1
|
Blair GA, Depman M, Adams WP, Maisonneuve RO, Hoeker GS, Weinberg SH, Poelzing S. Sequence-Dependent Repolarization Is Modulated by Endogenous Action Potential Duration Gradients Rather Than Electrical Coupling in Ventricular Myocardium. J Am Heart Assoc 2025; 14:e030433. [PMID: 39719415 PMCID: PMC12054505 DOI: 10.1161/jaha.123.030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity. METHODS AND RESULTS Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031. SD of APD and the AT-APD slope and coefficient of determination were quantified as metrics of APD heterogeneity. SD of APD increased with carbenoxolone, mannitol, and altered activation sequence. The AT-APD slope was insensitive to carbenoxolone, mannitol, dextran, flecainide, or E4031 but changed in response to activation sequence. The coefficient of determination did not change with carbenoxolone; decreased with mannitol, E4031, and activation sequence; but increased with dextran and flecainide. APD heterogeneity changes were dependent on whether the estimation used SD of APD or the AT-APD relationship. The pacing stimulus increased APD at the site of stimulation, revealing a confounding stimulus effect on APD within the measurement area. Simulations predict that the stimulus artifact and endogenous APD gradients are stronger determinants of APD heterogeneity than AT. CONCLUSIONS APD dependence on conduction is relatively small. Furthermore, APD heterogeneity within a mapping field of view is dependent on endogenous gradients, the stimulus artifact, and the experimental approach, rather than electrical coupling.
Collapse
Affiliation(s)
- Grace A. Blair
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Madeline Depman
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - William P. Adams
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Rowan O. Maisonneuve
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Gregory S. Hoeker
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Seth H. Weinberg
- Department of Biomedical EngineeringDavis Heart and Lung Research Institute, The Ohio State UniversityColumbusOHUSA
| | - Steve Poelzing
- Graduate Program in Translational BiologyMedicine and Health, Virginia TechRoanokeVAUSA
- Center for Vascular and Heart ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
- Department of Biomedical Engineering and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| |
Collapse
|
2
|
Talebi Kiasari F, Naghshbandi M, Emamikhah M, Moradi Moghaddam O, Niakan Lahiji M, Rohani M, Yazdi N, Movahedi H, Amanollahi A, Irandoost P, Ghafoury R. Evaluation of the effect of Modafinil in the improvement of the level of consciousness in patients with COVID-19 encephalopathy: A randomized controlled trial. Neuropsychopharmacol Rep 2024; 44:490-501. [PMID: 38715471 PMCID: PMC11544445 DOI: 10.1002/npr2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 11/09/2024] Open
Abstract
AIM COVID-19 can lead to encephalopathy and loss of consciousness. This double-blinded randomized clinical trial conducted in Tehran, Iran, aimed to assess the potential effectiveness of modafinil in patients with COVID-19-related encephalopathy. METHODS Nineteen non-intubated COVID-19 patients with encephalopathy were randomized into two groups: a treatment group receiving crushed modafinil tablets and a placebo group receiving starch powder. Modafinil was administered at a dose of 100 mg every 2 h, reaching a peak dosage of 400 mg. The level of consciousness was assessed using the Glasgow Coma Score (GCS) at multiple time points on the day of medication administration. The trial was registered under IRCT20170903036041N3 on 23/5/2021. RESULTS The average age in the modafinil and placebo groups was 75.33 and 70 years, respectively. No significant differences were observed between the two groups in terms of chronic conditions, clinical symptoms, or laboratory data. GCS scores were similar between the groups at baseline (p-value = 0.699). After four doses of modafinil, GCS scores were slightly higher in the treatment group, but this difference was not statistically significant (p-value = 0.581). GCS scores after each round of drug administration didn't significantly differ between the treatment and placebo groups (p-value = 0.908). CONCLUSION Modafinil exhibited a slight improvement in the level of consciousness among COVID-19 patients with encephalopathy, although this improvement did not reach statistical significance when compared to the control group. Further research with larger sample sizes and longer treatment durations is recommended to explore modafinil's potential benefits in managing altered consciousness in COVID-19 patients.
Collapse
Affiliation(s)
- Fatemeh Talebi Kiasari
- Department of Neurology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobin Naghshbandi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Emamikhah
- Department of Neurology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Moradi Moghaddam
- Trauma and Injury Research Center, Critical Care Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Niakan Lahiji
- Trauma and Injury Research Center, Critical Care Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Yazdi
- Department of Neurology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Amanollahi
- Trauma and Injury Research Center, Critical Care Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Irandoost
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghafoury
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|
4
|
Ringuette D, EbrahimAmini A, Sangphosuk W, Aquilino MS, Carroll G, Ashley M, Bazzigaluppi P, Dufour S, Droguerre M, Stefanovic B, Levi O, Charveriat M, Monnier PP, Carlen PL. Spreading depolarization suppression from inter-astrocytic gap junction blockade assessed with multimodal imaging and a novel wavefront detection scheme. Neurotherapeutics 2024; 21:e00298. [PMID: 38241157 PMCID: PMC10903093 DOI: 10.1016/j.neurot.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Spreading depolarizations (SDs) are an enigmatic and ubiquitous co-morbidity of neural dysfunction. SDs are propagating waves of local field depolarization and increased extracellular potassium. They increase the metabolic demand on brain tissue, resulting in changes in tissue blood flow, and are associated with adverse neurological consequences including stroke, epilepsy, neurotrauma, and migraine. Their occurrence is associated with poor patient prognosis through mechanisms which are only partially understood. Here we show in vivo that two (structurally dissimilar) drugs, which suppress astroglial gap junctional communication, can acutely suppress SDs. We found that mefloquine hydrochloride (MQH), administered IP, slowed the propagation of the SD potassium waveform and intermittently led to its suppression. The hemodynamic response was similarly delayed and intermittently suppressed. Furthermore, in instances where SD led to transient tissue swelling, MQH reduced observable tissue displacement. Administration of meclofenamic acid (MFA) IP was found to reduce blood flow, both proximal and distal, to the site of SD induction, preceding a large reduction in the amplitude of the SD-associated potassium wave. We introduce a novel image processing scheme for SD wavefront localization under low-contrast imaging conditions permitting full-field wavefront velocity mapping and wavefront parametrization. We found that MQH administration delayed SD wavefront's optical correlates. These two clinically used drugs, both gap junctional blockers found to distinctly suppress SDs, may be of therapeutic benefit in the various brain disorders associated with recurrent SDs.
Collapse
Affiliation(s)
- Dene Ringuette
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada.
