1
|
Wang Z, Guo M, Liang Y, Zhou F, Zhang H, Li M, Yang Z, Karrow N, Mao Y. Breed-Specific Responses and Ruminal Microbiome Shifts in Dairy Cows Under Heat Stress. Animals (Basel) 2025; 15:817. [PMID: 40150346 PMCID: PMC11939148 DOI: 10.3390/ani15060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Holstein and Jersey cows, as excellent dairy breeds, have their own advantages in milk yield, milk quality, disease resistance, and heat resistance. However, the adaptability and rumen microbiome changes in Holstein and Jersey cows under heat stress are not clear. Therefore, the main objective of this study was to compare the differences in heat tolerance and the changes in the ruminal microbiome in Holstein and Jersey cows under heat stress. The experiment comprised a 7-day thermo-neutral (TN) period and a 7-day heat stress (HS) period. Five Jersey cows and five Holstein cows with similar parity and days in milk were selected, and rumen fluid was collected from five of them each. Compared with the TN period, heat stress increased the respiratory rate (p < 0.05), whereas decreased the milk yield (p < 0.01) in the Holstein and Jersey cows. Also, heat stress increased the rectal temperature (p < 0.01) in the Holstein cows. Jersey cows had a significantly (p < 0.05) lower level of acetic acid, propionic acid, butyric acid, valeric acid, and TVFA during HS compared with the TN period. Furthermore, high-throughput sequencing revealed that the relative abundance of Bacteroidetes and Prevotella increased while the relative abundance of Firmicutes decreased in Holstein cows during the HS period, whereas Christensenellaceae and Clostridium were more abundant in Jersey cows during the HS period than in the TN period. Simultaneously, the dominant fungi in Holstein cows were Ascomycota, Neocallimastigomycota, and Aspergillus. Correlation analysis also provided a link between the significantly altered rumen microbiota and animal production. These results suggest that heat stress has negatively influenced the physiological parameters, milk production, and rumen microbiota of Holstein and Jersey cows. Changes in the rumen fermentation and ruminal microbiome in Holstein cows may be associated with a better adaptation ability to heat stress. Our findings may inform future research to better understand how heat stress affects the physiology and productivity of dairy cattle breeding in southern China and the development of mitigation strategies.
Collapse
Affiliation(s)
- Zichen Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Mengling Guo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Fuzhen Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Huiming Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| | - Niel Karrow
- Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.W.); (M.G.); (Y.L.); (F.Z.); (H.Z.); (M.L.); (Z.Y.)
| |
Collapse
|
2
|
Rahmani MM, Ding W, Wei Q, Sun J, Hou L, Elsaid SH, Ali I, Zhou W, Shi F. Impact of fermented bamboo powder on the morphology and physiology of the gastrointestinal tract in yellow-feather broiler chickens. Poult Sci 2025; 104:104793. [PMID: 39813869 PMCID: PMC11782798 DOI: 10.1016/j.psj.2025.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Bamboo powder, a novel ingredient, is gaining recognition for its potential as a dietary supplement in poultry feed. This study aimed to investigate the effects of fermented bamboo powder (FBP) on antioxidant status, gut hormone activities, intestinal digestive enzyme activities, gut morphological structure, gastrointestinal development, and the expression of nutritional transporter genes in dwarf yellow-feather broiler chickens. A total of 600 healthy 1-day-old chicks were allocated randomly into two groups, with 10 replicates per group and 30 chicks in each replicate. The control group was provided with a standard basal diet, whereas the experimental group received the same basal diet supplemented with 1.0, 2.0, 4.0, and 6.0 g/kg of fermented bamboo powder (FBP) in four phases: Phase I (days 1-22), Phase II (days 23-45), Phase III (days 46-60), and Phase IV (days 61-77). Phases I and II were categorized as the pretreatment period (days 0-45), while Phases III and IV represented the experimental period (days 46-77). Tissue samples were collected during Phase IV for further analysis. After 77 days of feeding, results revealed that FBP supplementation significantly enhanced the levels of gastrointestinal hormones (Glucagon-like peptide 1, Peptide YY, Cholecystokinin, and 5-hydroxytryptamine) in the duodenum, jejunum, and ileum. Similarly, the activities of digestive enzymes (protease, chymotrypsin, trypsin, and amylase) were significantly increased in the small intestine. It also improved gut morphology by increasing villus height, crypt depth, and goblet cell counts in the duodenum, jejunum, and ileum. Additionally, antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and catalase) were significantly increased, while malondialdehyde content was significantly decreased in the jejunum. Additionally, FBP supplementation significantly enhanced gizzard development. Overall, FBP supplementation modulated gut hormones and enzymes, enhanced gut morphology and promoted antioxidant status and gene expression related to nutrient transport and antioxidant defenses in broiler chickens. These findings suggest that FBP has the potential as a beneficial dietary supplement in poultry feed.
