1
|
Adepoju OE, Xu L, Chavez S, Dang P, Tipton M, Arguelles MP, Buttorff GJ, Wong MC. Back-to-Back Climate shocks and the mental health crisis: A Texas-sized surge in depression and anxiety ER visits. Am J Emerg Med 2025; 91:123-131. [PMID: 40049073 DOI: 10.1016/j.ajem.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025] Open
Abstract
Climate change is intensifying the frequency and severity of climate-related disasters, posing significant challenges to public mental health. This study explores the relationship between successive climate events and emergency department (ED) visits for depression and anxiety in the Greater Houston area from 2019 to 2023. Combining monthly data from the Texas Syndromic Surveillance System, the National Weather Service, and the Agency for Healthcare Research and Quality, we conducted a time-series analysis to assess the impact of successive weather events on ED visits for anxiety and depression. Our random forest models reveal significant associations between weather variables and mental health-related ED visits. Specifically, time series decomposition uncovered distinct seasonal patterns, with specific periods consistently showing higher demand for mental health services. Additionally, the analysis indicates that severe weather events that restrict mobility, such as hurricanes and tropical storms, initially lead to a decrease in ED visits, followed by a surge in the following months, whereas events that do not impede travel, such as heatwaves and droughts, correlate with immediate increases in visits. Feature importance analysis indicated social factors, such as the number of households and children ≤17, along with weather variables like average temperature and total precipitation, were significant predictors of ED visits for both anxiety and depression. Access to healthcare services, including proximity to healthcare clinics and treatment centers, also played a crucial role. These observed patterns underscore the significant influence of seasonal and weather-related factors on mental health and underscore the need for targeted public health interventions that consider the timing and nature of climate events, as well as strategies to enhance community resilience and strengthen mental health support systems.
Collapse
Affiliation(s)
- Omolola E Adepoju
- Humana Integrated Health Systems Sciences Institute, University of Houston, United States of America; Tilman J Fertitta Family College of Medicine, University of Houston, United States of America.
| | - Lulu Xu
- Humana Integrated Health Systems Sciences Institute, University of Houston, United States of America
| | - Summer Chavez
- Humana Integrated Health Systems Sciences Institute, University of Houston, United States of America; Tilman J Fertitta Family College of Medicine, University of Houston, United States of America
| | - Patrick Dang
- Humana Integrated Health Systems Sciences Institute, University of Houston, United States of America
| | - Mary Tipton
- Humana Integrated Health Systems Sciences Institute, University of Houston, United States of America
| | | | - Gail J Buttorff
- Hobby School of Public Affairs, University of Houston, United States of America
| | - Man Chiu Wong
- Hobby School of Public Affairs, University of Houston, United States of America
| |
Collapse
|
2
|
Çelebi Sözener Z, Treffeisen ER, Özdel Öztürk B, Schneider LC. Global warming and implications for epithelial barrier disruption and respiratory and dermatologic allergic diseases. J Allergy Clin Immunol 2023; 152:1033-1046. [PMID: 37689250 PMCID: PMC10864040 DOI: 10.1016/j.jaci.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Global warming has direct and indirect effects, as well as short- and long-term impacts on the respiratory and skin barriers. Extreme temperature directly affects the airway epithelial barrier by disrupting the structural proteins and by triggering airway inflammation and hyperreactivity. It enhances tidal volume and respiratory rate by affecting the thermoregulatory system, causing specific airway resistance and reflex bronchoconstriction via activation of bronchopulmonary vagal C fibers and upregulation of transient receptor potential vanilloid (TRPV) 1 and TRPV4. Heat shock proteins are activated under heat stress and contribute to both epithelial barrier dysfunction and airway inflammation. Accordingly, the frequency and severity of allergic rhinitis and asthma have been increasing. Heat activates TRPV3 in keratinocytes, causing the secretion of inflammatory mediators and eventually pruritus. Exposure to air pollutants alters the expression of genes that control skin barrier integrity and triggers an immune response, increasing the incidence and prevalence of atopic dermatitis. There is evidence that extreme temperature, heavy rains and floods, air pollution, and wildfires increase atopic dermatitis flares. In this narrative review, focused on the last 3 years of literature, we explore the effects of global warming on respiratory and skin barrier and their clinical consequences.
Collapse
Affiliation(s)
- Zeynep Çelebi Sözener
- Division of Immunology and Allergic Diseases, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Elsa R Treffeisen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Betül Özdel Öztürk
- Division of Immunology and Allergic Diseases, Bolu Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Lynda C Schneider
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
3
|
Makrufardi F, Manullang A, Rusmawatiningtyas D, Chung KF, Lin SC, Chuang HC. Extreme weather and asthma: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:32/168/230019. [PMID: 37286218 DOI: 10.1183/16000617.0019-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Climate change's influence on extreme weather events poses a significant threat to the morbidity and mortality of asthma patients. The aim of this study was to examine associations between extreme weather events and asthma-related outcomes. METHODS A systematic literature search for relevant studies was performed using the PubMed, EMBASE, Web of Science and ProQuest databases. Fixed-effects and random-effects models were applied to estimate the effects of extreme weather events on asthma-related outcomes. RESULTS We observed that extreme weather events were associated with increasing risks of general asthma outcomes with relative risks of 1.18-fold for asthma events (95% CI 1.13-1.24), 1.10-fold for asthma symptoms (95% CI 1.03-1.18) and 1.09-fold for asthma diagnoses (95% CI 1.00-1.19). Extreme weather events were associated with increased risks of acute asthma exacerbation with risk ratios of asthma emergency department visits of 1.25-fold (95% CI 1.14-1.37), of asthma hospital admissions of 1.10-fold (95% CI 1.04-1.17), of asthma outpatient visits of 1.19-fold (95% CI 1.06-1.34) and of asthma mortality of 2.10-fold (95% CI 1.35-3.27). Additionally, an increase in extreme weather events increased risk ratios of asthma events by 1.19-fold in children and 1.29-fold in females (95% CI 1.08-1.32 and 95% CI 0.98-1.69, respectively). Thunderstorms increased the risk ratio of asthma events by 1.24-fold (95% CI 1.13-1.36). CONCLUSIONS Our study showed that extreme weather events more prominently increased the risk of asthma morbidity and mortality in children and females. Climate change is a critical concern for asthma control.
