1
|
Zhang N, Tao J, Yu Q, Sun G, Liu X, Tang W, Zhang L, Yang Z. Dietary Tea Polyphenols Alleviate Acute-Heat-Stress-Induced Death of Hybrid Crucian Carp HCC2: Involvement of Modified Lipid Metabolisms in Liver. Metabolites 2025; 15:229. [PMID: 40278359 PMCID: PMC12028923 DOI: 10.3390/metabo15040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Global warming poses significant challenges to aquaculture, as elevated water temperatures adversely affect fish health and survival. This study investigated the effects and potential mechanisms of dietary tea polyphenols (TPs) on acute heat stress and survival in hybrid crucian carp HCC2. METHODS The fish in the control (CON) group and heat stress group (HS group, three replicates, each containing 20 fish, n = 60 per group) were fed diets with 0 mg/kg TPs, and the three experimental groups (HSLTP, HSMTP, and HSHTP, n = 20 × 3 replicates) were fed the diets with 100, 200, or 400 mg/kg TPs for 60 days. Further, fish in the experimental groups (HS, HSLTP, HSMTP, and HSHTP) were exposed at 38 °C for 24 h to induce acute heat stress. Survival data and serum and tissue samples were collected for the analysis. Metabolomics using UPLC-Q-TOF/MS was employed to evaluate the metabolite changes in the fish livers. RESULTS Notably, dietary TPs significantly improved survival rates and antioxidant enzyme levels and reduced serum ALT, AST, cortisol, glucose, MDA, and liver HSP-70 levels in the heat-stressed fish. Metabolomic analysis revealed that TPs modulated lipid metabolism, particularly glycerophospholipid and arachidonic acid pathways, which may contribute to a higher tolerance to acute heat stress. CONCLUSIONS These findings suggest that TPs are a promising, eco-friendly feed additive for protecting fish from heat stress and optimizing aquaculture practices.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jinsheng Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qifang Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Gege Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaopeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
| | - Weirong Tang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lina Zhang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhe Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Zhang YT, Yang Y, Bu DP, Ma L. The effects of gamma-aminobutyric acid on growth performance, diarrhoea, ruminal fermentation, and antioxidant capacity in pre-weaned calves. Animal 2025; 19:101493. [PMID: 40279853 DOI: 10.1016/j.animal.2025.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
The pre-weaning phase is a vital period for the growth and development of calves, significantly impacting their future health and productivity. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the mammalian central nervous system that lowers blood pressure, stimulates feed intake, and enhances antioxidant capability. Gamma-aminobutyric acid has been proven beneficial for adult cows, while little research has been conducted on calves. Therefore, this study examined the effects of GABA on growth performance, diarrhoea, ruminal fermentation, and antioxidant capacity in pre-weaned Holstein calves. Ninety male Holstein calves were allocated to five groups: 0 mg/d (G0), 25 mg/d (G25), 50 mg/d (G50), 100 mg/d (G100), and 200 mg/d (G200). The experiment was conducted from 11 to 75 days of calves age, and the calves were weaned at 75 days of age. Growth performance indicators, ruminal fluid, faecal score, and serum were collected at 11, 28, 42, 60, and 75 days of calves' age. The results showed that adding GABA positively affected average daily gain and body height, with no effects on diarrhoea frequency. All dosages significantly reduced acetate and total volatile fatty acid levels in ruminal fermentation, with butyrate showing a complex response at higher doses. Overall, we recommended 100 mg/d as the optimal GABA supplementation level to improve growth performance and regulate the ruminal fermentation of pre-weaned calves before weaning.
Collapse
Affiliation(s)
- Y T Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Y Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - D P Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
| | - L Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
3
|
Lu S, Zhu Y, Zhang X, Cidan Y, Basang W, Li K. Joint exploration of network pharmacology and metabolomics on the effects of traditional Chinese medicine compounds in weaned yaks. Front Vet Sci 2025; 11:1511311. [PMID: 39872609 PMCID: PMC11770994 DOI: 10.3389/fvets.2024.1511311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Chinese herbal medicines are relatively inexpensive and have fewer side effects, making them an effective option for improving health and treating diseases. As a result, they have gained more attention in recent years. The weaning period is a critical stage in the life of yaks, often inducing stress in calves. Weaning stress, along with dietary changes, can lead to a decline in physical fitness and immune function, making yaks more susceptible to diarrhea and resulting in high mortality rates during this period. Therefore, our study aimed to address this issue by incorporating traditional Chinese medicine (TCM) formulas into the diet of yaks during the weaning period. Methods Following a dialectical analysis, three TCM formulas, mainly composed of Paeonia lactiflora, Coptis chinensis, and Dandelion, were identified for their anti-inflammatory, antioxidant, and immune enhancing potentials. We explored the possible molecular mechanisms of these TCM formulas using network pharmacology analysis and investigated their effects on the physiology of yaks through metabolomics. Results Network pharmacology analysis revealed several key target proteins in the protein-protein interaction (PPI) network between three formulas and immune-related genes, including PIK3R1, PIK3CA, JAK2, PTK2, and PYPN11. The key target proteins in the PPI network associated with metabolism-related genes included ENPP1, CYP1A1, PTGS1, members of the CYP1 family, and EPHX2. GO analysis of co-targets revealed highly enriched pathways such as protein phosphorylation, plasma membrane, and one-carbon metabolic processes. Metabolomics revealed significant changes in the abundance of metabolites including dimethyl sulfoxide, tyrphostin A25, and thromboxane A2 in the intestines of weaned yaks supplemented with these Chinese herbal compounds. Significant changes were also observed in pathways such as vitamin A metabolism, chloroalkane, and chloroalkene degradation. Discussion Based on these findings, it can be inferred that TCM formulas improve the physical fitness of weaned yaks by enhancing antioxidant capacity, boosting immunity, and reducing intestinal inflammation. This study preliminarily elucidates the pharmacological mechanisms by which TCM formulas prevent diarrhea and improve physical fitness in weaned yaks through metabolomics and network pharmacology, paving the way for further evaluation of the effectiveness of these three formulas.