| | - Azin EbrahimAmini
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Weerawong Sangphosuk
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada
| | - Mark S Aquilino
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Gwennyth Carroll
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Max Ashley
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada
| | - Paolo Bazzigaluppi
- Sunnybrook Health Sciences Center, 2075 Bayview Ave., Toronto, Ontario M4N 3M5, Canada
| | - Suzie Dufour
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | | | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, 610 University Ave., Toronto, Ontario M5G 2M9, Canada; Sunnybrook Health Sciences Center, 2075 Bayview Ave., Toronto, Ontario M4N 3M5, Canada
| | - Ofer Levi
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | | | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Department of Ophthalmology & Vision Science, Faculty of Medicine, University of Toronto, 340 College St., Toronto, Ontario M5T 3A9, Canada
| | - Peter L Carlen
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
5
|
Hersey M, Tanda G. Modafinil, an atypical CNS stimulant? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:287-326. [PMID: 38467484 PMCID: PMC12004278 DOI: 10.1016/bs.apha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Modafinil is a central nervous system stimulant approved for the treatment of narcolepsy and sleep disorders. Due to its wide range of biochemical actions, modafinil has been explored for other potential therapeutic uses. Indeed, it has shown promise as a therapy for cognitive disfunction resulting from neurologic disorders like ADHD, and as a smart drug in non-medical settings. The mechanism(s) of actions underlying the therapeutic efficacy of this agent remains largely elusive. Modafinil is known to inhibit the dopamine transporter, thus decreasing dopamine reuptake following neuronal release, an effect shared by addictive psychostimulants. However, modafinil is unique in that only a few cases of dependence on this drug have been reported, as compared to other psychostimulants. Moreover, modafinil has been tested, with some success, as a potential therapeutic agent to combat psychostimulant and other substance use disorders. Modafinil has additional, but less understood, actions on other neurotransmitter systems (GABA, glutamate, serotonin, norepinephrine, etc.). These interactions, together with its ability to activate selected brain regions, are likely one of the keys to understand its unique pharmacology and therapeutic activity as a CNS stimulant. In this chapter, we outline the pharmacokinetics and pharmacodynamics of modafinil that suggest it has an "atypical" CNS stimulant profile. We also highlight the current approved and off label uses of modafinil, including its beneficial effects as a treatment for sleep disorders, cognitive functions, and substance use disorders.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States.
| |
Collapse
|
6
|
Elsheikh SG, El-Mosallamy SS, Fayez YM, Hassan AME. Smart stability indicating spectrophotometric methods for determination of modafinil: the promising treatment for post-covid neurological syndrome. BMC Chem 2022; 16:79. [PMID: 36271411 PMCID: PMC9585712 DOI: 10.1186/s13065-022-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Modafinil (MDF) is one of the neurostimulants with a potential effect in the COVID-19 ICU ventilated patients and post-COVID neurological syndrome treatment. Four rapid, simple and cost-effective stability indicating spectrophotometric methods were used for estimation of MDF in the presence of its acidic degradation product, namely; ratio difference (RD), first derivative of the ratio spectra (1DD), mean centering (MCR) and ratio subtraction method (RS). These methods were validated according to ICH guidelines and all methods revealed a good linearity in concentration range of (5-30 µg/mL) in addition to a good accuracy and precision with mean percentage recovery of 99.97 ± 0.305 for (RD), 100.10 ± 0.560 for (1DD), 100.02 ± 0.483 for (MCR) & 99.18 ± 1.145 for (RS) method. Specificity of the proposed methods was assessed and MDF was determined in the presence of up to 80% of its acidic degradation product for RD, 1DD, MCR and RS methods. The proposed methods were successfully applied for the determination of MDF in bulk powder and its tablet dosage form with mean percentage recovery of 100.33 ± 0.915 for (RD), 100.62 ± 0.985 for (1DD), 99.70 ± 0.379 for (MCR) and 100.21 ± 0.313 for (RS) method. The results obtained were statistically compared with those of official HPLC method and showed no significant difference with relevance accuracy and precision.
Collapse
Affiliation(s)
- Soha G Elsheikh
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sally S El-Mosallamy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Yasmin M Fayez
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Abeer M E Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
7
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
8
|
Drugs Used in Narcolepsy and Other Hypersomnias. Sleep Med Clin 2022; 17:399-405. [DOI: 10.1016/j.jsmc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
10
|
Modeling and Targeting Neuroglial Interactions with Human Pluripotent Stem Cell Models. Int J Mol Sci 2022; 23:ijms23031684. [PMID: 35163606 PMCID: PMC8836094 DOI: 10.3390/ijms23031684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Generation of relevant and robust models for neurological disorders is of main importance for both target identification and drug discovery. The non-cell autonomous effects of glial cells on neurons have been described in a broad range of neurodegenerative and neurodevelopmental disorders, pointing to neuroglial interactions as novel alternative targets for therapeutics development. Interestingly, the recent breakthrough discovery of human induced pluripotent stem cells (hiPSCs) has opened a new road for studying neurological and neurodevelopmental disorders “in a dish”. Here, we provide an overview of the generation and modeling of both neuronal and glial cells from human iPSCs and a brief synthesis of recent work investigating neuroglial interactions using hiPSCs in a pathophysiological context.
Collapse
|
11
|
Ishikawa O, Hahn S, Greenberg H. Pharmacologic Therapy for Narcolepsy. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Narcolepsy is a lifelong disorder that adversely affects daytime function and quality of life. Major symptoms include excessive daytime sleepiness with irrepressible sleep attacks and cataplexy. Recent developments in the understanding of the pathobiology of narcolepsy, as well as the neuronal systems involved in the regulation of wakefulness have led to development of new pharmacologic approaches to therapy. In this paper, we review available pharmacologic treatments for narcolepsy as well as agents currently under investigation.
Collapse
|
12
|
da Costa A, Picoli C, Mouthon F, Charvériat M. Automated Assays to Identify Modulators of Transcription Factor EB Translocation and Autophagy. Assay Drug Dev Technol 2021; 20:67-74. [PMID: 34898267 DOI: 10.1089/adt.2021.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a process leading to the degradation of cellular material, in organelles called lysosomes, to supply energy or generate building blocks for the synthesis of new materials. Over the past decades, its role has been evidenced in several indications, notably in neurodegenerative disorders and orphan diseases called lysosomal storage disorders and its modulation is largely envisioned as a therapeutic avenue to alleviate the symptoms and reverse the clinical courses of these indications. Identifying new chemical classes and drugs is, hence, of huge importance. In this study, we developed automated assays to assess the potential efficacy of chemical compounds on different steps of autophagy, notably its induction through the localization of a largely involved transcription factor, transcription factor EB (TFEB). These assays were then used to screen a collection of 1,520 approved drugs. This study led to the identification of five candidate hits modulating autophagy and TFEB subcellular localization. Our results suggest the repurposing potential of already approved drugs in central nervous system disorders with lysosomal storage impairments.
Collapse
|
13
|
Letellier B, Kremer M, Becker LJ, Andry V, Goumon Y, Leboulleux Q, Hener P, Inquimbert P, Couqueberg N, Waltisperger E, Yalcin I, Mouthon F, Droguerre M, Charvériat M, Barrot M. Action of mefloquine/amitriptyline THN101 combination on neuropathic mechanical hypersensitivity in mice. Pain 2021; 162:2841-2853. [PMID: 33769363 PMCID: PMC8600545 DOI: 10.1097/j.pain.0000000000002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Tricyclic antidepressants that inhibit serotonin and noradrenaline reuptake, such as amitriptyline, are among the first-line treatments for neuropathic pain, which is caused by a lesion or disease affecting the somatosensory nervous system. These treatments are, however, partially efficient to alleviate neuropathic pain symptoms, and better treatments are still highly required. Interactions between neurons and glial cells participate in neuropathic pain processes, and importantly, connexins-transmembrane proteins involved in cell-cell communication-contribute to these interactions. In a neuropathic pain model in rats, mefloquine, a connexin inhibitor, has been shown to potentiate the antihyperalgesic effect of amitriptyline, a widely used antidepressant. In this study, we further investigated this improvement of amitriptyline action by mefloquine, using the cuff model of neuropathic pain in mice. We first observed that oral mefloquine co-treatment prolonged the effect of amitriptyline on mechanical hypersensitivity by 12 hours after administration. In addition, we showed that this potentiation was not due to pharmacokinetic interactions between the 2 drugs. Besides, lesional and pharmacological approaches showed that the prolonged effect was induced through noradrenergic descending pathways and the recruitment of α2 adrenoceptors. Another connexin blocker, carbenoxolone, also improved amitriptyline action. Additional in vitro studies suggested that mefloquine may also directly act on serotonin transporters and on adenosine A1 and A2A receptors, but drugs acting on these other targets failed to amplify amitriptyline action. Together, our data indicate that pharmacological blockade of connexins potentiates the therapeutic effect of amitriptyline in neuropathic pain.