Collapse
Affiliation(s)
- Firdian Makrufardi
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Amja Manullang
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Desy Rusmawatiningtyas
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Climate Change Related Catastrophic Rainfall Events and Non-Communicable Respiratory Disease: A Systematic Review of the Literature. CLIMATE 2022. [DOI: 10.3390/cli10070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is increasing the frequency and intensity of extreme precipitation events, the impacts of which disproportionately impact urban populations. Pluvial flooding and flooding related sewer backups are thought to result in an increase in potentially hazardous human-pathogen encounters. However, the extent and nature of associations between flooding events and non-communicable respiratory diseases such as chronic bronchitis, asthma, and chronic obstructive pulmonary disease (COPD) are not well understood. This research seeks to characterize the state of research on flooding and NCRDs through a systematic review of the scientific literature. We conducted a systematic search of PubMed, Web of Science, and Scopus for published scholarly research papers using the terms flooding, monsoon, and tropical storm with terms for common NCRDs such as asthma, COPD, and chronic bronchitis. Papers were included if they covered research studies on individuals with defined outcomes of flooding events. We excluded review papers, case studies, and opinion pieces. We retrieved 200 articles from PubMed, 268 from Web of Science and 203 from Scopus which comprised 345 unique papers. An initial review of abstracts yielded 38 candidate papers. A full text review of each left 16 papers which were included for the review. All papers except for one found a significant association between a severe weather event and increased risk for at least one of the NCRDs included in this research. Our findings further suggest that extreme weather events may worsen pre-existing respiratory conditions and increase the risk of development of asthma. Future work should focus on more precisely defining measure of health outcomes using validated tools to describe asthma and COPD exacerbations. Research efforts should also work to collect granular data on patients’ health status and family history and assess possible confounding and mediating factors such as neighborhood water mitigation infrastructure, housing conditions, pollen counts, and other environmental variables.
Collapse
|
5
|
Projecting the Impacts of a Changing Climate: Tropical Cyclones and Flooding. Curr Environ Health Rep 2022; 9:244-262. [PMID: 35403997 DOI: 10.1007/s40572-022-00340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW There is clear evidence that the earth's climate is changing, largely from anthropogenic causes. Flooding and tropical cyclones have clear impacts on human health in the United States at present, and projections of their health impacts in the future will help inform climate policy, yet to date there have been few quantitative climate health impact projections. RECENT FINDINGS Despite a wealth of studies characterizing health impacts of floods and tropical cyclones, many are better suited for qualitative, rather than quantitative, projections of climate change health impacts. However, a growing number have features that will facilitate their use in quantitative projections, features we highlight here. Further, while it can be difficult to project how exposures to flood and tropical cyclone hazards will change in the future, climate science continues to advance in its capabilities to capture changes in these exposures, including capturing regional variation. Developments in climate epidemiology and climate science are opening new possibilities in projecting the health impacts of floods and tropical cyclones under a changing climate.
Collapse
|
6
|
Sheehan MC. 2021 Climate and Health Review - Uncharted Territory: Extreme Weather Events and Morbidity. INTERNATIONAL JOURNAL OF HEALTH SERVICES 2022; 52:189-200. [PMID: 35229682 DOI: 10.1177/00207314221082452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extreme weather events (EWEs) affected health in every world region during 2021, placing the planet in "uncharted territory." Portraying the human impacts of EWEs is part of a health frame that suggests public knowledge of these risks will spur support for needed policy change. The health frame has gained traction since the Paris COP21 (United Nations Climate Change Conference) and arguably helped to achieve modest progress at the Glasgow COP26. However, reporting rarely covers the full picture of health impacts from EWEs, instead focusing on cost of damages, mortality, and displacement. This review summarizes data for 30 major EWEs of 2021 and, based on the epidemiological literature, discusses morbidity-related exposures for four hazards that marked the year: wildfire smoke; extreme cold and power outages; extreme, precipitation-related flooding; and drought. A very large likely burden of morbidity was found, with particularly widespread exposure to risk of respiratory outcomes (including interactions with COVID-19) and mental illnesses. There is need for a well-disseminated global annual report on EWE morbidity, including affected population estimates and evolving science. In this way, the public health frame may be harnessed to bolster evidence for the broader and promising frame of "urgency and agency" for climate change action.
Collapse
Affiliation(s)
- Mary C Sheehan
- Department of Health Policy & Management, Johns Hopkins Bloomberg School of Public Health, USA.,Public Policy Center, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|