Collapse
Affiliation(s)
- Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaojuan Zhang
- Agriculture and Animal Husbandry Science and Technology Service Station in Seni District, Naqu, China
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Ellward GL, Binda ME, Dzurny DI, Bucher MJ, Dees WR, Czyż DM. A Screen of Traditional Chinese Medicinal Plant Extracts Reveals 17 Species with Antimicrobial Properties. Antibiotics (Basel) 2024; 13:1220. [PMID: 39766610 PMCID: PMC11726858 DOI: 10.3390/antibiotics13121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance (AMR) is a growing threat that undermines the effectiveness of global healthcare. The Centers for Disease Control and Prevention and the World Health Organization have identified numerous microbial organisms, particularly members of the ESKAPEE pathogens, as critical threats to global health and economic security. Many clinical isolates of these pathogens have become completely resistant to current antibiotics, making treatment nearly impossible. Herbal remedies, such as those found in Traditional Chinese Medicine (TCM), have been practiced for thousands of years and successfully used to treat a wide range of ailments, including infectious diseases. Surprisingly, despite this extensive knowledge of folk medicine, no plant-derived antibacterial drugs are currently approved for clinical use. As such, the objective of this study is to evaluate the antimicrobial properties of extracts derived from TCM plants. Methods: This study explores a comprehensive library comprising 664 extracts from 132 distinct TCM plant species for antimicrobial properties against gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria using liquid and solid in vitro assays. Results: Intriguingly, our results reveal 17 plant species with potent antimicrobial properties effective primarily against gram-positive organisms, including Streptococcus aureus and epidermidis. A literature search revealed that nearly 100 purified compounds from the identified TCM plants were previously isolated and confirmed for their antimicrobial properties, collectively inhibiting 45 different bacterial species. Conclusions: Our results indicate that phytobiotics from the identified plants could serve as potential candidates for novel antimicrobials.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel M. Czyż
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (G.L.E.); (D.I.D.)
| |
Collapse
|
5
|
Luo C, Du Y, Zhu R, Qi Q, Luo S, Feng X. Effects of Akkermansia muciniphila on Gut Morphology, Antioxidant Indices, and Gut Microbiome of Mice Under Heat Stress. Foodborne Pathog Dis 2024; 21:724-730. [PMID: 39082080 DOI: 10.1089/fpd.2024.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2024] Open
Abstract
Nutritional manipulations can reduce the detrimental effects of heat stress on animal health and production. Akkermansia muciniphila (AM) is an innovative beneficial bacteria and can be used for conventional use as dietary supplements and pharmaceutical application. This study aimed to investigate the effects of administering AM on gut morphology, antioxidant indices, and gut microbiome of mice during heat stress. A total of 24 BALB/c mice were randomly assigned to three groups including the control group (CON), heat stress group (HS), and AM administration under heat stress group (AM). Our results showed heat stress significantly increased the water consumption of mice. Administration of AM did not improve feed intake or weight gain. The serum levels of alanine aminotransferase and aspartate aminotransferase as well as antioxidant parameters were not different among the three groups. Heat stress decreased the jejunal villus height, and AM could reverse this effect. AM administration significantly increased the relative abundance of Verrucomicrobiota at the phylum level. At the genus level, heat stress and AM groups tended to have a lower abundance of Alloprevotella. In addition, AM tended to increase the relative abundance of [Eubacterium]_xylanophilum_group in comparison with the other two groups. In summary, administration of AM can alleviate the damage of heat stress to the jejunum. However, it has no effect on serum antioxidant parameters, and its effect on the cecal microbiota is limited.
Collapse
Affiliation(s)
- Caiyu Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yingzhu Du
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Rongxia Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shumeng Luo
- The Hong Kong Polytechnic University, Hong Kong, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Li L, Wang M, Chen J, Chen J, Wang Y, Zhao M, Song Q, Xu S. Therapeutic potential of traditional Chinese medicine on heat stroke. Front Pharmacol 2023; 14:1228943. [PMID: 37818183 PMCID: PMC10561393 DOI: 10.3389/fphar.2023.1228943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
As global warming progresses, heat waves are becoming increasingly frequent and intense, meanwhile the incidence of heat stroke (HS) has increased sharply during the past decades. HS is typically associated with significant morbidity and mortality, and there is an urgent need for further research to solve this difficult issue. There currently exists difficulties regarding on-site emergency treatment methods and limited in-hospital treatment approaches, and better treatments are required as soon as possible. Theories and therapies from various traditional Chinese medicine (TCM) academic groups have been widely reported. Therefore, an exploration of prevention and protection methods should consider TCM experiences as an alternative. This article primarily reviews TCM herbal therapies and external therapies that have been described in various clinical reports and demonstrated in relevant studies. Herbal therapies, including herbal formulas, Chinese patent medicines (CPMs), single Chinese herbs, and associated extracts or monomers, are summarized based on the shared perspectives of the underlying mechanisms from TCM. In addition, external therapies including acupuncture, bloodletting, cupping, Gua sha and Tui na that have rarely been rarely mentioned and considered in most cases, are introduced and discussed to offer a unique perspective in the search for novel interventions for HS. In summary, TCM may provide abundant potential clinical benefits and research directions in the fight against HS.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, The Second Naval Hospital of Southern Theater Command of PLA, Sanya, China