Collapse
Affiliation(s)
- Mohammad Malyar Rahmani
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Ding
- Animal Husbandry and Veterinary College, Jiangsu Vocational College Agriculture and Forestry, Jurong, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linsong Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shoura Hytham Elsaid
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ilyas Ali
- Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, 518060, China
| | - Weisheng Zhou
- College of Policy Science, Ritsumeikan University, Osaka, 567-8570, Japan
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Liu E, Liu L, Zhang Z, Qu M, Xue F. An Automated Sprinkler Cooling System Effectively Alleviates Heat Stress in Dairy Cows. Animals (Basel) 2024; 14:2586. [PMID: 39272371 PMCID: PMC11394125 DOI: 10.3390/ani14172586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background: Heat stress detrimentally restricted economic growth in dairy production. In particular, the cooling mechanism of the spraying system effectively reduced both environmental and shell temperatures. This study was designed to investigate the underlying modulatory mechanism of an automatic cooling system in alleviating heat-stressed dairy cows. (2) Methods: A total of 1208 multiparous dairy cows was randomly allocated into six barns, three of which were equipped with automatic sprinklers (SPs), while the other three were considered the controls (CONs). Each barn was considered a replicate. (3) Results: Body temperatures and milk somatic cell counts significantly decreased, while DMI, milk yield, and milk fat content significantly increased under SP treatment. Rumen fermentability was enhanced, embodied by the increased levels of total VFA, acetate, propionate, and butyrate after SP treatment. The rumen microbiota results showed the relative abundances of fiber-degrading bacteria, including the Fibrobacters, Saccharofermentans, Lachnospira, Pseudobutyrivibrio, Selenomonas, and Succinivibrio, which significantly increased after receiving the SP treatment. (4) Conclusions: This study demonstrated that SP effectively alleviated heat stress and improved production performances and milk quality through modulating the rumen microbiota composition and fermentation function of dairy cows.
Collapse
Affiliation(s)
- En Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| | - Liping Liu
- School of Food Engineering, Anhui College of Science and Technology, Chuzhou 233100, China
| | - Zhili Zhang
- Modern Farming (Wuhe) Co., Ltd., Bengbu 233311, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| | - Fuguang Xue
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| |
Collapse
|
4
|
Wu C, Ma H, Lu S, Shi X, Liu J, Yang C, Zhang R. Effects of bamboo leaf flavonoids on growth performance, antioxidants, immune function, intestinal morphology, and cecal microbiota in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7656-7667. [PMID: 38770921 DOI: 10.1002/jsfa.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Bamboo leaf flavonoids (BLF) are the main bioactive ingredients in bamboo leaves. They have antioxidant, anti-inflammatory, antibacterial, and other effects. In this study, the effects of dietary BLF on growth performance, immune response, antioxidant capacity, and intestinal microbiota of broilers were investigated. A total of 288 broilers were divided into three groups with eight replicates and 12 birds in each replicate. Broilers were fed a basic diet or the basic diet supplemented with 1000 or 2000 mg kg-1 BLF for 56 days. RESULTS The results showed that supplementation of BLF increased body weight (BW) and average daily weight gain (ADG), and reduced average daily feed intake (ADFI) (P < 0.05). The serum immunoglobulin A (IgA), immunoglobulin M (IgM), and interleukin 10 (IL-10) content of broilers in the BLF1000 group was increased and the interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) content was decreased (P < 0.05). The levels of IgM and IL-10 in jejunum mucosa were found to be enhanced by BLF (P < 0.05). The BLF1000 group exhibited a significant reduction in the concentration of TNF-α (P < 0.05). Serum and jejunum mucosa total antioxidant