Collapse
Affiliation(s)
- Baptiste Letellier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Theranexus, Lyon, France
| | - Mélanie Kremer
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Léa J. Becker
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Virginie Andry
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Yannick Goumon
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Quentin Leboulleux
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Hener
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Perrine Inquimbert
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nolwenn Couqueberg
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Elisabeth Waltisperger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | | | | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
14
|
Corvol JC, Azulay JP, Bosse B, Dauvilliers Y, Defebvre L, Klostermann F, Kovacs N, Maltête D, Ondo WG, Pahwa R, Rein W, Thobois S, Valis M, Videnovic A, Rascol O. THN 102 for Excessive Daytime Sleepiness Associated with Parkinson's Disease: A Phase 2a Trial. Mov Disord 2021; 37:410-415. [PMID: 34709684 DOI: 10.1002/mds.28840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Excessive daytime sleepiness (EDS) is a frequent and disabling symptom of Parkinson's disease (PD) without approved treatment. THN102 is a novel combination drug of modafinil and low-dose flecainide. OBJECTIVE The aim of this study is to evaluate the safety and efficacy of THN102 in PD patients with EDS. METHODS The method involved a randomized, double-blind, placebo-controlled, crossover trial testing two doses of THN102 (200 mg/d modafinil with 2 mg/d [200/2] or 18 mg/d flecainide [200/18]) versus placebo; 75 patients were exposed to treatment. The primary endpoint was safety. The primary efficacy outcome was the change in Epworth Sleepiness Scale (ESS) score. RESULTS Both doses of THN102 were well tolerated. ESS significantly improved with THN102 200/2 (least square means vs. placebo [95% confidence interval, CI]: -1.4 [-2.49; -0.31], P = 0.012) but did not change significantly with the 200/18 dosage. CONCLUSIONS THN102 was well tolerated and showed a signal of efficacy at the 200/2 dose, supporting further development for the treatment of EDS in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jean-Christophe Corvol
- Department of Neurology, Centre d'Investigation Clinique Neurosciences, NS-PARK/FCRIN Network, Sorbonne Université, Assistance Publique Hôpitaux de Paris, Paris Brain Institute-ICM, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Philippe Azulay
- Department of Neurology and Movement Disorders, La Timone Hospital, Assistance Publique-Hôpitaux de Marseille, NS-PARK/FCRIN Network, Marseille, France
| | | | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Luc Defebvre
- Department of Neurology and Movement Disorders, Lille University Medical Center, NS-PARK/FCRIN Network, Lille, France
| | - Fabian Klostermann
- Department of Neurology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Norbert Kovacs
- Department of Neurology, Medical School University of Pecs, Pecs, Hungary
| | - David Maltête
- Department of Neurology, Rouen University Hospital and University of Rouen, NS-PARK/FCRIN Network, Rouen, France
| | - William G Ondo
- Movement Disorders-Methodist Neurological Institute, Weill Cornel Medical School, Houston, Texas, USA
| | - Rajesh Pahwa
- Movement Disorders Division, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Stéphane Thobois
- Department of Neurology C, Pierre-Wertheimer Neurological Hospital, Hospices Civils de Lyon, NS-PARK/FCRIN Network, Univ Lyon, CNRS, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Martin Valis
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital, Hradec Kralove, Czechia
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Olivier Rascol
- Departments of Neurology and Clinical Pharmacology, Centre of Clinique Investigations, NS-Park/FCRIN Network, Centre of Excellence for Neurodegenerative Disorders (COEN) of Toulouse, CHU de Toulouse, Toulouse 3 University, NS-PARK/FCRIN Network, Toulouse, France
| | | |
Collapse
|
15
|
Charvériat M, Darmoni SJ, Lafon V, Moore N, Bordet R, Veys J, Mouthon F. Use of real-world evidence in translational pharmacology research. Fundam Clin Pharmacol 2021; 36:230-236. [PMID: 34676579 DOI: 10.1111/fcp.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
Real-world evidence (RWE) refers to observational data gathered outside the formalism of randomized controlled trials, in real life situations, on marketed drugs. While clinical trials are the gold standards to demonstrate the efficacy and tolerability of a medicinal product, the generalizability of their results to actual use in real-life is limited by the biases induced by the very nature of clinical trials; indeed, the patients included in the trials may differ from actual users because of their concomitant diseases or treatments, or other factors excluding them from the trials. Clinical researchers and pharmaceutical industries have hence become increasingly interested in expanding and integrating RWE into clinical research, by capitalizing on the exponential growth in access to data from electronic health records, claims databases, electronic devices, software or mobile applications, registries embedded in clinical practice and social media. Meanwhile, applications of RWE may also be used for drug discovery and repurposing, for clinical developments and post-marketing studies. The aim of this review is to provide our opinion regarding the use of RWE in translational research, including non-clinical and clinical pharmacology research, at the different step of drugs development use.
Collapse
Affiliation(s)
| | - Stephan J Darmoni
- Department of BioMedical Informatics, Rouen University Hospital & LIMICS U1142 INSERM, Sorbonne University, Paris, France
| | | | | | - Régis Bordet
- INSERM, CHU Lille, University of Lille, Lille, France
| | | | | | | |
Collapse
|
16
|
Hagenow S, Affini A, Pioli EY, Hinz S, Zhao Y, Porras G, Namasivayam V, Müller CE, Lin JS, Bezard E, Stark H. Adenosine A 2AR/A 1R Antagonists Enabling Additional H 3R Antagonism for the Treatment of Parkinson's Disease. J Med Chem 2021; 64:8246-8262. [PMID: 34107215 DOI: 10.1021/acs.jmedchem.0c00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.