- Heatstroke Treatment and Research Center of PLA, Sanya, China
| | - Man Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jikuai Chen
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Juelin Chen
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yawei Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Minghao Zhao
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qing Song
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
- Heatstroke Treatment and Research Center of PLA, Sanya, China
| | - Shuogui Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Lee J, Kim WK. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals (Basel) 2023; 13:2975. [PMID: 37760373 PMCID: PMC10525316 DOI: 10.3390/ani13182975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the role of hormones derived from enteroendocrine cells (EECs) on appetite and nutrient absorption in chickens. In response to nutrient intake, EECs release hormones that act on many organs and body systems, including the brain, gallbladder, and pancreas. Gut hormones released from EECs play a critical role in the regulation of feed intake and the absorption of nutrients such as glucose, protein, and fat following feed ingestion. We could hypothesize that EECs are essential for the regulation of appetite and nutrient absorption because the malfunction of EECs causes severe diarrhea and digestion problems. The importance of EEC hormones has been recognized, and many studies have been carried out to elucidate their mechanisms for many years in other species. However, there is a lack of research on the regulation of appetite and nutrient absorption by EEC hormones in chickens. This review suggests the potential significance of EEC hormones on growth and health in chickens under stress conditions induced by diseases and high temperature, etc., by providing in-depth knowledge of EEC hormones and mechanisms on how these hormones regulate appetite and nutrient absorption in other species.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
8
|
Zhao S, Shan C, Wu Z, Feng M, Song L, Wang Y, Gao Y, Guo J, Sun X. Fermented Chinese herbal preparation: Impacts on milk production, nutrient digestibility, blood biochemistry, and antioxidant capacity of late-lactation cows under heat stress. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Effect of Dietary Fructus mume and Scutellaria baicalensis Georgi on the Fecal Microbiota and Its Correlation with Apparent Nutrient Digestibility in Weaned Piglets. Animals (Basel) 2022; 12:ani12182418. [PMID: 36139277 PMCID: PMC9495044 DOI: 10.3390/ani12182418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has long been demonstrated to exert a therapeutic effect on various diseases and has been used as a substitute for antibiotics in pig production. However, few studies have investigated the relationship between the intestinal microbiota and apparent nutrient digestibility when weaned piglet diets are supplemented with TCM. One hundred and sixty-two 25-day-old weaning piglets were housed in an environmentally controlled nursery facility and fed a basal diet (control group, n = 54) or a TCM complex (Fructus mume 1%, Scutellaria baicalensis Georgi 3%) (TCM group, n = 54), or a fermented diet with a complex of these two TCMs (F-TCM group, n = 54). Compared with the control group, in the TCM and F-TCM groups, the average daily gain (ADG) increased (p < 0.05), the F:G ratio and diarrhea rate decreased (p < 0.05), and the apparent digestibility of dry matter (DM) and ether extract (EE) of weaned piglets increased (p < 0.05). Bacteroidetes and Firmicutes were the predominant phyla, representing approximately 95% of all sequences. The abundance of four genera and 10 OTUs (belonging to Ruminococcaceae_UCG-014, Lachnoclostridium, Prevotellaceae_NK3B31 group, Prevotella_1) were negatively correlated with apparent EE digestibility (p < 0.05). The results suggest that weaned piglets fed with antibiotic-free diets supplemented with Fructus mume and Scutellaria baicalensis Georgi gained more weight and were healthier. When added to the diet, the complex of these two TCMs may have a direct impact on apparent EE digestibility by modifying the gut microbial composition, which favors the health of weaned piglets.
Collapse
|
10
|
Ye C, Qu Q, Bai L, Chen J, Cai Z, Sun J, Liu C, Shi D. Effect of Traditional Chinese Medicine on the Gut Microbiota in Heat-Stressed Laying Hens. Front Vet Sci 2022; 9:905382. [PMID: 35799842 PMCID: PMC9253820 DOI: 10.3389/fvets.2022.905382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Gut microbiota plays an important role in health and disease. To determine whether the traditional Chinese formula Zi Huang Huo Xiang San (ZHHXS) modulates gut microbiota under heat stress, a heat stress model was prepared in Roman layer hens by housing them at temperatures of 32–36°C and administering ZHHXS for 4 weeks. The Roman egg layers were randomly divided into three groups with 10 hens in each: a ZHHXS treatment group (ZHHXS-HS), a heat-stressed group (HS), and a blank control group (BC). The ZHHXS-HS and HS groups were housed in a 34 ± 2°C environment, while the BC group was housed at 25 ± 1°C. The ZHHXS-HS hens were fed a diet supplemented with 1% ZHHXS from 1 to 28 days, while the other groups were not. Gut microbiota in the hens' feces was assessed through 16S rRNA high-throughput sequencing on days 1, 3, 7, 14, and 28. A plot of the PCA scores showed that the gut microbiota composition in the BC group was a similar trend in the ZHHXS-HS group on days 1 and 3. The principal coordinate analysis (PCoA) unweighted distribution showed that the gut microbiota composition had no significant differences between the BC and ZHHXS-HS groups on days 1 and 7. The PCoA weighted distribution showed that the gut microbiota composition had no significant differences between the BC and ZHHXS-HS groups on days 1 and 3. This study showed that the composition of gut microbiota in layer hens with heat stress was modulated by ZHHXS treatment. ZHHXS treatment caused key phylotypes of gut microbiota to match the BC group, particularly Actinobacteria, Bacteroidetes, Bacteroides, and Enterococcus. The effect of ZHHXS in alleviating heat stress could be achieved by altering the composition of gut microbiota and regulating some key phylotypes.
