1
|
Zhang W, Tocher P, L'Heureux J, Sou J, Sun H. Measuring, Analyzing, and Presenting Work Productivity Loss in Randomized Controlled Trials: A Scoping Review. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2023; 26:123-137. [PMID: 35961865 DOI: 10.1016/j.jval.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 05/14/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES This study aimed to conduct a scoping review of randomized controlled trials (RCTs) and investigate which work productivity loss outcomes were measured in these RCTs, how each outcome was measured and analyzed, and how the results for each outcome were presented. METHODS A systematic search was conducted from January 2010 to April 2020 from 2 databases: PubMed and Cochrane Central Register of Controlled Trials. Data on country, study population, disease focus, sample size, work productivity loss outcomes measured (absenteeism, presenteeism, employment status changes), and methods used to measure, report, and analyze each work productivity loss outcome were extracted and analyzed. RESULTS We found 435 studies measuring absenteeism or presenteeism, of which 155 studies (35.6%) measured both absenteeism and presenteeism and were included in our final review. Only 9 studies also measured employment status changes. The most used questionnaire was the Work Productivity and Activity Impairment Questionnaire. The analysis of absenteeism and presenteeism data was mostly done using regression models (n = 98, n = 98, respectively) for which a normal distribution was assumed (n = 77, n = 89, respectively). Absenteeism results were most often presented in time whereas presenteeism was commonly presented using a percent scale or score. CONCLUSIONS There is a lack of consensus on how to measure, analyze, and present work productivity loss outcomes in RCTs published in the past 10 years. The diversity of measurement, analysis, and presentation methods used in RCTs may make comparability challenging. There is a need for guidelines providing recommendations to standardize the comprehensiveness and the appropriateness of methods used to measure, analyze, and report work productivity loss in RCTs.
Collapse
Affiliation(s)
- Wei Zhang
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada; Centre for Health Evaluation and Outcome Sciences, Vancouver, BC, Canada.
| | - Paige Tocher
- Centre for Health Evaluation and Outcome Sciences, Vancouver, BC, Canada
| | - Jacynthe L'Heureux
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Julie Sou
- Centre for Health Evaluation and Outcome Sciences, Vancouver, BC, Canada
| | - Huiying Sun
- Centre for Health Evaluation and Outcome Sciences, Vancouver, BC, Canada
| |
Collapse
|
2
|
Malaguarnera G, Catania VE, Bertino G, Chisari LM, Castorina M, Bonfiglio C, Cauli O, Malaguarnera M. Acetyl-L-carnitine Slows the Progression from Prefrailty to Frailty in Older Subjects: A Randomized Interventional Clinical Trial. Curr Pharm Des 2022; 28:3158-3166. [PMID: 36043711 DOI: 10.2174/1381612828666220830092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Ageing is characterized by a gradual decline in body function, representing the clinical situation called "frailty". Prefrailty is the intermediate stage between frailty and robust condition. L-carnitine (LC) plays an important role in energy production from long-chain fatty acids in mitochondria, and its serum level is lower in prefrail and frail subjects. OBJECTIVE This study aims to evaluate the effect of Acetyl-L-carnitine (ALCAR) in pre-frail older patients. METHODS We scheduled 3 months of treatment and then 3 months of follow-up. A total of 92 subjects were selected from May, 2009 to July, 2017, in a randomized, observational, double-blind, placebo-controlled study. We scheduled 3 months of treatment and then 3 months of follow-up. ALCAR (oral 1.5 g/bis in die - BID) or placebo groups were used. RESULTS After the treatment, only the treated group displayed a decrease in C reactive protein (CRP) p < 0.001 and an increase in serum-free carnitine and acetylcarnitine (p < 0.05) in Mini-Mental state (MMSE) p < 0.0001 and 6-walking distance (p < 0.0001); ALCAR group vs. placebo group showed a decrease in HDL cholesterol and CRP (p < 0.01), an increase in MMSE score (p < 0.001) and in the 6-walking distance (p < 0.001). CONCLUSIONS ALCAR treatment delays the incidence and severity of onset of degenerative disorders of the elderly in prefrail subjects with improvement in memory and cognitive processes.