capacity (T-AOC) levels in the BLF1000 group were increased (P < 0.05). The serum catalase (CAT) and glutathione peroxidase (GSH-Px) effects of the BLF1000 group and serum CAT effects of BLF2000 group were increased (P < 0.05). The CON group demonstrated a lower relative abundance of Christensenellaceae_R-7_group and Oscillibacter than the BLF group (P < 0.05). CONCLUSION Dietary BLF inclusion enhanced the growth performance, immune, and antioxidant functions, improved the intestinal morphology, and ameliorated the intestinal microflora structure in broiler. Adding 1000 mg kg-1 BLF to the broiler diet can be considered as an effective growth promoter. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Hui Ma
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Shuwan Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Xueyan Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Jinsong Liu
- Vegamax Green Animal Health products Key agricultural Enterprise Research Institute of Zhejiang Province, Zhejiang Vegamax Biotechnology Co., Ltd, Zhejiang, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| |
Collapse
|
5
|
Ma F, Liu J, Li S, Sun P. Effects of Lonicera japonica Extract with Different Contents of Chlorogenic Acid on Lactation Performance, Serum Parameters, and Rumen Fermentation in Heat-Stressed Holstein High-Yielding Dairy Cows. Animals (Basel) 2024; 14:1252. [PMID: 38672400 PMCID: PMC11047513 DOI: 10.3390/ani14081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This examined the effects of Lonicera japonica extract (LJE) with different chlorogenic acid (CGA) contents on lactation performance, antioxidant status and immune function and rumen fermentation in heat-stressed high-yielding dairy cows. In total, 45 healthy Chinese Holstein high-yielding dairy cows, all with similar milk yield, parity, and days in milk were randomly allocated to 3 groups: (1) the control group (CON) without LJE; (2) the LJE-10% CGA group, receiving 35 g/(d·head) of LJE-10% CGA, and (3) the LJE-20% CGA group, receiving 17.5 g/(d·head) of LJE-20% CGA. The results showed that the addition of LJE significantly reduced RT, and enhanced DMI, milk yield, milk composition, and improved rumen fermentation in high-yielding dairy cows experiencing heat stress. Through the analysis of the serum biochemical, antioxidant, and immune indicators, we observed a reduction in CREA levels and increased antioxidant and immune function. In this study, while maintaining consistent CGA content, the effects of addition from both types of LJE are similar. In conclusion, the addition of LJE at a level of 4.1 g CGA/(d·head) effectively relieved heat stress and improved the lactation performance of dairy cows, with CGA serving as the effective ingredient responsible for its anti-heat stress properties.
Collapse
Affiliation(s)
- Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| |
Collapse
|
6
|
Feng L, Zhang Y, Liu W, Du D, Jiang W, Wang Z, Li N, Hu Z. Altered rumen microbiome and correlations of the metabolome in heat-stressed dairy cows at different growth stages. Microbiol Spectr 2023; 11:e0331223. [PMID: 37971264 PMCID: PMC10714726 DOI: 10.1128/spectrum.03312-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Heat stress is one of the main causes of economic losses in the dairy industry worldwide; however, the mechanisms associated with the metabolic and microbial changes in heat stress remain unclear. Here, we characterized both the changes in metabolites, rumen microbial communities, and their functional potential indices derived from rumen fluid and serum samples from cows at different growth stages and under different climates. This study highlights that the rumen microbe may be involved in the regulation of lipid metabolism by modulating the fatty acyl metabolites. Under heat stress, the changes in the metabolic status of growing heifers, heifers, and lactating cows were closely related to arachidonic acid metabolism, fatty acid biosynthesis, and energy metabolism. Moreover, this study provides new markers for further research to understand the effects of heat stress on the physiological metabolism of Holstein cows and the time-dependent changes associated with growth stages.