Collapse
Affiliation(s)
- Chunxin Ye
- Guangdong Polytechnic of Science and Trade, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Bai
- Wens Foodstuff Group Co., Ltd, Yunfu, China
| | - Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoke Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaqi Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Cui Liu
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Dayou Shi
| |
Collapse
|
11
|
Simoni M, Goi A, Pellattiero E, Mavrommatis A, Tsiplakou E, Righi F, De Marchi M, Manuelian C. Long-term administration of a commercial supplement enriched with bioactive compounds does not affect feed intake, health status, and growth performances in beef cattle. Arch Anim Breed 2022; 65:135-144. [PMID: 35463871 PMCID: PMC9022111 DOI: 10.5194/aab-65-135-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/07/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract. Feed additives including natural bioactive compounds (BCs) in combination with vitamin E (VitE) and organic Se could mitigate animal stress associated with intensive livestock farming due to their anti-inflammatory and antioxidant properties. Yeast and yeast derivate are included in feed additives as probiotic products and digestion promoters. Scutellaria baicalensis is a source of bioactive compounds and has been tested in monogastrics, exhibiting many immunostimulating and hepato-protective activities. However, the literature lacks information regarding S. baicalensis effects on beef cattle performance and health status. The aim of the present study was to evaluate the impact on beef cattle's feed intake, health and oxidative status, and growth performances of the inclusion of a commercial supplement (CS) containing VitE, organic Se, yeast derivate, and S. baicalensis extract during the fattening and finishing period. A total of 143 Charolaise male cattle were allotted into 12 pens of 11–12 animals each and assigned to a control (463.9±21.48 body weight – BW) or a treated (469.8±17.91 BW) group. Each group included two replicates of three pens. The treated groups were supplemented with 20 gCSanimal-1d-1. Feed intake was measured monthly on a pen base during two consecutive days. Total mixed ration and fecal samples were collected at three time points (monthly, from November to February) and pooled by replicate for the analyses to monitor digestibility. Blood samples were individually collected at the beginning and at the end of the trial for oxidative status and metabolic profile determination. Final BW and carcass weight were individually recorded to calculate average daily gain, feed conversion ratio, and carcass yield. Similar feed digestibility between groups were observed during the whole experiment. Feed intake, growth performances, final body weight, average daily gain, feed conversion rate, oxidative status, and metabolic profile were not affected by the dietary inclusion of the tested CS indicating no detrimental effect of the treatment. Different doses of this product should be tested in the future in order to provide a more complete report on the product efficacy.
Collapse
Affiliation(s)
- Marica Simoni
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Arianna Goi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Erika Pellattiero
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Federico Righi
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Carmen L. Manuelian
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
12
|
Zhuang X, Chen Z, Sun X, Li F, Luo J, Chen T, Xi Q, Zhang Y, Sun J. Fermentation quality of herbal tea residue and its application in fattening cattle under heat stress. BMC Vet Res 2021; 17:348. [PMID: 34772402 PMCID: PMC8588620 DOI: 10.1186/s12917-021-03061-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Herbal tea residue (HTR) is generally considered to be the waste of herbal tea beverage production while it still retains rich nutrients and active substances. The main aim of the present study was to investigate the effect of fermentation technology on improving the quality of HTRs, and focus on the fermented HTR-induced alleviation of summer heat stress in fattening cattle. Results In this study, the waste HTR was fermented and then fed to a total of 45 fattening cattle that were divided into 3 groups (fermented HTR replaced 0, 15, 30% of the forage component of the diet), and the feeding experiment was lasted for 40 days. The physiological indexes, growth performance and fecal microbiota of fattening cattle were evaluated and results showed that fermented HTR could effectively reduce the respiratory rate and rectal temperature of fattening cattle under heat stress, increase the daily feed intake and daily gain, and improve the antioxidant content and blood immune index. In addition, we studied the fecal microbiota composition of 6 fattening cattle in control and 30% HTR substitution groups and found fermented HTR significantly changed the composition of fecal microbiota and increased microbial diversity, and correlation analysis suggested that the bacteria were closely related to fecal SCFA levels of fattening cattle under heat stress. Conclusions In this study, fermented HTR replaced 30% of the forage component of the diet that can change the intestine microorganisms, maintain health and alleviate the heat stress of fattening cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03061-y.
Collapse
Affiliation(s)
- Xiaona Zhuang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zujing Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaohong Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fangjun Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
13
|
Li Y, Zang Y, Zhao X, Liu L, Qiu Q, Ouyang K, Qu M. Dietary Supplementation With Creatine Pyruvate Alters Rumen Microbiota Protein Function in Heat-Stressed Beef Cattle. Front Microbiol 2021; 12:715088. [PMID: 34512594 PMCID: PMC8431830 DOI: 10.3389/fmicb.2021.715088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Creatine pyruvate (CrPyr) is a new multifunctional nutrient that can provide both pyruvate and creatine. It has been shown to relieve the heat stress of beef cattle by improving antioxidant activity and rumen microbial protein synthesis, but the mechanism of CrPyr influencing rumen fermentation remains unclear. This study aimed to combine 16S rDNA sequencing and metaproteomics technologies to investigate the microbial composition and function in rumen fluid samples taken from heat-stressed beef cattle treated with or without 60 g/day CrPyr. 16S rDNA sequencing revealed that there were no significant differences in the α-diversity indices between the two groups. By analyzing the level profiles of 700 distinct proteins, we found that the CrPyr administration increased the expression of enzymes involved in specific metabolic pathways including (i) fatty acid β-oxidation; (ii) interconversion from pyruvate to phosphoenolpyruvate, oxaloacetate, acetyl-CoA, and malate; (iii) glycolysis/gluconeogenesis and citrate cycle metabolism; and (iv) biosynthesis of amino acids. These results indicated that the increased generation of adenosine triphosphate during fatty acid β-oxidation or citrate cycle and the up-regulation synthesis of microbial protein in rumen of beef cattle treated with CrPyr may help decrease oxidative stress, regulate energy metabolism, and further improve the rumen fermentation characteristic under heat stress.