Collapse
Affiliation(s)
- Giulia Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Vito Emanuele Catania
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gaetano Bertino
- Hepatology Unit, A.O.U. Policlinico- San Marco, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Maria Chisari
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | | | | | - Omar Cauli
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, c/Jaume Roig s/n, 46010 Valencia, Spain.,Frailty and Cognitive Impairment Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Michele Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.,Department of Psychobiology, Facultad de Psicología, Universidad de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| |
Collapse
|
3
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
4
|
Vaziri-Harami R, Delkash P. Can l-carnitine reduce post-COVID-19 fatigue? Ann Med Surg (Lond) 2021; 73:103145. [PMID: 34925826 PMCID: PMC8667465 DOI: 10.1016/j.amsu.2021.103145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
A significant number of patients infected with the new coronavirus suffer from chronic fatigue syndrome after COVID-19, and their symptoms may persist for months after the infection. Nevertheless, no particular treatment for post-disease fatigue has been found. At the same time, many clinical trials have shown the effectiveness of l-carnitine in relieving fatigue caused by the treatment of diseases such as cancer, MS, and many other diseases. Therefore, it can be considered as a potential option to eliminate the effects of fatigue caused by COVID-19, and its consumption is recommended in future clinical trials to evaluate its effectiveness and safety. The coronavirus disease is a viral infection that could induce different respiratory. A significant number of patients infected with the new coronavirus suffer from chronic fatigue. Clinical trials have shown the effectiveness of L-carnitine in relieving fatigue.
Collapse
Affiliation(s)
- Roya Vaziri-Harami
- Department of Psychiatry, School of Medicine, Behavioural Sciences Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Delkash
- Department of Adult Rheumatology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Altay O, Arif M, Li X, Yang H, Aydın M, Alkurt G, Kim W, Akyol D, Zhang C, Dinler‐Doganay G, Turkez H, Shoaie S, Nielsen J, Borén J, Olmuscelik O, Doganay L, Uhlén M, Mardinoglu A. Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101222. [PMID: 34180141 PMCID: PMC8420376 DOI: 10.1002/advs.202101222] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 is associated with mitochondrial dysfunction and metabolic abnormalities, including the deficiencies in nicotinamide adenine dinucleotide (NAD+ ) and glutathione metabolism. Here it is investigated if administration of a mixture of combined metabolic activators (CMAs) consisting of glutathione and NAD+ precursors can restore metabolic function and thus aid the recovery of COVID-19 patients. CMAs include l-serine, N-acetyl-l-cysteine, nicotinamide riboside, and l-carnitine tartrate, salt form of l-carnitine. Placebo-controlled, open-label phase 2 study and double-blinded phase 3 clinical trials are conducted to investigate the time of symptom-free recovery on ambulatory patients using CMAs. The results of both studies show that the time to complete recovery is significantly shorter in the CMA group (6.6 vs 9.3 d) in phase 2 and (5.7 vs 9.2 d) in phase 3 trials compared to placebo group. A comprehensive analysis of the plasma metabolome and proteome reveals major metabolic changes. Plasma levels of proteins and metabolites associated with inflammation and antioxidant metabolism are significantly improved in patients treated with CMAs as compared to placebo. The results show that treating patients infected with COVID-19 with CMAs lead to a more rapid symptom-free recovery, suggesting a role for such a therapeutic regime in the treatment of infections leading to respiratory problems.