Collapse
Affiliation(s)
- Lei Feng
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yu Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wei Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Dewei Du
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wenbo Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zihua Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Xue C, Wang Y, He Z, Lu Z, Wu F, Wang Y, Zhen Y, Meng J, Shahzad K, Yang K, Wang M. Melatonin disturbed rumen microflora structure and metabolic pathways in vitro. Microbiol Spectr 2023; 11:e0032723. [PMID: 37929993 PMCID: PMC10714781 DOI: 10.1128/spectrum.00327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE In in vitro studies, it has been found that the effects of MLT on rumen microorganisms and metabolites can change the rumen flora structure, significantly inhibit the relative abundance of harmful Acinetobacter, and improve the relative abundance of beneficial bacteria. MLT may regulate the "arginine-glutathione" pathway, "phenylalanine, tyrosine and tryptophan biosynthesis-tryptophan generation" branch, "tryptophan-kynurenine" metabolism, and "tryptophan-tryptamine-serotonin" pathway through microorganisms.
Collapse
Affiliation(s)
- Chun Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Yifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaoyuan He
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhiqi Lu
- Ningxia Dairy Science and Innovation Center of Guangming Animal Husbandry Co., Ltd., Zhongwei, China
| | - Feifan Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
8
|
Guo Y, Li L, Yan S, Shi B. Plant Extracts to Alleviating Heat Stress in Dairy Cows. Animals (Basel) 2023; 13:2831. [PMID: 37760231 PMCID: PMC10525364 DOI: 10.3390/ani13182831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Heat stress (HS) in cows is a critical issue in the dairy industry. Dairy cows accumulate heat from body metabolism, along with that imposed by air temperature, humidity, air flow and solar radiation. HS in animals can occur during hot and humid summers when the ambient temperature is extremely high. Dairy cows have relatively high feed intakes and metabolic heat production and are thus susceptible to HS, leading to reductions in feed intake, lower milk yield, affected milk quality, reduced animal health and even shortening the productive lifespan of cows. Therefore, alleviating HS is a top priority for the dairy industry. Suitable plant extracts have advantages in safety, efficiency and few toxic side effects or residues for applications to alleviate HS in dairy cows. This paper reviews the effects of some plant extract products on alleviating HS in dairy cows and briefly discusses their possible mechanisms of action.
Collapse
Affiliation(s)
| | | | - Sumei Yan
- Key Laboratory of Animal Nutrition and Feed Science at University of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | | |
Collapse
|
9
|
Xie Z, Yu G, Yun Y, Zhang X, Shen M, Jia M, Li A, Zhang H, Wang T, Zhang J, Zhang L. Effects of bamboo leaf extract on energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. J Anim Sci 2023; 101:skac391. [PMID: 36440554 PMCID: PMC9833010 DOI: 10.1093/jas/skac391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The present study was carried out to investigate the effects of bamboo leaf extract (BLE) on energy metabolism, antioxidant capacity, and biogenesis of broilers' small intestine mitochondria. A total of 384 one-day-old male Arbor Acres broiler chicks were randomly divided into four groups with six replicates each for 42 d. The control group was fed a basal diet, whereas the BLE1, BLE2, and BLE3 groups consumed basal diets with 1.0, 2.0, and 4.0 g/kg of BLE, respectively. Some markers of mitochondrial energy metabolism including isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and malate dehydrogenase and some markers of redox system including total superoxide dismutase, malondialdehyde, and glutathione were measured by commercial colorimetric kits. Mitochondrial and cellular antioxidant genes, mitochondrial biogenesis-related genes, and mitochondrial DNA copy number were measured by quantitative real-time-polymerase chain reaction (qRT-PCR). Data were analyzed using the SPSS 19.0, and differences were considered as significant at P < 0.05. BLE supplementation linearly increased jejunal mitochondrial isocitrate dehydrogenase (P < 0.05) and total superoxide dismutase (P < 0.05) activity. The ileal manganese superoxide dismutase mRNA expression was linearly affected by increased dietary BLE supplementation (P < 0.05). Increasing BLE supplementation linearly increased jejunal sirtuin 1 (P < 0.05) and nuclear respiratory factor 1 (P < 0.05) mRNA expression. Linear (P < 0.05) and quadratic (P < 0.05) responses of the ileal nuclear respiratory factor 2 mRNA expression occurred with increased dietary BLE levels. In conclusion, BLE supplementation was beneficial to the energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. The dose of 4.0 g/kg BLE demonstrated the best effects.