Collapse
Affiliation(s)
- Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Anna Affini
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Elsa Y Pioli
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Institute of Pharmacology and Toxicology, School of Medicine, University of Witten/Herdecke, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Alfred-Herrhausen-Street 50, 58448 Witten, Germany
| | - Yan Zhao
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | | | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jian-Sheng Lin
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Erwan Bezard
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| |
Collapse
|
17
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
18
|
Katturajan R, Evan Prince S. A role of connexin 43 on the drug-induced liver, kidney, and gastrointestinal tract toxicity with associated signaling pathways. Life Sci 2021; 280:119629. [PMID: 34004253 DOI: 10.1016/j.lfs.2021.119629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022]
Abstract
Drug-induced organ toxicity/injury, especially in the liver, kidney, and gastrointestinal tract, is a systematic disorder that causes oxidative stress formation and inflammation resulting in cell death and organ failure. Current therapies target reactive oxygen species (ROS) scavenging and inhibit inflammatory factors in organ injury to restore the functions and temporary relief. Organ cell function and tissue homeostasis are maintained through gap junction intercellular communication, regulating connexin hemichannels. Mis-regulation of such connexin, especially connexin (Cx) 43, affects a comprehensive process, including cell differentiation, inflammation, and cell death. Aim to describe knowledge about the importance of connexin role and insights therapeutic targeting. Cx43 misregulation has been implicated in recent decades in various diseases. Moreover, in recent years there is increasing evidence that Cx43 is involved in the toxicity process, including hepatic, renal, and gastrointestinal disorders. Cx43 has the potential to initiate the immune system to cause cell death, which has been activated in the acceleration of apoptosis, necroptosis, and autophagy signaling pathway. So far, therapies targeting Cx43 have been under inspection and are subjected to clinical trial phases. This review elucidates the role of Cx43 in drug-induced vital organ injury, and recent reports compromise its function in the major signaling pathways.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Charvériat M, Lafon V, Mouthon F, Zimmer L. Innovative approaches in CNS drug discovery. Therapie 2021; 76:101-109. [DOI: 10.1016/j.therap.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
|
20
|
Charvériat M, Mouthon F, Rein W, Verkhratsky A. Connexins as therapeutic targets in neurological and neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166098. [PMID: 33545299 DOI: 10.1016/j.bbadis.2021.166098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
Astrocytes represent the reticular part of the central nervous system; gap junctions formed by connexins Cx43, Cx30- and Cx26 provide for homocellular astrocyte-astrocyte coupling, whereas connexins Cx30, Cx32, Cx43, and Cx47 connect astrocytes and oligodendrocytes. Astroglial networks are anatomically and functionally segregated being homologous to neuronal ensembles. Connexons, gap junctions and hemichannels (unpaired connexons) are affected in various neuropathologies from neuropsychiatric to neurodegenerative diseases. Manipulation of astrocytic connexins modulates the size and outreach of astroglial syncytia thus affecting astroglial homeostatic support. Modulation of astrocytic connexin significantly modifies pharmacological profile of many CNS drugs, which represents an innovative therapeutic approach for CNS disorders; this approach is now actively tested in pre-clinical and clinical studies. Wide combination of connexin modulators with CNS drugs open new promising perspectives for fundamental studies and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - A Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
21
|
Charvériat M, Guiard BP. Serotonergic neurons in the treatment of mood disorders: The dialogue with astrocytes. PROGRESS IN BRAIN RESEARCH 2021; 259:197-228. [PMID: 33541677 DOI: 10.1016/bs.pbr.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes were traditionally regarded as cells important to neuronal activity, providing both metabolic and structural supports. Recent evidence suggests that they may also play a crucial role in the control of higher brain functions. In keeping with this hypothesis, it is now well accepted that astrocytes contribute to stress but also react to antidepressant drugs as they express serotonergic transporters and receptors. However, the downstream mechanisms leading to the fine-tuned regulation of mood are still unknown. This chapter pays attention to the role of astrocytes in the regulation of emotional behavior and related serotonergic neurotransmission. In particular, it gives a current state of the clinical and preclinical evidence showing that astrocytes respond to environmental conditions and antidepressant drugs through the release of gliotransmitters and neurotrophic factors which in turn, influence serotonergic tone in discrete brain areas. This state-of-the-art review aims at demonstrating the remarkable potential for novel therapeutic antidepressant strategies targeting these glial cells.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
22
|
Soleilhac E, Comte M, da Costa A, Barette C, Picoli C, Mortier M, Aubry L, Mouthon F, Fauvarque MO, Charvériat M. Quantitative Automated Assays in Living Cells to Screen for Inhibitors of Hemichannel Function. SLAS DISCOVERY 2020; 26:420-427. [PMID: 32914684 DOI: 10.1177/2472555220954388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In vertebrates, intercellular communication is largely mediated by connexins (Cx), a family of structurally related transmembrane proteins that assemble to form hemichannels (HCs) at the plasma membrane. HCs are upregulated in different brain disorders and represent innovative therapeutic targets. Identifying modulators of Cx-based HCs is of great interest to better understand their function and define new treatments. In this study, we developed automated versions of two different cell-based assays to identify new pharmacological modulators of Cx43-HCs. As HCs remain mostly closed under physiological conditions in cell culture, depletion of extracellular Ca2+ was used to increase the probability of opening of HCs. The first assay follows the incorporation of a fluorescent dye, Yo-Pro, by real-time imaging, while the second is based on the quenching of a fluorescent protein, YFPQL, by iodide after iodide uptake. These assays were then used to screen a collection of 2242 approved drugs and compounds under development. This study led to the identification of 11 candidate hits blocking Cx43-HC, active in the two assays, with 5 drugs active on HC but not on gap junction (GJ) activities. To our knowledge, this is the first screening on HC activity and our results suggest the potential of a new use of already approved drugs in central nervous system disorders with HC impairments.
Collapse
Affiliation(s)
| | - Marjorie Comte
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | - Caroline Barette
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | - Magda Mortier
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | - Laurence Aubry
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | | | | |
Collapse
|
23
|
XU Q, LOU G, WANG T, ZHANG L. [Advances in treatment of narcolepsy]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:419-424. [PMID: 32985153 PMCID: PMC8800692 DOI: 10.3785/j.issn.1008-9292.2020.08.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Narcolepsy is the most common cause of excessive daytime sleepiness (EDS) following obstructive sleep apnea. Its treatment aims to reduce EDS and cataplexy, improve nighttime sleep disturbance, sleep paralysis and sleep-related hallucinations. Pitolisant (a histamine H3 receptor antagonist) and solriamfetol (a norepinephrine reuptake inhibitor) have recently been approved effective for narcolepsy in the United States and the European Union. Pitolisant has proved to be effective for both EDS and cataplexy. Besides being effective on EDS, solriamfetol seems to have advantages in abuse potential and withdrawal syndrome. As potential treatments for EDS and cataplexy associated with narcolepsy, several new drugs are being developed and tested. These new drugs include new hydroxybutyrate preparations (controlled release sodium hydroxybutyrate FT218, low sodium hydroxybutyrate JZP-258), selective norepinephrine reuptake inhibitor (AXS-12), and modafinil combined with astroglial junction protein inhibitor (THN102). This paper reviews the recently approved drugs and potential treatments for narcolepsy.
Collapse
Affiliation(s)
| | | | | | - Lisan ZHANG
- 张力三(1977-), 男, 博士, 主任医师, 硕士生导师, 主要从事神经病学和睡眠医学研究; E-mail:
;
https://orcid.org/0000-0002-3774-9926
| |
Collapse
|
24
|
Vidal B, Droguerre M, Valdebenito M, Zimmer L, Hamon M, Mouthon F, Charvériat M. Pharmaco-fUS for Characterizing Drugs for Alzheimer's Disease - The Case of THN201, a Drug Combination of Donepezil Plus Mefloquine. Front Neurosci 2020; 14:835. [PMID: 32903470 PMCID: PMC7437134 DOI: 10.3389/fnins.2020.00835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 01/29/2023] Open
Abstract
Donepezil is a potent acetylcholinesterase inhibitor, largely used worldwide to alleviate cognitive symptoms in Alzheimer’s disease (AD). Beyond the widely described neuronal impact of donepezil, it was recently shown that targeting connexins, the proteins involved in astrocyte network organization, potentiates donepezil efficacy profile using behavioral tests in AD rodent models. We herein present data demonstrating the potential of functional ultrasound imaging to monitor cerebral activity changes after pharmacological challenge in mice. As an example, we showed that although administration of donepezil or mefloquine alone at low dose had only very limited effects on the signal compared to the baseline, their combination produced marked hemodynamic effects in the hippocampus, in line with previously published behavioral data demonstrating a synergic interaction between both drugs. Thus, the present study provides new perspectives, (i) through the use of pharmaco-fUS, a new non-clinical imaging modality, to move forward drug discovery in AD and (ii) by the profiling of two drug treatments on brain dynamics, one used in AD: donepezil, and the other in development: donepezil combined with mefloquine (THN201) as a modulator of astrocyte network.