Collapse
Affiliation(s)
- Ozlem Altay
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
- Department of Clinical MicrobiologyDr Sami Ulus Training and Research HospitalUniversity of Health SciencesAnkara06080Turkey
| | - Muhammad Arif
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
| | - Xiangyu Li
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
| | - Hong Yang
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
| | - Mehtap Aydın
- Department of Infectious DiseasesUmraniye Training and Research HospitalUniversity of Health SciencesIstanbul34766Turkey
| | - Gizem Alkurt
- Genomic Laboratory (GLAB)Umraniye Training and Research HospitalUniversity of Health SciencesIstanbul34766Turkey
| | - Woonghee Kim
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
| | - Dogukan Akyol
- Genomic Laboratory (GLAB)Umraniye Training and Research HospitalUniversity of Health SciencesIstanbul34766Turkey
| | - Cheng Zhang
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Gizem Dinler‐Doganay
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbul34469Turkey
| | - Hasan Turkez
- Department of Medical BiologyFaculty of MedicineAtatürk UniversityErzurum25240Turkey
| | - Saeed Shoaie
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonSE1 1ULUK
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSE‐41296Sweden
| | - Jan Borén
- Department of Molecular and Clinical MedicineUniversity of Gothenburg and Sahlgrenska University Hospital GothenburgGothenburgSE‐41345Sweden
| | - Oktay Olmuscelik
- Department of Internal MedicineIstanbul Medipol UniversityBagcılarIstanbul34214Turkey
| | - Levent Doganay
- Department of GastroenterologyUmraniye Training and Research HospitalUniversity of Health SciencesIstanbul34766Turkey
| | - Mathias Uhlén
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
| | - Adil Mardinoglu
- Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSE‐100 44Sweden
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonSE1 1ULUK
| |
Collapse
|
6
|
Carnitine Serum Levels in Frail Older Subjects. Nutrients 2020; 12:nu12123887. [PMID: 33352627 PMCID: PMC7766818 DOI: 10.3390/nu12123887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Frailty is an expression that reconciles and condenses loss of autonomy, both physical and cognitive decline and a wide spectrum of adverse outcomes due to aging. The decrease in physical and cognitive activity is associated with altered mitochondrial function, and energy loss and consequently morbidity and mortality. In this cross-sectional study, we evaluated the carnitine levels in frailty status. The mean serum concentrations of total carnitine (TC) were lower in frail elderly subjects than in prefrail ones (p = 0.0006), higher in frail vs. robust subjects (p < 0.0001), and higher in prefrail vs. robust subjects (p < 0.0001). The mean serum concentrations of free carnitine (FC) were lower in frail elderly subjects than in prefrail ones (p < 0.0001), lower in frail vs. robust subjects (p < 0.0001) and lower in prefrail vs. robust subjects (p = 0.0009). The mean serum concentrations of acylcarnitine (AC) were higher in frail elderly subjects than in prefrail ones (p = 0.054) and were higher in pre-frail vs. robust subjects (p = 0.0022). The mean urine concentrations of TC were lower in frail elderly subjects than in prefrail ones (p < 0.05) and lower in frail vs. robust subjects (p < 0.0001). The mean urine concentrations of free carnitine were lower in frail elderly vs. robust subjects (p < 0.05). The mean urine concentrations of acyl carnitines were lower in frail elderly subjects than those in both prefrail (p < 0.0001) and robust subjects (p < 0.0001). Conclusion: high levels of carnitine may have a favorable effect on the functional status and may treat the frailty status in older subjects.
Collapse
|
7
|
Catania VE, Malaguarnera G, Fiorenza G, Chisari EM, Lipari AR, Gallina V, Pennisi M, Lanza G, Malaguarnera M. Hepatitis C Virus Infection Increases Fatigue in Health Care Workers. Diseases 2020; 8:37. [PMID: 33076215 PMCID: PMC7709099 DOI: 10.3390/diseases8040037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Fatigue is a common state associated with a weakening or depletion of one's physical and mental resources, that leads to the inability to continue the individual functioning at a normal level of activity. Frequently, fatigue represents a response to infections, inflammation and autoimmune diseases. The scope of this study was to evaluate the fatigue in healthcare workers with and without hepatitis C virus (HCV) infection. Mental, physical and severity fatigue were evaluated through Krupp, Wessely and Powell fatigue scale. Anti-HCV antibodies, HCV RNA and HCV genotypes were also measured. Physical, mental and severity fatigue were higher in healthcare workers with HCV infection than the healthcare workers without infection (p < 0.01). Our data showed a direct link between fatigue and HCV infection in healthcare workers. Further studies are needed to evaluate HCV antiviral treatments on fatigue severity and on quality of life in healthcare workers.
Collapse
Affiliation(s)
- Vito Emanuele Catania
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy;
| | - Giulia Malaguarnera
- “The Great Senescence” Research Centre, University of Catania, 95100 Catania, Italy; (G.M.); (G.F.)
| | - Giorgia Fiorenza
- “The Great Senescence” Research Centre, University of Catania, 95100 Catania, Italy; (G.M.); (G.F.)
| | | | | | - Valentino Gallina
- SPRESAL ASP ENNA, 94100 Enna, Italy; (A.R.L.); (V.G.)