Collapse
Affiliation(s)
- Zechen Xie
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Minghui Jia
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Anqi Li
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
10
|
Dose–Response Effects of Bamboo Leaves on Rumen Methane Production, Fermentation Characteristics, and Microbial Abundance In Vitro. Animals (Basel) 2022; 12:ani12172222. [PMID: 36077942 PMCID: PMC9454597 DOI: 10.3390/ani12172222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Due to economic, environmental, and nutritional considerations, mitigating enteric methane production from ruminants is an important issue. Nutritionists have recently shown that feeding livestock natural feed additives could ameliorate this problem, due to the antimicrobial activities of the biologically active components in the additives. Bamboo is widely distributed in Asia and is currently being used in construction and paper pulp production, which results in a significant amount of bamboo leaves as by-products. The present study investigated whether bamboo leaves feeding can decrease methane production in ruminants. Here we found that bamboo leaves supplementation in vitro caused a 12.7–34.2% reduction in methane production after 12 and 48 h. Further studies are needed to demonstrate the effect of bamboo leaves supplementation in vivo, to determine its potential for mitigating methane production from ruminants. Abstract Ruminants produce large amounts of methane as part of their normal digestive processes. Recently, feed additives were shown to inhibit the microorganisms that produce methane in the rumen, consequently reducing methane emissions. The objective of this study was to evaluate the dose–response effect of Phyllostachys nigra var. henonis (PHN) and Sasa borealis supplementation on in vitro rumen fermentation, methane, and carbon dioxide production, and the microbial population. An in vitro batch culture system was used, incubated without bamboo leaves (control) or with bamboo leaves (0.3, 0.6, and 0.9 g/L). After 48 h, total gas, methane, and carbon dioxide production decreased linearly with an increasing dose of bamboo leaves supplementation. The total volatile fatty acid, acetate, and acetate-to-propionate ratio were affected quadratically with increasing doses of bamboo leaves supplementation. In addition, propionate decreased linearly. Butyrate was increased linearly with increasing doses of PHN supplementation. The absolute values of total bacteria and methanogenic archaea decreased linearly and quadratically with an increasing dose of PHN treatment after 48 h. These results show that bamboo leaves supplementation can reduce methane production by directly affecting methanogenic archaea, depressing the metabolism of methanogenic microbes, or transforming the composition of the methanogenic community. These results need to be validated using in vivo feeding trials before implementation.
