genes throughout the organism. By focusing on the mechanisms underlying the temperature-dependent accumulation of the cold-inducible RNA-binding protein CIRBP - a factor involved in the tuning of amplitude and phase in circadian clocks of peripheral tissues - we have recently identified a novel mechanism governing temperature-dependent gene expression. This mechanism involves the differential spicing efficiency of primary RNA transcripts under different temperature conditions and thereby determines the fraction of Cirbp pre-mRNA processed into mature mRNA. A genome-wide transcriptome analysis revealed that this mechanism affects the output of hundreds of genes. Here we discuss our findings and future directions toward the identification of specific factors and parameters governing temperature-sensitive splicing efficacy.
Collapse
Affiliation(s)
- Ivana Gotic
- a Department of Molecular Biology , University of Geneva, Quai Ernest-Ansermet , Geneva , Switzerland
| | - Ueli Schibler
- a Department of Molecular Biology , University of Geneva, Quai Ernest-Ansermet , Geneva , Switzerland
| |
Collapse
|
11
|
Mid-day siesta in natural populations of D. melanogaster from Africa exhibits an altitudinal cline and is regulated by splicing of a thermosensitive intron in the period clock gene. BMC Evol Biol 2017; 17:32. [PMID: 28114910 PMCID: PMC5259850 DOI: 10.1186/s12862-017-0880-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/11/2017] [Indexed: 01/18/2023] Open
Abstract
Background Many diurnal animals exhibit a mid-day ‘siesta’, generally thought to be an adaptive response aimed at minimizing exposure to heat on warm days, suggesting that in regions with cooler climates mid-day siestas might be a less prominent feature of animal behavior. Drosophila melanogaster exhibits thermal plasticity in its mid-day siesta that is partly governed by the thermosensitive splicing of the 3’-terminal intron (termed dmpi8) from the key circadian clock gene period (per). For example, decreases in temperature lead to progressively more efficient splicing, which increasingly favors activity over sleep during the mid-day. In this study we sought to determine if the adaptation of D. melanogaster from its ancestral range in the lowlands of tropical Africa to the cooler temperatures found at high altitudes involved changes in mid-day sleep behavior and/or dmpi8 splicing efficiency. Results Using natural populations of Drosophila melanogaster from different altitudes in tropical Africa we show that flies from high elevations have a reduced mid-day siesta and less consolidated sleep. We identified a single nucleotide polymorphism (SNP) in the per 3’ untranslated region that has strong effects on dmpi8 splicing and mid-day sleep levels in both low and high altitude flies. Intriguingly, high altitude flies with a particular variant of this SNP exhibit increased dmpi8 splicing efficiency compared to their low altitude counterparts, consistent with reduced mid-day siesta. Thus, a boost in dmpi8 splicing efficiency appears to have played a prominent but not universal role in how African flies adapted to the cooler temperatures at high altitude. Conclusions Our findings point towards mid-day sleep behavior as a key evolutionary target in the thermal adaptation of animals, and provide a genetic framework for investigating daytime sleep in diurnal animals which appears to be driven by mechanisms distinct from those underlying nighttime sleep. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0880-8) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Regulation of sleep plasticity by a thermo-sensitive circuit in Drosophila. Sci Rep 2017; 7:40304. [PMID: 28084307 PMCID: PMC5233985 DOI: 10.1038/srep40304] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
Sleep is a highly conserved and essential behaviour in many species, including the fruit fly Drosophila melanogaster. In the wild, sensory signalling encoding environmental information must be integrated with sleep drive to ensure that sleep is not initiated during detrimental conditions. However, the molecular and circuit mechanisms by which sleep timing is modulated by the environment are unclear. Here we introduce a novel behavioural paradigm to study this issue. We show that in male fruit flies, onset of the daytime siesta is delayed by ambient temperatures above 29 °C. We term this effect Prolonged Morning Wakefulness (PMW). We show that signalling through the TrpA1 thermo-sensor is required for PMW, and that TrpA1 specifically impacts siesta onset, but not night sleep onset, in response to elevated temperatures. We identify two critical TrpA1-expressing circuits and show that both contact DN1p clock neurons, the output of which is also required for PMW. Finally, we identify the circadian blue-light photoreceptor CRYPTOCHROME as a molecular regulator of PMW, and propose a model in which the Drosophila nervous system integrates information encoding temperature, light, and time to dynamically control when sleep is initiated. Our results provide a platform to investigate how environmental inputs co-ordinately regulate sleep plasticity.