Collapse
Affiliation(s)
- Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yitian Zang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lin Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Peng T, Shang H, Yang M, Li Y, Luo J, Qu M, Zhang X, Song X. Puerarin improved growth performance and postmortem meat quality by regulating lipid metabolism of cattle under hot environment. Anim Sci J 2021; 92:e13543. [PMID: 33738872 DOI: 10.1111/asj.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Abstract
This study aims to evaluate the effect of puerarin on performance, meat quality, and serum indexes of beef cattle under hot environment. Thirty-two bulls were divided into four groups and fed diet supplemented with puerarin at 0, 200, 400, or 800 mg/kg. Results showed that heat stress was employed for 54 out of 60 days, 400 mg/kg group declined serum cortisol (COR) contents, all treatments increased the contents of total cholesterol, high density lipoprotein cholesterol, and total superoxide dismutase activity; in addition, glutathione peroxidase activity of 200 mg/kg group were enhanced, only 800 mg/kg group enhanced immunoglobulin (IgA, IgM, and IgG) and low density lipoprotein cholesterol contents compared with the control (p < .05). Moreover, 400-mg/kg puerarin increased serum growth hormone levels compared with 200 mg/kg group but declined COR concentrations compared with 200 mg/kg and 800 mg/kg groups (p < .05). More importantly, average daily gain and daily matter intake, and intramuscular fat contents of 400 mg/kg group were enhanced, but the shear force of beef in 400 mg/kg and 800 mg/kg groups were declined compared with the control (p < .05). These findings indicated that supplemental with puerarin enhanced immune and antioxidant, and 400 mg/kg of puerarin improved performance and meat quality by normalizing levels of stress hormones and increasing intramuscular fat deposition of beef cattle under hot environment.
Collapse
Affiliation(s)
- Tao Peng
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Hanle Shang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingrui Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xinyu Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
15
|
Chen J, Mao Y, Guo K, Wu H, Song X, Qu M, Lan L, Luo J. The synergistic effect of traditional Chinese medicine prescription and rumen-protected γ-aminobutyric acid on beef cattle under heat stress. J Anim Physiol Anim Nutr (Berl) 2021; 105:807-815. [PMID: 33641203 DOI: 10.1111/jpn.13507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022]
Abstract
Traditional Chinese medicine (TCM) prescription or rumen-protected GABA (RP-GABA) can effectively relieve the heat stress (HS) in cattle, but the joint effects of TCM and RP-GABA on HS in beef cattle are not fully clarified. To investigate the effects of TCM or/and RP-GABA on growth performance, antioxidant capacity, serum parameters and heat shock proteins (HSPs) expression in beef cattle under HS ambient. A total of 40 Jinjiang yellow cattle were randomly divided into four groups: (a) control group (basal diet, BD), (b) TCM group (BD+TCM), (c) GABA group (BD+RP-GABA) and (d) TCM+GABA group (BD+TCM plus RP-GABA). Results indicated that the average daily feed intake (ADFI) was significantly elevated in the TCM+GABA group (p < 0.05), whereas, average daily gain (ADG) was elevated (p < 0.05) in the group of TCM (38.5%), GABA (35.4%) and TCM+GABA (41.5%) compared with the control group. Meanwhile, TCM+GABA exhibited prominently more positive effects in terms of SOD, BUN, T-CHO, TG, HDL-C and HSP70 (p < 0.05 or p < 0.01) than the control and other treatment groups. Therefore, TCM or GABA can effectively moderate the HS response in beef cattle by ameliorating antioxidant capacity, serum parameters and HSPs expression, meanwhile, the combination of them exerts a synergistic effect on HS alleviation.
Collapse
Affiliation(s)
- Jian Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yaqing Mao
- China Institute of Veterinary Drug Control (MOA Center for Veterinary Drug Evaluation), Beijing, China
| | - Kun Guo
- Shunyi District Agricultural and Rural Burea, Beijing, China
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaozhen Song
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingren Qu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lvtao Lan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Liu L, Zhang W, Yu H, Xu L, Qu M, Li Y. Improved antioxidant activity and rumen fermentation in beef cattle under heat stress by dietary supplementation with creatine pyruvate. Anim Sci J 2020; 91:e13486. [PMID: 33222328 DOI: 10.1111/asj.13486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
Pyruvate and creatine, energetics and antioxidant substances, can promote rumen fermentation and metabolism. This study aimed to evaluate the stress resistance and rumen fermentation effects of the compound creatine pyruvate (CrPyr) in diets for beef cattle under heat stress. Four Jinjiang steers fitted with permanent rumen cannulas were used in a 4 × 4 Latin square design and fed a diet supplemented with CrPyr at 0, 20, 40, or 60 g/d. Heat stress was employed for 62 of 64 days. Supplementing with CrPyr elevated their levels of free triiodothyronine and triiodothyronine, superoxide dismutase activity, ruminal pH value, microbial crude protein concentration, crude fat digestibility, nitrogen intake, and levels of urine allantoin and total purine derivatives. It also reduced their levels of cortisol and corticosterone, malondialdehyde concentration, lactate dehydrogenase activity, and urine nitrogen excretion. In conclusion, CrPyr relieves the heat stress of beef cattle by improving antioxidant activity and rumen microbial protein synthesis.