Collapse
Affiliation(s)
- Benjamin Vidal
- Theranexus, Lyon, France.,Lyon Neuroscience Research Center, Université de Lyon, INSERM, CNRS, Bron, France
| | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, INSERM, CNRS, Bron, France.,CERMEP-Imagerie du Vivant, Bron, France.,Hospices Civils de Lyon, Lyon, France
| | | | | | | |
Collapse
|
25
|
Modafinil potentiates cocaine self-administration by a dopamine-independent mechanism: possible involvement of gap junctions. Neuropsychopharmacology 2020; 45:1518-1526. [PMID: 32340023 PMCID: PMC7360549 DOI: 10.1038/s41386-020-0680-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Modafinil and methylphenidate are medications that inhibit the neuronal reuptake of dopamine, a mechanism shared with cocaine. Their use as "smart drugs" by healthy subjects poses health concerns and requires investigation. We show that methylphenidate, but not modafinil, maintained intravenous self-administration in Sprague-Dawley rats similar to cocaine. Both modafinil and methylphenidate pretreatments potentiated cocaine self-administration. Cocaine, at self-administered doses, stimulated mesolimbic dopamine levels. This effect was potentiated by methylphenidate, but not by modafinil pretreatments, indicating dopamine-dependent actions for methylphenidate, but not modafinil. Modafinil is known to facilitate electrotonic neuronal coupling by actions on gap junctions. Carbenoxolone, a gap junction inhibitor, antagonized modafinil, but not methylphenidate potentiation of cocaine self-administration. Our results indicate that modafinil shares mechanisms with cocaine and methylphenidate but has a unique pharmacological profile that includes facilitation of electrotonic coupling and lower abuse liability, which may be exploited in future therapeutic drug design for cocaine use disorder.
Collapse
|
26
|
Zager A. Modulating the immune response with the wake-promoting drug modafinil: A potential therapeutic approach for inflammatory disorders. Brain Behav Immun 2020; 88:878-886. [PMID: 32311496 DOI: 10.1016/j.bbi.2020.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
Modafinil is a psychostimulant drug approved by the FDA primarily for the treatment of sleep disorders such as narcolepsy, excessive daytime sleepiness and sleep apnea. Several documented but not yet approved uses for modafinil have been described over the last 30 years, including alleviating fatigue in neurological and neurodegenerative disorders. Recent evidence has suggested that modafinil may have an immunomodulatory effect. Here, we review the different effects of modafinil treatment in animal models of brain inflammation and peripheral immune function. We conclude that there is unequivocal evidence of an anti-inflammatory effect of modafinil in experimental animal models of brain inflammation and neurodegenerative disorders, including systemic inflammation and methamphetamine-induced neuroinflammation, Parkinson's disease, brain ischemia, and multiple sclerosis. Modafinil acts on resident glial cells and infiltrating immune cells, negatively affecting both innate and adaptive immune responses in the brain. We also review the outcomes of modafinil treatment on peripheral immune function. The results of studies on this subject are still controversial and far from conclusive, but point to a new avenue of research in relation to peripheral inflammation. The data reviewed here raise the possibility of modafinil being used as adjuvant treatment for neurological disorders in which inflammation plays an important role.
Collapse
Affiliation(s)
- Adriano Zager
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
27
|
|
28
|
Picoli C, Soleilhac E, Journet A, Barette C, Comte M, Giaume C, Mouthon F, Fauvarque MO, Charvériat M. High-Content Screening Identifies New Inhibitors of Connexin 43 Gap Junctions. Assay Drug Dev Technol 2020; 17:240-248. [PMID: 31314551 DOI: 10.1089/adt.2019.927] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gap junctions (GJs) are dynamic structures composed of hexamers of connexins (Cxs), a class of transmembrane proteins enabling channel-mediated direct intercellular communication through cell-cell diffusion of ions and small metabolites. In defined conditions, Cxs also work as hemichannels allowing exchanges between the cytoplasm and the extracellular medium. The most common GJ channel is formed by connexin 43 (Cx43) and plays an important role in physiological and pathological processes in excitable tissues, such as heart and brain. Hence, Cx43 has been largely envisioned as a new therapeutic target in cancer, neurological and psychiatric indications, or cardiovascular diseases. Identifying new pharmacological inhibitors of Cx43 GJs with different mechanisms of action and from diverse chemical classes is thus highly challenging. We present here a high-content screening method, based on the evaluation of fluorescent dye transfer rates between adjacent cells to monitor the function of GJs in U251 glioblastoma cells expressing high levels of Cx43. This assay was validated using well-described pharmacological GJ inhibitors such as mefloquine. The method was adapted to screen a library of 1,280 Food and Drug Administration- and European Medicines Agency-approved drugs that led to the selection of both known and new inhibitors of GJ channel function. We further focused on a specific class of microtubule-targeting agents, confirming that a proper tubulin network is required for functional Cx43 GJ channels.
Collapse
Affiliation(s)
| | - Emmanuelle Soleilhac
- 2Univ. Grenoble Alpes, CEA, Inserm, IRIG BGE-Genetics and Chemogenomics, Grenoble, France
| | - Agnès Journet
- 2Univ. Grenoble Alpes, CEA, Inserm, IRIG BGE-Genetics and Chemogenomics, Grenoble, France
| | - Caroline Barette
- 2Univ. Grenoble Alpes, CEA, Inserm, IRIG BGE-Genetics and Chemogenomics, Grenoble, France
| | - Marjorie Comte
- 2Univ. Grenoble Alpes, CEA, Inserm, IRIG BGE-Genetics and Chemogenomics, Grenoble, France
| | | | | | - Marie-Odile Fauvarque
- 2Univ. Grenoble Alpes, CEA, Inserm, IRIG BGE-Genetics and Chemogenomics, Grenoble, France
| | | |
Collapse
|
29
|
Droguerre M, Duchêne A, Picoli C, Portal B, Lejards C, Guiard BP, Meunier J, Villard V, Déglon N, Hamon M, Mouthon F, Charvériat M. Efficacy of THN201, a Combination of Donepezil and Mefloquine, to Reverse Neurocognitive Deficits in Alzheimer's Disease. Front Neurosci 2020; 14:563. [PMID: 32612499 PMCID: PMC7309601 DOI: 10.3389/fnins.2020.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023] Open
Abstract
Donepezil (DPZ) is an acetylcholinesterase inhibitor used in Alzheimer’s disease to restore cognitive functions but is endowed with limited efficacy. Recent studies pointed out the implication of astroglial networks in cognitive processes, notably via astrocyte connexins (Cxs), proteins involved in gap junction intercellular communications. Hence, we investigated the impact on cognition of pharmacological or genetic modulations of those astrocyte Cxs during DPZ challenge in two rodent models of Alzheimer’s disease–like memory deficits. We demonstrated that the Cx modulator mefloquine (MEF) significantly enhanced the procognitive effect of DPZ in both models. In parallel, we determined that MEF potentiated DPZ-induced release of acetylcholine in hippocampus. Finally, local genetic silencing of astrocyte Cxs in the hippocampus was also found to enhance the procognitive effect of DPZ, pointing out the importance of Cx-dependent astrocyte networks in memory processes.