Collapse
|
11
|
Du D, Jiang W, Feng L, Zhang Y, Chen P, Wang C, Hu Z. Effect of Saccharomyces cerevisiae culture mitigates heat stress-related dame in dairy cows by multi-omics. Front Microbiol 2022; 13:935004. [PMID: 35910600 PMCID: PMC9335076 DOI: 10.3389/fmicb.2022.935004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
The effect of heat stress on ruminants is an important issue. In recent years, the growth of the Chinese dairy industry has rapidly increased, generating RMB 468,738 million revenue in 2021. A decreased milk yield is the most recognized impact of heat stress on dairy cows and results in significant economic loss to dairy producers. Heat stress also lowers immunity and antioxidant capacity and changes the bacterial composition and metabolites of the rumen. The purpose of this study was to investigate the effect of addition Saccharomyces cerevisiae culture on heat-stressed cows. The impact of S. cerevisiae culture on microbiota composition, functional profiles, and metabolomics was assessed in heat-stressed cows. A total of 45 Holstein cows in mid-lactation were selected and randomly divided into three groups (15 cows per group). Groups D-C, D-A, and D-B were fed with the basal diet, the basal diet + first S. cerevisiae culture 100 g/day, and the basal diet + second S. cerevisiae culture 30 g/day, respectively. The trial lasted 60 days. There was an increased abundance of the Phylum Firmicutes in the rumen of heat-stressed dairy cows fed with S. cerevisiae, of which four genera had significantly higher abundance, Ruminococcus_gauvreauii_group, Butyrivibrio_2, Moryella, and Ruminiclostridium_6. At the functional level, ten pathways differed significantly between the three groups (P < 0.05), with an increase in fatty acid biosynthesis, fatty acid metabolism, PPAR signaling pathway, ferroptosis, and biotin metabolism in the treatment groups. More differential metabolites were found in the D-C and D-A groups than in the D-C and D-B groups. These results indicate that S. cerevisiae cultures can influence the health status of heat-stressed cows by modulating rumen microbial composition, function, and metabolites, thereby improving rumen cellulolytic capacity. This study can provide or offer suggestions or recommendations for the development and utilization of feed additives.
Collapse
Affiliation(s)
- Dewei Du
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Wenbo Jiang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Lei Feng
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Yu Zhang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Peng Chen
- Beijing Enhalor International Tech Co., Ltd., Beijing, China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
- *Correspondence: Chengqiang Wang,
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
- Zhiyong Hu,
| |
Collapse
|
12
|
Liu E, Sun M, He C, Mao K, Li Q, Zhang J, Wu D, Wang S, Zheng C, Li W, Gong S, Xue F, Wu H. Rumen Microbial Metabolic Responses of Dairy Cows to the Honeycomb Flavonoids Supplement Under Heat-Stress Conditions. Front Vet Sci 2022; 9:845911. [PMID: 35372554 PMCID: PMC8964602 DOI: 10.3389/fvets.2022.845911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids played critical roles in stabilizing microbial homoeostasis when animals suffered exoteric stresses. However, whether flavonoids attenuated heat stress of dairy cows is still not clear. Therefore, in the present article, flavonoids extracted from honeycomb were supplemented to investigate the production, digestibility, and rumen microbial metabolism responses of cows under heat stress conditions. A total of 600 multiparous dairy herds were randomly allotted into the control treatment (CON), the heat stress (HS) treatment, and the honeycomb flavonoids supplement under heat stress conditions (HF) treatment for a 30-day-long trial. Each treatment contains 4 replicates, with 50 cows in each replicate. Production performances including dry matter intake (DMI), milk production, and milk quality were measured on the basis of replicate. Furthermore, two cows of each replicate were selected for the measurement of the nutrient digestibility, the ruminal fermentable parameters including ruminal pH, volatile fatty acids, and ammonia-N, and the rumen microbial communities and metabolism. Results showed that HF effectively increased DMI, milk yield, milk fat, and ruminal acetate content (p < 0.05) compared with HS. Likewise, digestibility of NDF was promoted after HF supplement compared with HS. Furthermore, relative abundances of rumen microbial diversities especially Succiniclasticum, Pseudobutyrivibrio, Acetitomaculum, Streptococcus, and Succinivibrio, which mainly participated in energy metabolism, significantly improved after HF supplement. Metabolomic investigation showed that HF supplement significantly upregulated relative content of lipometabolic-related metabolites such as phosphatidylglycerol, phosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine, while it downregulated biogenic amines. In summary, HF supplement helps proliferate microbial abundances, which further promoted fiber digestibility and energy provision, and ultimately enhances the production performances of dairy cows under heat stress conditions.
Collapse
Affiliation(s)
- En Liu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mengxue Sun
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Chenxin He
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Kang Mao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Qin Li
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Jianhong Zhang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Deyong Wu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shuzhen Wang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Chuanxia Zheng
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Wenbin Li
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shimin Gong
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Fuguang Xue
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Fuguang Xue
| | - Huadong Wu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Huadong Wu
| |
Collapse
|