Collapse
Affiliation(s)
- Lin Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenjing Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hanjing Yu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
17
|
Barido FH, Lee CW, Park YS, Kim DY, Lee SK. The effect of a finishing diet supplemented with γ-aminobutyric acids on carcass characteristics and meat quality of Hanwoo steers. Anim Biosci 2020; 34:621-632. [PMID: 32882778 PMCID: PMC7961294 DOI: 10.5713/ajas.20.0224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/03/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study was conducted to investigate the effects of supplementation with rumen-protected γ-aminobutyric acid (GABA) on carcass characteristics and meat quality of Hanwoo steers. METHODS Eighteen Hanwoo steers with an average initial weight of 644.83±12.91 kg were randomly allocated into three different groups. Each group consisted of 6 animals that were treated with different diets formulated based on the animals' body weights. The control (C) group was fed a basal diet consisting of concentrate and rice straw with 74% total digestible nutrients (TDNs) and 12% crude protein (CP). The two other groups were treatment groups; one group was fed a basal diet (74% TDNs and 12% CP) supplemented with rumen-protected GABA at a dose of 150 mg/kg feed, and the other group was fed a basal diet (74% TDNs and 12% CP) supplemented with GABA at a dose of 300 mg/kg feed. RESULTS The GABA supplementation significantly contributed to better growth performance (p<0.05), especially the weight gain and average daily gain. It also contributed to the lower cooking loss (p<0.05), improvements in essential antioxidant enzymes and stable regulation of antioxidant activities in the longissimus lumborum of Hanwoo steers, as represented by the lower formation of malondialdehyde content within the meat, the inhibition of myoglobin oxidation indicated by the retention of the oxymyoglobin percentage, and the suppression of metmyoglobin percentage during cold storage (p<0.05). CONCLUSION Higher doses of GABA may not significantly promote better animal performance and meat quality, suggesting that dietary supplementation with GABA at a dose of 100 ppm is sufficient to improve the meat quality of Hanwoo steers.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Chang Woo Lee
- Gangwon Province Livestock Research Institute, Hoengseong 25266, Korea
| | - Yeon Soo Park
- Gangwon Province Livestock Research Institute, Hoengseong 25266, Korea
| | - Do Yeong Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sung Ki Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
18
|
Chen J, Guo K, Song X, Lan L, Liu S, Hu R, Luo J. The anti-heat stress effects of Chinese herbal medicine prescriptions and rumen-protected γ-aminobutyric acid on growth performance, apparent nutrient digestibility, and health status in beef cattle. Anim Sci J 2020; 91:e13361. [PMID: 32219958 DOI: 10.1111/asj.13361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2020] [Accepted: 02/02/2020] [Indexed: 11/27/2022]
Abstract
This study aims to evaluate the anti-heat stress effect of Chinese herbal medicine (CHM) prescription, rumen-protected γ-aminobutyric acid (RP-GABA), and CHM plus RP-GABA co-medication on growth performance, apparent digestibility, and serum parameters in heat-stressed beef cattle. Forty beef cattle were randomly divided into four groups. Control group was supplied with basal diet, while CHM, γ-aminobutyric acid (GABA), and CHM + GABA groups were, respectively, supplied with CHM, RP-GABA, and CHM plus RP-GABA in basal diet. Our result indicated that CHM + GABA elevated apparent digestibility including crude protein, Ca, P, crude fat (CF) (p < .01), and neutral detergent fiber (NDF) (p < .05), but no difference was found with CF and NDF digestibility both in CHM and GABA group (p > .05). More importantly, average daily gain (ADG) was improved in CHM, GABA, and CHM + GABA groups, while average daily feed intake (ADFI) significantly increased only in CHM + GABA groups (p < .05). Meanwhile, CHM + GABA displayed notably more positive effect in serum hormones, immune globulin, ions contents, and blood inflammatory cytokines than other treatment groups and control group. These results demonstrated that both CHM and GABA are effective in alleviating heat stress response and the co-medication has a synergistic effect on anti-heat stress.
Collapse
Affiliation(s)
- Jian Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Kun Guo
- Shunyi District Agricultural and Rural Burea, Beijing, China
| | - Xiaozhen Song
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Lvtao Lan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Shiqi Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
19
|
Xie Y, Chen Z, Wang D, Chen G, Sun X, He Q, Luo J, Chen T, Xi Q, Zhang Y, Sun J. Effects of Fermented Herbal Tea Residues on the Intestinal Microbiota Characteristics of Holstein Heifers Under Heat Stress. Front Microbiol 2020; 11:1014. [PMID: 32528442 PMCID: PMC7264259 DOI: 10.3389/fmicb.2020.01014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/24/2020] [Indexed: 01/01/2023] Open
Abstract
Herbal tea residue (HTR) is a reusable resource with high nutritional value and bioactive substances content, which can be used as a feed additive. In the present study, HTRs were fermented by lactic acid bacteria, and then fed to a total of 90 Holstein heifers, termed as CN, LC, and HC groups. The supplementation improved physiological indices of respiratory frequency and rectal temperature, increased the concentrations of immunoglobulins and antioxidant capacity-related parameters, and reduced the concentrations of heat stress-related parameters and serum hormones. The heifers’ body height increased considerably, while their energy metabolism rates were stimulated in response to fermented HTRs. We also studied the fecal microbial community composition of 8 Holstein heifers in each group, and employed correlation analysis with tested parameters. We found that the bacteria were closely related to characteristics including the energy utilization rate, growth performance, serum biochemical indexes, and fecal SCFA levels of the heifers. Based on our findings, the 5% fermented HTRs replaced corn silage might be advantageous for the heifers’ characteristics under heat stress.