Collapse
Affiliation(s)
| | | | | | - Benjamin Portal
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | | | | | - Nicole Déglon
- Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center (CRN), University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neuroscience (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | | |
Collapse
|
30
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
32
|
Abstract
Narcolepsy is a chronic, disabling neurologic disorder characterised by excessive daytime sleepiness (EDS) and, in up to 60% of patients, cataplexy. Treatments for narcolepsy are aimed at improving wakefulness (e.g. modafinil, armodafinil, stimulants), reducing cataplexy attacks (e.g. sodium oxybate, venlafaxine), and treating the symptoms of disturbed nocturnal sleep, sleep paralysis and sleep-related hallucinations (e.g. sodium oxybate). In general, medications that increase the release, or inhibit the reuptake, of norepinephrine or dopamine have wake-promoting effects and are useful in managing EDS, whereas medications that inhibit serotonin or norepinephrine reuptake have anticataplectic effects. Modulation of γ-aminobutyric acid B (GABAB) receptors or histamine H3 receptors (H3Rs) has effects on both EDS and cataplexy. Pitolisant, an H3R antagonist, and solriamfetol, a dopamine and norepinephrine reuptake inhibitor, are the most recently approved treatments for EDS associated with narcolepsy in the European Union (pitolisant) and the USA (pitolisant and solriamfetol). Several new agents are being developed and tested as potential treatments for EDS and cataplexy associated with narcolepsy; these agents include novel oxybate formulations (once-nightly [FT218]; low sodium [JZP-258]), a selective norepinephrine reuptake inhibitor (AXS-12), and a product combining modafinil and an astroglial connexin inhibitor (THN102). This review summarises the mechanisms of action, pharmacokinetics, efficacy, and safety/tolerability of recently approved and emerging treatments for narcolepsy.
Collapse
Affiliation(s)
- Michael J Thorpy
- Sleep-Wake Disorders Center, Montefiore Medical Center, 111 East 210th Street, Bronx, NY, 10467-2509, USA.
| |
Collapse
|
33
|
Droguerre M, Tsurugizawa T, Duchêne A, Portal B, Guiard BP, Déglon N, Rouach N, Hamon M, Mouthon F, Ciobanu L, Charvériat M. A New Tool for In Vivo Study of Astrocyte Connexin 43 in Brain. Sci Rep 2019; 9:18292. [PMID: 31797899 PMCID: PMC6892890 DOI: 10.1038/s41598-019-54858-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Astrocytes are glial cells organized in dynamic and structured networks in the brain. These plastic networks, involving key proteins such as connexin 43 (Cx43), are engaged in fine neuronal tuning and have recently been considered as emerging therapeutic targets in central nervous system disorders. We developed and validated a new application of the manganese-enhanced magnetic resonance imaging (MEMRI) technique allowing in vivo investigations of astrocyte-neuron interactions through quantification of brain Cx43 functional activity. The proof of concept has been achieved by quantification of MEMRI signals in brain after either local astrocyte-specific Cx43 knockdown with shRNA or systemic administration of Cx43 blockers. Unilateral hippocampal Cx43 genetical silencing was associated with an ipsilateral local increase of MEMRI signal. Furthermore, Cx43 blockers also enhanced MEMRI signal responses in hippocampus. Altogether, these data reveal the MEMRI technique as a tool for quantitative imaging of in vivo Cx43-dependent function in astrocytes under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Benjamin Portal
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31330, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31330, Toulouse, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and NeuroModulation, Neuroscience research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neuroscience (DNC), Lausanne University Hospital (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Nathalie Rouach
- Laboratory of Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France
| | - Michel Hamon
- Theranexus, 60 Avenue Rockefeller, 69008, Lyon, France
| | | | | | | |
Collapse
|
34
|
Update on the Treatment of Idiopathic Hypersomnia. CURRENT SLEEP MEDICINE REPORTS 2019. [DOI: 10.1007/s40675-019-00158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose of Review
Idiopathic hypersomnia is an incapacitating disorder with a profound impact on daytime performance and quality of life. The most commonly used treatment modalities are lifestyle advice and pharmacological therapy. We present an update on the evidence concerning treatment options for idiopathic hypersomnia.
Recent Findings
Evidence for non-pharmacological interventions is lacking; improvement in symptoms on introducing these interventions is often less pronounced than in narcolepsy. Additional pharmacological treatment is therefore usually initiated. The few treatment studies that have been performed are hampered by small sample sizes and the use of variable and often insufficiently validated outcome parameters for the whole spectrum of idiopathic hypersomnia symptoms.
Conclusion
Evidence on treatment is scarce. Since the efficacy of modafinil is consistently described and there is much experience with this substance, it is reasonable to start with modafinil as a first choice treatment. Methylphenidate and dexamphetamine are good alternatives. In the future, newer drugs such as sodium oxybate, pitolisant, and solriamfetol might be authorized for use in idiopathic hypersomnia.
Collapse
|
35
|
Barateau L, Dauvilliers Y. Recent advances in treatment for narcolepsy. Ther Adv Neurol Disord 2019; 12:1756286419875622. [PMID: 31632459 PMCID: PMC6767718 DOI: 10.1177/1756286419875622] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a chronic orphan disorder, caused by the selective and irreversible loss of hypocretin/orexin (ORX) neurons, by a probable autoimmune process. Little is known about NT2 etiology and prevalence, sharing with NT1 excessive daytime sleepiness (EDS) and dysregulation of rapid eye movement (REM) sleep, but without cataplexy and loss of ORX neurons. Despite major advances in our understanding of the neurobiological basis of NT1, management remains nowadays only symptomatic. The main and most disabling symptom, EDS, is managed with psychostimulants, as modafinil/armodafinil, methylphenidate, or amphetamines as a third-line therapy. Narcolepsy is an active area for drug development, and new wake-promoting agents have been developed over the past years. Pitolisant, a selective histamine H3 receptor inverse agonist, has been recently approved to treat patients with NT1 and NT2. Solriamfetol, a phenylalanine derivative with dopaminergic and noradrenergic activity will be soon a new therapeutic option to treat EDS in NT1 and NT2. Sodium oxybate, used for decades in adult patients with narcolepsy, was recently shown to be effective and safe in childhood narcolepsy. The discovery of ORX deficiency in NT1 opened new therapeutic options oriented towards ORX-based therapies, especially nonpeptide ORX receptor agonists that are currently under development. In addition, immune-based therapies administered as early as possible after disease onset could theoretically slow down or stop the destruction of ORX neurons in some selected patients. Further well-designed controlled trials are required to determine if they could really impact on the natural history of the disease. Given the different clinical, biological and genetic profiles, narcolepsy may provide a nice example for developing personalized medicine in orphan diseases, that could ultimately aid in similar research and clinical efforts for other conditions.
