1
|
Wang L, Liu H, Yu S, Lu M, Zhang Y, Wang S, Hou S. Transcriptome-based analysis reveals relationship between duck eggshell color and eggshell strength. BMC Genomics 2025; 26:410. [PMID: 40295915 PMCID: PMC12036259 DOI: 10.1186/s12864-025-11452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The strength of duck eggshells is essential for their storage, transportation, and processing, with various studies indicating a correlation between eggshell color and strength. RESULTS Our research has demonstrated that green-shelled duck eggs exhibit higher eggshell strength compared to white-shelled eggs in the M2 Line Pekin Duck population. To this end, we established mRNA transcriptome profiles of 10 eggshell gland tissues and 10 liver tissues and constructed gene expression networks in the two tissues. RNA-Seq analysis suggests that genes associated with ion transport, transmembrane transport, and liver cell proliferation and differentiation in the eggshell gland could play important roles in eggshell formation. The liver of green shell duck has stronger cell proliferation ability to maintain its homeostasis, and the eggshell gland has stronger ability to secrete eggshell matrix protein, which may be the reason why the eggshell is stronger than that of white shell duck. Through Weighted gene co-expression network analysis (WGCNA), three related modules were found in eggshell gland and liver, respectively, and three key genes were screened in each tissue (eggshell gland: FKBP10, PPARG, MAP3K5, liver: PHLDA1, FLT3, CACNB4). They have important regulatory effects on eggshell color and eggshell strength respectively. CONCLUSIONS Through transcriptome analysis, we identified key genes associated with eggshell color (ESB) (Gland: ABCG2, SLC51B; Liver: COX1, DIO3, RBPJ) and eggshell strength (ESS) (Gland: MAP3K5, PPARG, FKBP10; Liver: PHLDA1, FLT3, CACNB4). We propose that these genes regulate ESB and ESS by modulating antioxidant capacity and bile acid synthesis in the liver and shell gland, leading to enhanced biliverdin deposition and stronger eggshells in green-shelled ducks. Additionally, the upregulation of ion transport, transmembrane transport, and liver cell proliferation-related genes in green-shelled ducks further supports the observed superiority in eggshell strength.
Collapse
Affiliation(s)
- Longxin Wang
- Chinese Academy of Agricultural Sciences, Institute of Animal Science, Beijin, China
- College of Animal Science & Technology, Northwest A&F University, Shaan'xi, Yangling, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan, China
| | - Simeng Yu
- Chinese Academy of Agricultural Sciences, Institute of Animal Science, Beijin, China
| | - Meixi Lu
- Chinese Academy of Agricultural Sciences, Institute of Animal Science, Beijin, China
| | - Yunsheng Zhang
- Chinese Academy of Agricultural Sciences, Institute of Animal Science, Beijin, China
| | - Shuaiqin Wang
- Chinese Academy of Agricultural Sciences, Institute of Animal Science, Beijin, China
| | - Shuisheng Hou
- Chinese Academy of Agricultural Sciences, Institute of Animal Science, Beijin, China.
- College of Animal Science & Technology, Northwest A&F University, Shaan'xi, Yangling, China.
| |
Collapse
|
2
|
Xu W, Mu R, Gegen T, Luo J, Xiao Y, Ou S, Wu Q, Zuo Y, Chen Z, Li F. Comparative analysis of hepatic transcriptomes and metabolomes of Changshun green-shell laying hens based on different green eggshell color intensities. Poult Sci 2024; 103:103220. [PMID: 37980748 PMCID: PMC10685025 DOI: 10.1016/j.psj.2023.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023] Open
Abstract
The eggshell color of avian species is an important trait that is predominantly determined by the pigments biliverdin and protoporphyrin. Various factors affect eggshell pigment deposition and coloration; however, the underlying mechanisms remain unclear. We analyzed the hepatic transcriptomes and metabolomes of Changshun green-shell hens laying dark green and light green eggs to investigate the potential role of the liver in regulating the intensity of the green eggshell color. In total, 350 differentially expressed genes and 211 differentially altered metabolites were identified. Gene set enrichment analysis revealed that the enriched pathways and Gene Ontology (GO) terms were mainly associated with energy, immunity, and nutrient metabolism. Metabolite set enrichment analysis revealed that the enriched pathways were mainly associated with amino acid, vitamin, bile acid, and lipid metabolism. Moreover, gene-metabolite interaction network analysis revealed 1 subnetwork. Most genes and metabolites in this subnetwork were determined to be related to melanin metabolism and transport. In conclusion, our results suggest that hepatic melanin metabolism and transport are critical for eggshell coloration. Six candidate genes (CDKN2B, DDC, PYCR1, ABCG5, SLC3A1, and P2RX2) and 7 candidate metabolites (serotonin, 5-hydroxyindoleacetic acid, ornithine, acetylcholine, L-tryptophan, D-ornithine, and ADP) were suggested to play important roles in this process. Meanwhile, this study suggests that changes in hepatic energy metabolism, immune status, antioxidation activity, nutrient availability, and bile acid synthesis can impair eggshell coloration.
