1
|
Yu J, Liu H, Gao R, Wang TV, Li C, Liu Y, Yang L, Xu Y, Cui Y, Jia C, Huang J, Chen PR, Rao Y. Calcineurin: An essential regulator of sleep revealed by biochemical, chemical biological, and genetic approaches. Cell Chem Biol 2025; 32:157-173.e7. [PMID: 39740665 DOI: 10.1016/j.chembiol.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Research into mechanisms underlying sleep traditionally relies on electrophysiology and genetics. Because sleep can only be measured on whole animals by behavioral observations and physical means, no sleep research was initiated by biochemical and chemical biological approaches. We used phosphorylation sites of kinases important for sleep as targets for biochemical and chemical biological approaches. Sleep was increased in mice carrying a threonine-to-alanine substitution at residue T469 of salt-inducible kinase 3 (SIK3). Our biochemical purification and photo-crosslinking revealed calcineurin (CaN) dephosphorylation, both in vitro and in vivo, of SIK3 at T469 and S551, but not T221. Knocking down CaN regulatory subunit reduced daily sleep by more than 5 h, exceeding all known mouse mutants. Our work uncovered a critical physiological role for CaN in sleep and pioneered biochemical purification and chemical biology as effective approaches to study sleep.
Collapse
Affiliation(s)
- Jianjun Yu
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Huijie Liu
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Rui Gao
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Tao V Wang
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Chenggang Li
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Yuxiang Liu
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Lu Yang
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Ying Xu
- National Center for Protein Sciences Phoenix, Beijing, China
| | - Yunfeng Cui
- Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Chenxi Jia
- National Center for Protein Sciences Phoenix, Beijing, China
| | - Juan Huang
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Peng R Chen
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yi Rao
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Hong J, Ha GE, Kwak H, Lee Y, Jeong H, Suh PG, Cheong E. Destabilization of light NREM sleep by thalamic PLCβ4 deletion impairs sleep-dependent memory consolidation. Sci Rep 2020; 10:8813. [PMID: 32483199 PMCID: PMC7264240 DOI: 10.1038/s41598-020-64377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/15/2020] [Indexed: 01/20/2023] Open
Abstract
Sleep abnormality often accompanies the impairment of cognitive function. Both rapid eye movement (REM) and non-REM (NREM) sleep have associated with improved memory performance. However, the role of composition in NREM sleep, consisting of light and deep NREM, for memory formation is not fully understood. We investigated how the dynamics of NREM sleep states influence memory consolidation. Thalamocortical (TC) neuron-specific phospholipase C β4 (PLCβ4) knockout (KO) increased the total duration of NREM sleep, consisting of destabilized light NREM and stabilized deep NREM. Surprisingly, the longer NREM sleep did not improve memory consolidation but rather impaired it in TC-specific PLCβ4 KO mice. Memory function was positively correlated with the stability of light NREM and spindle activity occurring in maintained light NREM period. Our study suggests that a single molecule, PLCβ4, in TC neurons is critical for tuning the NREM sleep states and thus affects sleep-dependent memory formation.
Collapse
Affiliation(s)
- Joohyeon Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Go Eun Ha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yelin Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyeonyeong Jeong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Science, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
4
|
Gutzmann JJ, Lin L, Hoffman DA. Functional Coupling of Cav2.3 and BK Potassium Channels Regulates Action Potential Repolarization and Short-Term Plasticity in the Mouse Hippocampus. Front Cell Neurosci 2019; 13:27. [PMID: 30846929 PMCID: PMC6393364 DOI: 10.3389/fncel.2019.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated ion channels are essential for signal generation and propagation in neurons and other excitable cells. The high-voltage activated calcium-channel Cav2.3 is expressed throughout the central and peripheral nervous system, and within CA1 hippocampal pyramidal neurons it is localized throughout the somato-dendritic region and dendritic spines. Cav2.3 has been shown to provide calcium for other calcium-dependent potassium channels including small-conductance calcium-activated potassium channels (SK), but big-conductance calcium-activated potassium channels (BK) have been thought to be activated by calcium from all known voltage-gated calcium channels, except Cav2.3. Here we show for the first time that CA1 pyramidal cells which lack Cav2.3 show altered action potential (AP) waveforms, which can be traced back to reduced SK- and BK-channel function. This change in AP waveform leads to strengthened synaptic transmission between CA1 and the subiculum, resulting in increased short-term plasticity. Our results demonstrate that Cav2.3 impacts cellular excitability through functional interaction with BK channels, impacting communication between hippocampal subregions.
Collapse
Affiliation(s)
- Jakob J Gutzmann
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lin Lin
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
5
|
Zeng Y, Yang J, Du J, Pu X, Yang X, Yang S, Yang T. Strategies of Functional Foods Promote Sleep in Human Being. ACTA ACUST UNITED AC 2015; 9:148-155. [PMID: 26005400 PMCID: PMC4440346 DOI: 10.2174/1574362410666150205165504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sleep is a vital segment of life, however, the mechanisms of diet promoting sleep are
unclear and are the focus of research. Insomnia is a general sleep disorder and functional foods are
known to play a key role in the prevention of insomnia. A number of studies have demonstrated that
major insomnia risk factors in human being are less functional foods in dietary. There are higher
functional components in functional foods promoting sleep, including tryptophan, GABA, calcium,
potassium, melatonin, pyridoxine, L-ornithine and hexadecanoic acid; but wake-promoting neurochemical
factors include serotonin, noradrenalin, acetylcholine, histamine, orexin and so on. The factors promoting sleep in human
being are the functional foods include barley grass powder, whole grains, maca, panax, Lingzhi, asparagus powder,
lettuce, cherry, kiwifruits, walnut, schisandra wine, and milk; Barley grass powder with higher GABA and calcium, as
well as potassium is the most ideal functional food promoting sleep, however, the sleep duration for modern humans is
associated with food structure of ancient humans. In this review, we put forward possible mechanisms of functional
components in foods promoting sleep. Although there is clear relevance between sleep and diet, their molecular
mechanisms need to be studied further.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Jiazhen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China; ; Kuming Tiankang Science & Technology Limited Company, Kunming 650231, P.R. China
| | - Juan Du
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Xiaoying Pu
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Xiaomen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Shuming Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Tao Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| |
Collapse
|