Collapse
Affiliation(s)
- Yueqin Xie
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zujing Chen
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Dongyang Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaohong Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qian He
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Zeng H, Xi Y, Li Y, Wang Z, Zhang L, Han Z. Analysis of Astragalus Polysaccharide Intervention in Heat-Stressed Dairy Cows' Serum Metabolomics. Animals (Basel) 2020; 10:ani10040574. [PMID: 32235382 PMCID: PMC7222412 DOI: 10.3390/ani10040574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
This experiment was conducted to investigate the effects of astragalus polysaccharides (APS) on serum metabolism of dairy cows under heat stress. Thirty healthy Holstein dairy cows were randomly divided into three groups (10 cows in each group). In the experimental group, 30 mL/d (Treatment I) and 50 mL/d (Treatment II) of APS injection were injected into the neck muscle respectively. Each stage was injected with APS for 4 days (8:00 a.m. every day) and stopped for 3 days. Serum hormone and antioxidant indexes of dairy cows were investigated. Through repeated measurement analysis of variance, the results have shown that cortisol (COR) (F = 6.982, p = 0.026), triiodothyronine (T3) (F = 10.005, p = 0.012) and thyroxine (T4) (F = 22.530, p = 0.002) at different time points were significantly different. COR showed a downward trend, T3 and T4 showed an upward trend. At each time point, different concentrations of APS have significant effects on COR (F = 30.298, p = 0.000 < 0.05), T3 (F = 18.122, p = 0.001), and T4 (F = 44.067, p = 0.000 < 0.05). However, there were no significant differences in serum insulin (INS), glucagon (GC) and heat shock protein 70 (HSP70) between different time points (p > 0.05) and at each time point (p > 0.05). Additionally, the results have also shown that there were also no significant differences in serum Superoxide dismutase (SOD), malondialdehyde (MDA) and lactate dehydrogenase (LDH) between different time points (p > 0.05) and at each time point (p > 0.05). However, the injection of APS had a significant impact on glutathione peroxidase (GSH-Px) (F = 9.421, p = 0.014) at different times, and showed a trend of rising first and then falling. At each time point, APS of different concentrations had no significant effect on GSH-Px (p > 0.05). Furthermore, we used gas chromatography-mass spectrometry (GC-MS) non-targeted metabolomics to determine the potential markers of APS for heat-stressed dairy cows. Twenty metabolites were identified as potential biomarkers for the diagnosis of APS in heat-stressed dairy cows. These substances are involved in protein digestion and absorption, glutathione metabolism, prolactin signaling pathway, aminoacyl-tRNA biosynthesis, pentose and glucuronate interconversions, and so on. Our findings suggest that APS have an effect on the serum hormones of heat-stressed dairy cows, and regulate the metabolism of heat-stressed dairy cows through glucose metabolism and amino acid metabolism pathways.
Collapse
Affiliation(s)
- Hanfang Zeng
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Yumeng Xi
- Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yeqing Li
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zedong Wang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Lin Zhang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zhaoyu Han
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
- Correspondence: ; Tel.: +13851685522; Fax: +02584395314
| |
Collapse
|
21
|
Effects of mixed crushed caraway (Carum carvi) with chromium-methionine or zinc-methionine supplementations on serum components and physiological responses of lambs subjected to transportation stress. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Orhan C, Tuzcu M, Deeh PBD, Sahin N, Komorowski JR, Sahin K. Organic Chromium Form Alleviates the Detrimental Effects of Heat Stress on Nutrient Digestibility and Nutrient Transporters in Laying Hens. Biol Trace Elem Res 2019; 189:529-537. [PMID: 30132119 DOI: 10.1007/s12011-018-1485-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/15/2018] [Indexed: 11/26/2022]
Abstract
In the present study, we investigated the effects of chromium-picolinate (CrPic) and chromium-histidinate (CrHis) on nutrient digestibility and nutrient transporters in laying hens exposed to heat stress (HS). Hens (n = 1800; 16 weeks old) were kept in cages in temperature-controlled rooms at either 22 ± 2 °C for 24 h/day (thermoneutral (TN)) or 34 ± 2 °C for 8 h/day, from 08:00 to 17:00, followed by 22 °C for 16 h (HS) for 12 weeks. Hens reared under both environmental conditions were fed one of three diets: a basal diet and the basal diet supplemented with either 1.600 mg of CrPic (12.43% Cr) or 0.788 mg of CrHis (25.22% Cr) per kg of diet, delivering 200 μg elemental Cr per kg of diet. HS impaired the nutrient digestibility and nutrient transports in laying hens (P < 0.001). However, both Cr sources increased digestibility of dry matter (DM; P < 0.001), organic matter (OM; P < 0.05), crude protein (CP; P < 0.001), and crude fat (CF; P < 0.001). Both Cr sources partially alleviated detrimental effects of HS on fatty acid-binding and transport protein1 (FABP1, FATP1), glucose (SGLT1, GLUT1, GLUT10), protein (PepT1, PepT2), and amino acid transporters (ASCT1, bo,+AT1, CAT1, EAAT1, LAT1) of the ileum (P < 0.0001). The efficacy of Cr as CrHis was more notable than Cr as CrPic, which could be attributed to higher bioavailability. Finally, the detrimental effects of HS on nutrient digestibility and nutrient transporters were alleviated by CrPic and CrHis. These findings may justify the use of CrPic and CrHis in poultry.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, 23119, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Patrick Brice Defo Deeh
- Department of Animal Biology, Faculty of Science, Animal Physiology and Phytopharmacology Laboratory, University of Dschang, P.O. BOX 67, Dschang, Cameroon
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, 23119, Elazig, Turkey
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
23
|
Chen H, Zhen J, Wu Z, Li X, Liu S, Tang Z, Sun Z. Grape seed extract and chromium nicotinate reduce impacts of heat stress in Simmental × Qinchuan steers. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To assess the impacts of grape seed extract (GSE) fed with or without chromium nicotinate (CN) on beef steers under heat stress conditions, 40 Simmental × Qinchuan steers (400 ± 10 days old; 410 ± 8.0 kg) were randomly assigned to one of four diets (n = 10 per group): basal diet (CON group); basal diet + 33 mg/day CN (CN group); basal diet + 65 mg/kg DM GSE (GSE group); and basal diet + 33 mg/day CN + 65 mg/kg DM GSE (CN + GSE group). This study was conducted in summer and the steers were housed in outdoor shaded pens (10 steers/pen) and fed individually. The experiment lasted for 35 days, the first 7 days for diet and housing condition adaptation. The amount of feed intake was recorded daily; individual bodyweight was recorded on Days 8, 22, and 36. On Day 36 before feeding, six steers per group were slaughtered for collection of blood and tissue samples. Average daily liveweight gain and dry matter intake of steers were increased by the GSE, CN, and CN + GSE treatments (P < 0.05). Dietary treatments increased the activities of glutathione peroxidase and total superoxide dismutase in plasma (P < 0.05) and plasma concentration of interleukin 10 on Days 22 and 36 (P < 0.05), whereas decreased plasma concentration of tumour necrosis factor-α on Day 22 (P < 0.05). Overall, supplementation of GSE alone or with CN had positive effects on the growth performance of steers under heat stress conditions.