Collapse
Affiliation(s)
- Wenbin Xu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China; Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun 558000, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China; Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun 558000, China.
| | - Tuya Gegen
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun 558000, China; Library, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Jiaxiang Luo
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Yang Xiao
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Shunnian Ou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Qi Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China; Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun 558000, China
| | - Yongsong Zuo
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China; Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun 558000, China
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China; Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun 558000, China
| | - Fangwei Li
- Guizhou Changshun Tiannong Green Shell Laying Hen Industrial Co. Ltd., Chang Shun 550700, China
| |
Collapse
|
3
|
Duan G, Liu W, Han H, Li D, Lei Q, Zhou Y, Liu J, Wang J, Du Y, Cao D, Chen F, Li F. Transcriptome and histological analyses on the uterus of freckle egg laying hens. BMC Genomics 2023; 24:738. [PMID: 38049727 PMCID: PMC10696746 DOI: 10.1186/s12864-023-09828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND In this study, we explored the characteristics and causes of freckle formation. We collected 15 normal and freckled eggs each for eggshell index testing and hypothesized that the structure and function of the uterus would have a direct effect on freckled egg production given that eggshells are formed in the uterus. To test this hypothesis, we collected uterine tissue from laying hens (418 days of age) that laid normal (Group C, n = 13) and freckled (Group T, n = 16) eggs for 7 consecutive days. RESULTS When we examined the eggshell quality, we found that the L value was significantly lower (P < 0.05) in the freckled site group of freckled eggs compared to the normal egg group during the detection of blunt pole, equator, and sharp pole of the eggshell color. The a-values of the three positions were significantly higher (P < 0.05) in the freckled site group of freckled eggs, and the a-values of the blunt pole were significantly lower (P < 0.05) in the background site group of freckled eggs, compared to the normal egg group. The b-values were significantly higher (P < 0.05) at three locations in the freckled site group of freckled eggs compared to the normal egg group. During the detection of eggshell thickness, the blunt pole was significantly higher (P < 0.05) in the freckled egg site group of freckled eggs compared to the normal egg group, and there was no significant difference between the other groups (P > 0.05). There was no significant difference (P > 0.05) between the transverse and longitudinal diameters of the eggs in each group.We then performed histopathology and transcriptome analyses on the collected tissue. When compared with group C, uterine junctional epithelial cells in group T showed significant defects and cilia loss, and epithelial tissue was poorly intact. From transcriptomics, genes that met (|log2FC|) ≥ 1 and P < 0.05 criteria were screened as differentially expressed genes (DEGs). We identified a total of 136 DEGs, with 101 up- and 35 down-regulated genes from our RNA-seq data. DEGs identified by enrichment analyses, which were potentially associated with freckled egg production were: IFI6, CCL19, AvBD10, AvBD11, S100A12, POMC, and UCN3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that pathways were associated with immunoreaction and stress stimulation, e.g., complement activation, interleukin-1 cell reactions, viral responses, cell reactions stimulated by corticotropin releasing hormone, steroid hormone mediated signaling pathways, staphylococcal infections, B cell receptor signaling pathways, and natural killer cell mediated cytotoxicity. CONCLUSIONS From these data, freckled areas deepen freckled eggshell color, but background areas are not affected. At the same time,we reasoned that freckle eggs may result from abnormal immune responses and impaired uterine functions induced by stress. Therefore, the uterus of laying hens in a state of stress and abnormal immune function can cause the appearance of freckled eggs.
Collapse
Affiliation(s)
- Guochao Duan
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China
| | - Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China
| | - Yuanjun Du
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250100, China.
| |
Collapse
|