Collapse
Affiliation(s)
- Lucie Barateau
- Service de Neurologie, Gui-de-Chauliac Hospital,
Montpellier, France; Sleep-Wake Disorders Center, Gui-de-Chauliac Hospital,
CHU Montpellier, France; National Reference Network for Narcolepsy,
Montpellier, France; Inserm U1061, Montpellier, France
| | - Yves Dauvilliers
- Service de Neurologie, Gui-de-Chauliac Hospital,
CHU Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 5,
France
| |
Collapse
|
36
|
Sauvet F, Erblang M, Gomez-Merino D, Rabat A, Guillard M, Dubourdieu D, Lefloch H, Drogou C, Van Beers P, Bougard C, Bourrrilhon C, Arnal P, Rein W, Mouthon F, Brunner-Ferber F, Leger D, Dauvilliers Y, Chennaoui M, Charvériat M. Efficacy of THN102 (a combination of modafinil and flecainide) on vigilance and cognition during 40-hour total sleep deprivation in healthy subjects: Glial connexins as a therapeutic target. Br J Clin Pharmacol 2019; 85:2623-2633. [PMID: 31419329 DOI: 10.1111/bcp.14098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Fabien Sauvet
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | - Mégane Erblang
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | - Danielle Gomez-Merino
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | - Arnaud Rabat
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | - Mathias Guillard
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | | | - Hervé Lefloch
- Hôpital d'instruction des armées Percy, Clamart, France
| | - Catherine Drogou
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | - Pascal Van Beers
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | - Clément Bougard
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | - Cyprien Bourrrilhon
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France
| | - Pierrick Arnal
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | | | | | | | - Damien Leger
- EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France.,Sleep Center, Hotel Dieu Hospital, APHP, Paris Descartes University, Paris, France
| | - Yves Dauvilliers
- National Reference Centre for Narcolepsy, Sleep Unit, CHU Montpellier, INSERM U1061, France
| | - Mounir Chennaoui
- Unité Fatigue et Vigilance, Institut de recherche biomédicale des armées (IRBA), Brétigny sur Orge, France.,EA 7330 VIFASOM, Hôtel Dieu, Université de Paris, Paris, France
| | | |
Collapse
|
37
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
38
|
Takahashi T, Noriaki S, Matsumura M, Li C, Takahashi K, Nishino S. Advances in pharmaceutical treatment options for narcolepsy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1521267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tatsunori Takahashi
- Stanford University Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sakai Noriaki
- Stanford University Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mari Matsumura
- Stanford University Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chenyu Li
- Stanford University Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kayo Takahashi
- Stanford University Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seiji Nishino
- Stanford University Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
39
|
Abstract
Narcolepsy and idiopathic hypersomnia cannot be cured; all available treatments are symptomatic. It is of paramount importance for patients, and their relatives, to be informed about the consequences of these chronic diseases and to become ready to accept the consequences of the diagnosis before starting any treatment. This facilitates the implementation of behavioral modifications and the proper use of medication to decrease the disease burden. A supportive social environment (eg, family members, friends, employer, colleagues, and patient support groups) is instrumental. Current treatment options are discussed with a focus on pharmacologic treatment, including future directions.
Collapse
Affiliation(s)
- Gert Jan Lammers
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 AA, The Netherlands; Sleep-Wake Centers of SEIN, Achterweg 5, 2103 SW Heemstede, The Netherlands.
| |
Collapse
|
40
|
Lin JS, Roussel B, Gaspar A, Zhao Y, Hou Y, Schmidt M, Jouvet A, Jouvet M. The unfinished journey with modafinil and discovery of a novel population of modafinil-immunoreactive neurons. Sleep Med 2018; 49:40-52. [DOI: 10.1016/j.sleep.2018.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Vodovar D, Duchêne A, Wimberley C, Leroy C, Pottier G, Dauvilliers Y, Giaume C, Lin JS, Mouthon F, Tournier N, Charvériat M. Cortico-Amygdala-Striatal Activation by Modafinil/Flecainide Combination. Int J Neuropsychopharmacol 2018; 21:687-696. [PMID: 29635319 PMCID: PMC6031015 DOI: 10.1093/ijnp/pyy027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Modafinil, a nonamphetaminic wake-promoting compound, is prescribed as first line therapy in narcolepsy, an invalidating disorder characterized by excessive daytime sleepiness and cataplexy. Although its mode of action remains incompletely known, recent studies indicated that modafinil modulates astroglial connexin-based gap junctional communication as administration of a low dose of flecainide, an astroglial connexin inhibitor, enhanced the wake-promoting and procognitive activity of modafinil in rodents and healthy volunteers. The aim of this study is to investigate changes in glucose cerebral metabolism in rodents, induced by the combination of modafinil+flecainide low dose (called THN102). Methods The impact of THN102 on brain glucose metabolism was noninvasively investigated using 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography imaging in Sprague-Dawley male rats. Animals were injected with vehicle, flecainide, modafinil, or THN102 and further injected with 18F-2-fluoro-2-deoxy-D-glucose followed by 60-minute Positron Emission Tomography acquisition. 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography images were coregistered to a rat brain template and normalized from the total brain Positron Emission Tomography signal. Voxel-to-voxel analysis was performed using SPM8 software. Comparison of brain glucose metabolism between groups was then performed. Results THN102 significantly increased regional brain glucose metabolism as it resulted in large clusters of 18F-2-fluoro-2-deoxy-D-glucose uptake localized in the cortex, striatum, and amygdala compared with control or drugs administered alone. These regions, highly involved in the regulation of sleep-wake cycle, emotions, and cognitive functions were hence quantitatively modulated by THN102. Conclusion Data presented here provide the first evidence of a regional brain activation induced by THN102, currently being tested in a phase II clinical trial in narcoleptic patients.
Collapse
Affiliation(s)
- Dominique Vodovar
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | | | - Catriona Wimberley
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | - Claire Leroy
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | - Géraldine Pottier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | - Yves Dauvilliers
- National Reference Centre for Narcolepsy, CHU Montpellier, INSERM, France
| | - Christian Giaume
- Collège de France, Centre for Interdisciplinary Research in Biology, Paris, France
| | - Jian-Sheng Lin
- Laboratory WAKING, CRNL-INSERM U1028-CNRS UMR 5292-UCBL, Lyon, France
| | | | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | | |
Collapse
|
42
|
Schwartz MD, Palmerston JB, Lee DL, Hoener MC, Kilduff TS. Deletion of Trace Amine-Associated Receptor 1 Attenuates Behavioral Responses to Caffeine. Front Pharmacol 2018; 9:35. [PMID: 29456505 PMCID: PMC5801540 DOI: 10.3389/fphar.2018.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 12/18/2022] Open
Abstract
Trace amines (TAs), endogenous amino acid metabolites that are structurally similar to the biogenic amines, are endogenous ligands for trace amine-associated receptor 1 (TAAR1), a GPCR that modulates dopaminergic, serotonergic, and glutamatergic activity. Selective TAAR1 full and partial agonists exhibit similar pro-cognitive, antidepressant- and antipsychotic-like properties in rodents and non-human primates, suggesting TAAR1 as a novel target for the treatment of neurological and psychiatric disorders. We previously reported that TAAR1 partial agonists are wake-promoting in rats and mice, and that TAAR1 knockout (KO) and overexpressing mice exhibit altered sleep-wake and EEG spectral composition. Here, we report that locomotor and EEG spectral responses to the psychostimulants modafinil and caffeine are attenuated in TAAR1 KO mice. TAAR1 KO mice and WT littermates were instrumented for EEG and EMG recording and implanted with telemetry transmitters for monitoring locomotor activity (LMA) and core body temperature (Tb). Following recovery, mice were administered modafinil (25, 50, 100 mg/kg), caffeine (2.5, 10, 20 mg/kg) or vehicle p.o. at ZT6 in balanced order. In WT mice, both modafinil and caffeine dose-dependently increased LMA for up to 6 h following dosing, whereas only the highest dose of each drug increased LMA in KO mice, and did so for less time after dosing. This effect was particularly pronounced following caffeine, such that total LMA response was significantly attenuated in KO mice compared to WT at all doses of caffeine and did not differ from Vehicle treatment. Tb increased comparably in both genotypes in a dose-dependent manner. TAAR1 deletion was associated with reduced wake consolidation following both drugs, but total time in wakefulness did not differ between KO and WT mice. Furthermore, gamma band EEG activity following both modafinil and caffeine treatment was attenuated in TAAR1 KO compared to WT mice. Our results show that TAAR1 is a critical component of the behavioral and cortical arousal associated with two widely used psychostimulants with very different mechanisms of action. Together with our previous findings, these data suggest that TAAR1 is a previously unrecognized component of an endogenous wake-modulating system.