Collapse
|
13
|
A Longer Siesta? DN1s in Control! Neurosci Bull 2016; 33:113-114. [PMID: 27817175 DOI: 10.1007/s12264-016-0078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022] Open
|
14
|
Gotic I, Omidi S, Fleury-Olela F, Molina N, Naef F, Schibler U. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev 2016; 30:2005-17. [PMID: 27633015 PMCID: PMC5066242 DOI: 10.1101/gad.287094.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022]
Abstract
Gotic et al. show that the temperature-dependent accumulation of cold-inducible RNA-binding protein (Cirbp) mRNA is controlled primarily by the regulation of splicing efficiency. As revealed by genome-wide “approach-to-steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Saeed Omidi
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Fabienne Fleury-Olela
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Nacho Molina
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Guo F, Yu J, Jung HJ, Abruzzi KC, Luo W, Griffith LC, Rosbash M. Circadian neuron feedback controls the Drosophila sleep--activity profile. Nature 2016; 536:292-7. [PMID: 27479324 PMCID: PMC5247284 DOI: 10.1038/nature19097] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Little is known about the ability of Drosophila circadian neurons to promote sleep. Here we show, using optogenetic manipulation and video recording, that a subset of dorsal clock neurons (DN1s) are potent sleep-promoting cells that release glutamate to directly inhibit key pacemaker neurons. The pacemakers promote morning arousal by activating these DN1s, implying that a late-day feedback circuit drives midday siesta and night-time sleep. To investigate more plastic aspects of the sleep program, we used a calcium assay to monitor and compare the real-time activity of DN1 neurons in freely behaving males and females. Our results revealed that DN1 neurons were more active in males than in females, consistent with the finding that male flies sleep more during the day. DN1 activity is also enhanced by elevated temperature, consistent with the ability of higher temperatures to increase sleep. These new approaches indicate that DN1s have a major effect on the fly sleep-wake profile and integrate environmental information with the circadian molecular program.
Collapse
|
16
|
Parisky KM, Agosto Rivera JL, Donelson NC, Kotecha S, Griffith LC. Reorganization of Sleep by Temperature in Drosophila Requires Light, the Homeostat, and the Circadian Clock. Curr Biol 2016; 26:882-92. [PMID: 26972320 DOI: 10.1016/j.cub.2016.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/11/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
Increasing ambient temperature reorganizes the Drosophila sleep pattern in a way similar to the human response to heat, increasing daytime sleep while decreasing nighttime sleep. Mutation of core circadian genes blocks the immediate increase in daytime sleep, but not the heat-stimulated decrease in nighttime sleep, when animals are in a light:dark cycle. The ability of per(01) flies to increase daytime sleep in light:dark can be rescued by expression of PER in either LNv or DN1p clock cells and does not require rescue of locomotor rhythms. Prolonged heat exposure engages the homeostat to maintain daytime sleep in the face of nighttime sleep loss. In constant darkness, all genotypes show an immediate decrease in sleep in response to temperature shift during the subjective day, implying that the absence of light input uncovers a clock-independent pro-arousal effect of increased temperature. Interestingly, the effects of temperature on nighttime sleep are blunted in constant darkness and in cry(OUT) mutants in light:dark, suggesting that they are dependent on the presence of light the previous day. In contrast, flies of all genotypes kept in constant light sleep more at all times of day in response to high temperature, indicating that the presence of light can invert the normal nighttime response to increased temperature. The effect of temperature on sleep thus reflects coordinated regulation by light, the homeostat, and components of the clock, allowing animals to reorganize sleep patterns in response to high temperature with rough preservation of the total amount of sleep.
Collapse
Affiliation(s)
- Katherine M Parisky
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - José L Agosto Rivera
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Nathan C Donelson
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Sejal Kotecha
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Leslie C Griffith
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
17
|
Roessingh S, Wolfgang W, Stanewsky R. Loss of Drosophila melanogaster TRPA1 Function Affects “Siesta” Behavior but Not Synchronization to Temperature Cycles. J Biol Rhythms 2015; 30:492-505. [DOI: 10.1177/0748730415605633] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To maintain synchrony with the environment, circadian clocks use a wide range of cycling sensory cues that provide input to the clock (zeitgebers), including environmental temperature cycles (TCs). There is some knowledge about which clock neuronal groups are important for temperature synchronization, but we currently lack knowledge on the temperature receptors and their signaling pathways that feed temperature information to the (neuronal) clock. Since TRPA1 is a well-known thermosensor that functions in a range of temperature-related behaviors, and it is potentially expressed in clock neurons, we set out to test the putative role of TRPA1 in temperature synchronization of the circadian clock. We found that flies lacking TRPA1 are still able to synchronize their behavioral activity to TCs comparable to wild-type flies, both in 16°C : 25°C and 20°C : 29°C TCs. In addition, we found that flies lacking TRPA1 show higher activity levels during the middle of the warm phase of 20°C : 29°C TCs, and we show that this TRPA1-mediated repression of locomotor activity during the “siesta” is caused by a lack of sleep. Based on these data, we conclude that the TRPA1 channel is not required for temperature synchronization in this broad temperature range but instead is required to repress activity during the warm part of the day.
Collapse
Affiliation(s)
- Sanne Roessingh
- Department of Cell and Developmental Biology, University College London, London, UK
- School of Biological and Chemical Sciences, Queen Mary College, London, UK
| | - Werner Wolfgang
- School of Biological and Chemical Sciences, Queen Mary College, London, UK
| | - Ralf Stanewsky
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|