Collapse
|
24
|
Liao Y, Hu R, Wang Z, Peng Q, Dong X, Zhang X, Zou H, Pu Q, Xue B, Wang L. Metabolomics Profiling of Serum and Urine in Three Beef Cattle Breeds Revealed Different Levels of Tolerance to Heat Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6926-6935. [PMID: 29905066 DOI: 10.1021/acs.jafc.8b01794] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study was to determine differences in the global metabolic profiles of serum and urine of Xuanhan yellow cattle, Simmental crossbred cattle (Simmental × Xuanhan yellow cattle), and cattle-yaks (Jersey × Maiwa yak) under heat stress (temperature-humidity index remained above 80 for 1 week). A total of 55 different metabolites associated with the three breeds were identified in the serum and urine samples by gas chromatography-mass spectrometry. The metabolic adaptations to heat stress are heterogeneous. Cattle-yaks mobilize a greater amount of body protein to release glucogenic amino acids to supply energy, whereas the tricarboxylic acid cycle is inhibited. Simmental crossbred cattle mobilize a greater amount of body fat to use free fatty acids as an energy source. In comparison with Simmental crossbred cattle and cattle-yaks, Xuanhan yellow cattle have higher glycolytic activity and possess a stronger antioxidant defense system and are, in conclusion, more adapted to hot and humid environments.
Collapse
Affiliation(s)
- Yupeng Liao
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Rui Hu
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Quanhui Peng
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Xianwen Dong
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Xiangfei Zhang
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Huawei Zou
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Qijian Pu
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Bai Xue
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Lizhi Wang
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| |
Collapse
|
25
|
Guo K, Cao H, Zhu Y, Wang T, Hu G, Kornmatitsuk B, Luo J. Improving effects of dietary rumen protected γ-aminobutyric acid additive on apparent nutrient digestibility, growth performance and health status in heat-stressed beef cattle. Anim Sci J 2018; 89:1280-1286. [DOI: 10.1111/asj.13053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/25/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Kun Guo
- Jiangxi Provincial Key Laboratory for Animal Health; Institute of Animal Population Health; College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang Jiangxi China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health; Institute of Animal Population Health; College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang Jiangxi China
| | - Yuanjun Zhu
- Jiangxi Provincial Key Laboratory for Animal Health; Institute of Animal Population Health; College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang Jiangxi China
| | - Tiancheng Wang
- Jiangxi Provincial Key Laboratory for Animal Health; Institute of Animal Population Health; College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang Jiangxi China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health; Institute of Animal Population Health; College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang Jiangxi China
| | - Bunlue Kornmatitsuk
- Faculty of Veterinary Science; Department of Clinical Sciences and Public Health; Mahidol University; Phutthamonthon Nakhon Pathom Thailand
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health; Institute of Animal Population Health; College of Animal Science and Technology; Jiangxi Agricultural University; Nanchang Jiangxi China
| |
Collapse
|
26
|
Song Y, Zhu J, Wang T, Zhang C, Yang F, Guo X, Liu P, Cao H, Hu G. Effect of Ultra-fine Traditional Chinese Medicine Compounds on Regulation of Lipid Metabolism and Reduction in Egg Cholesterol of Laying Hens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Y Song
- Jiangxi Agricultural University, P. R. China
| | - J Zhu
- Jiangxi Agricultural University, P. R. China
| | - T Wang
- Jiangxi Agricultural University, P. R. China
| | - C Zhang
- Jiangxi Agricultural University, P. R. China
| | - F Yang
- Jiangxi Agricultural University, P. R. China
| | - X Guo
- Jiangxi Agricultural University, P. R. China
| | - P Liu
- Jiangxi Agricultural University, P. R. China
| | - H Cao
- Jiangxi Agricultural University, P. R. China
| | - G Hu
- Jiangxi Agricultural University, P. R. China
| |
Collapse
|
27
|
Mei C, He SS, Yin P, Xu L, Shi YR, Yu XH, Lyu A, Liu FH, Jiang LS. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury. J Zhejiang Univ Sci B 2017; 17:413-24. [PMID: 27256675 DOI: 10.1631/jzus.b1500261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. MATERIALS AND METHODS An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. RESULTS HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. CONCLUSIONS Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.
Collapse
Affiliation(s)
- Chen Mei
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Sha-Sha He
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, China
| | - Peng Yin
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, China
| | - Lei Xu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ya-Ran Shi
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Hong Yu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - An Lyu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Feng-Hua Liu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Lin-Shu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|