Collapse
Affiliation(s)
- Michael D Schwartz
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Jeremiah B Palmerston
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Diana L Lee
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Marius C Hoener
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| |
Collapse
|
43
|
Evangelista E, Lopez R, Dauvilliers Y. Update on treatment for idiopathic hypersomnia. Expert Opin Investig Drugs 2018; 27:187-192. [DOI: 10.1080/13543784.2018.1417385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elisa Evangelista
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France
- Inserm U1061, Montpellier, France
| | - Régis Lopez
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France
- Inserm U1061, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France
- Inserm U1061, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
44
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
45
|
de Biase S, Nilo A, Gigli GL, Valente M. Investigational therapies for the treatment of narcolepsy. Expert Opin Investig Drugs 2017; 26:953-963. [PMID: 28726523 DOI: 10.1080/13543784.2017.1356819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Narcolepsy is a chronic sleep disorder characterized by a pentad of excessive daytime sleepiness (EDS), cataplexy, sleep paralysis, hypnagogic/hypnopompic hallucinations, and disturbed nocturnal sleep. While non-pharmacological treatments are sometimes helpful, more than 90% of narcoleptic patients require a pharmacological treatment. Areas covered: The present review is based on an extensive Internet and PubMed search from 1994 to 2017. It is focused on drugs currently in development for the treatment of narcolepsy. Expert opinion: Currently there is no cure for narcolepsy, with treatment focusing on symptoms control. However, these symptomatic treatments are often unsatisfactory. The research is leading to a better understanding of narcolepsy and its symptoms. New classes of compounds with possible applications in the development of novel stimulant/anticataplectic medications are described. H3 receptor antagonists represent a new therapeutic option for EDS in narcolepsy. JZP-110, with its distinct mechanism of action, would be a new therapeutic option for the treatment of EDS in the coming years. In the future, hypocretin-based therapies and immune-based therapies, could modify the clinical course of the disease. However, more information would be necessary to completely understand the autoimmune process and also how this process can be altered for therapeutic benefits.
Collapse
Affiliation(s)
- Stefano de Biase
- a Neurology Unit, Department of Experimental and Clinical Medical Sciences , University of Udine Medical School , Udine , Italy
| | - Annacarmen Nilo
- a Neurology Unit, Department of Experimental and Clinical Medical Sciences , University of Udine Medical School , Udine , Italy
| | - Gian Luigi Gigli
- a Neurology Unit, Department of Experimental and Clinical Medical Sciences , University of Udine Medical School , Udine , Italy.,b Department of Neurosciences , "S. Maria della Misericordia" University Hospital Udine , Udine , Italy
| | - Mariarosaria Valente
- a Neurology Unit, Department of Experimental and Clinical Medical Sciences , University of Udine Medical School , Udine , Italy.,b Department of Neurosciences , "S. Maria della Misericordia" University Hospital Udine , Udine , Italy
| |
Collapse
|
46
|
Charvériat M, Naus CC, Leybaert L, Sáez JC, Giaume C. Connexin-Dependent Neuroglial Networking as a New Therapeutic Target. Front Cell Neurosci 2017; 11:174. [PMID: 28694772 PMCID: PMC5483454 DOI: 10.3389/fncel.2017.00174] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the “tripartite synapse” with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as new therapeutic targets in neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Science Institute, University of British ColumbiaVancouver, BC, Canada
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto MilenioValparaíso, Chile
| | - Christian Giaume
- Center of Interdisciplinary Research in Biology, Collège de FranceParis, France
| |
Collapse
|
47
|
Abstract
Narcolepsy is a life-long, underrecognized sleep disorder that affects 0.02%-0.18% of the US and Western European populations. Genetic predisposition is suspected because of narcolepsy's strong association with HLA DQB1*06-02, and genome-wide association studies have identified polymorphisms in T-cell receptor loci. Narcolepsy pathophysiology is linked to loss of signaling by hypocretin-producing neurons; an autoimmune etiology possibly triggered by some environmental agent may precipitate hypocretin neuronal loss. Current treatment modalities alleviate the main symptoms of excessive daytime somnolence (EDS) and cataplexy and, to a lesser extent, reduce nocturnal sleep disruption, hypnagogic hallucinations, and sleep paralysis. Sodium oxybate (SXB), a sodium salt of γ hydroxybutyric acid, is a first-line agent for cataplexy and EDS and may help sleep disruption, hypnagogic hallucinations, and sleep paralysis. Various antidepressant medications including norepinephrine serotonin reuptake inhibitors, selective serotonin reuptake inhibitors, and tricyclic antidepressants are second-line agents for treating cataplexy. In addition to SXB, modafinil and armodafinil are first-line agents to treat EDS. Second-line agents for EDS are stimulants such as methylphenidate and extended-release amphetamines. Emerging therapies include non-hypocretin-based therapy, hypocretin-based treatments, and immunotherapy to prevent hypocretin neuronal death. Non-hypocretin-based novel treatments for narcolepsy include pitolisant (BF2.649, tiprolisant); JZP-110 (ADX-N05) for EDS in adults; JZP 13-005 for children; JZP-386, a deuterated sodium oxybate oral suspension; FT 218 an extended-release formulation of SXB; and JNJ-17216498, a new formulation of modafinil. Clinical trials are investigating efficacy and safety of SXB, modafinil, and armodafinil in children. γ-amino butyric acid (GABA) modulation with GABAA receptor agonists clarithromycin and flumazenil may help daytime somnolence. Other drugs investigated include GABAB agonists (baclofen), melanin-concentrating hormone antagonist, and thyrotropin-releasing hormone agonists. Hypocretin-based therapies include hypocretin peptide replacement administered either through an intracerebroventricular route or intranasal route. Hypocretin neuronal transplant and transforming stem cells into hypothalamic neurons are also discussed in this article. Immunotherapy to prevent hypocretin neuronal death is reviewed.
Collapse
Affiliation(s)
- Vivien C Abad
- Department of Psychiatry and Behavioral Sciences, Division of Sleep Medicine, Stanford University Outpatient Center, Redwood City, CA, USA
| | - Christian Guilleminault
- Department of Psychiatry and Behavioral Sciences, Division of Sleep Medicine, Stanford University Outpatient Center, Redwood City, CA, USA
| |
Collapse
|
48
|
Naus CC, Giaume C. Bridging the gap to therapeutic strategies based on connexin/pannexin biology. J Transl Med 2016; 14:330. [PMID: 27899102 PMCID: PMC5129631 DOI: 10.1186/s12967-016-1089-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023] Open
Abstract
A unique workshop was recently held focusing on enhancing collaborations leading to identify and update the development of therapeutic strategies targeting connexin/pannexin large pore channels. Basic scientists exploring the functions of these channels in various pathologies gathered together with leading pharma companies which are targeting gap junction proteins for specific therapeutic applications. This highlights how paths of discovery research can converge with therapeutic strategies in innovative ways to enhance target identification and validation.
Collapse
Affiliation(s)
- Christian C Naus
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Christian Giaume
- ICIRB, CNRS UMR7241/INSERM U1050, Collège de France, Paris Cedex 05, France
| |
Collapse
|
49
|
|
50
|
Orellana JA, Retamal MA, Moraga-Amaro R, Stehberg J. Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases. Front Integr Neurosci 2016; 10:26. [PMID: 27489539 PMCID: PMC4951483 DOI: 10.3389/fnint.2016.00026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Under physiological conditions, astroglial hemichannels and pannexons allow the release of gliotransmitters from astrocytes. These gliotransmitters are critical in modulating synaptic transmission, plasticity and memory. However, recent evidence suggests that under pathological conditions, they may be central in the development of various neurodegenerative diseases. Here we review current literature on the role of astroglial hemichannels and pannexons in memory, stress and the development of neurodegenerative diseases, and propose that they are not only crucial for normal brain function, including memory, but also a potential target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| |
Collapse
|