- Faculty of Engineering and Architecture-Risk analysis and work safety organization-Kore University of Enna, 94100 Enna, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Science, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Michele Malaguarnera
- “The Great Senescence” Research Centre, University of Catania, 95100 Catania, Italy; (G.M.); (G.F.)
| |
Collapse
|
8
|
Pirmadah F, Ramezani-Jolfaie N, Mohammadi M, Talenezhad N, Clark CCT, Salehi-Abargouei A. Does L-carnitine supplementation affect serum levels of enzymes mainly produced by liver? A systematic review and meta-analysis of randomized controlled clinical trials. Eur J Nutr 2020; 59:1767-1783. [PMID: 31385062 DOI: 10.1007/s00394-019-02068-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS L-carnitine supplementation is proposed to reduce liver enzymes levels; however, previous findings were equivocal. The current systematic review and meta-analysis of randomized controlled clinical trials (RCTs) were performed to assess the effect of L-carnitine supplementation on serum levels of enzymes mainly produced by liver [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transpeptidase (GGTP)]. METHODS Online databases as well as the reference lists of relevant studies were searched from inception up to June 2019. The risk of bias in individual studies was assessed using Cochrane Collaboration's tool. Data were pooled using the random-effects model and expressed as mean differences (MDs) with 95% confidence intervals (CIs). RESULTS In total, 18 RCTs (1161 participants) met the eligibility criteria. L-carnitine supplementation dose ranged from 500 to 4000 mg/day. L-carnitine supplementation significantly reduced serum ALT (MD = - 8.65 IU/L, 95% CI - 13.40, - 3.90), AST (MD = - 8.52 IU/L, 95% CI - 12.16, - 4.89), and GGTP (MD = - 8.80 IU/L, 95% CI - 13.67, - 3.92) levels. The subgroup analysis showed that L-carnitine might be more effective in reducing the enzymes when supplemented in higher doses (≥ 2000 mg/day), for longer durations (> 12 weeks), and among patients with liver diseases. The meta-evidence was graded as "moderate" for ALT and AST, and "low" for GGTP according to NutriGrade scoring system. CONCLUSION L-carnitine supplementation significantly improves circulating ALT, AST and GGTP levels; therefore, it might positively affect liver function, especially among patients with liver diseases. Further high-quality RCTs are recommended to confirm our results.
Collapse
Affiliation(s)
- Farzaneh Pirmadah
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nahid Ramezani-Jolfaie
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mohammadi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasir Talenezhad
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Cain C T Clark
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
9
|
Talenezhad N, Mohammadi M, Ramezani-Jolfaie N, Mozaffari-Khosravi H, Salehi-Abargouei A. Effects of l-carnitine supplementation on weight loss and body composition: A systematic review and meta-analysis of 37 randomized controlled clinical trials with dose-response analysis. Clin Nutr ESPEN 2020; 37:9-23. [PMID: 32359762 DOI: 10.1016/j.clnesp.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Clinical evidence which investigated the effects of l-carnitine, a vitamin-like substance, on weight loss had led to inconsistent results. This study therefore aimed to examine the effect of l-carnitine supplementation on body weight and composition by including the maximum number of randomized controlled trials (RCTs) and to conduct a dose-response analysis, for the first time. METHODS AND RESULTS Online databases were searched up to January 2019. In total, 37 RCTs (with 2292 participants) were eligible. Meta-analysis showed that l-carnitine supplementation significantly decreased body weight [Weighted mean difference (WMD) = -1.21 kg, 95% confidence interval (CI): -1.73, -0.68; P < 0.001], body mass index (BMI) (WMD = -0.24 kg/m2, 95% CI: -0.37, -0.10; P = 0.001), and fat mass (WMD = -2.08 kg, 95% CI: -3.44, -0.72; P = 0.003). No significant effect was seen for waist circumference (WC) and body fat percent. The meta-analysis of high-quality RCTs only confirmed the effect on body weight. A non-linear dose-response association was seen between l-carnitine supplementation and body weight reduction (P < 0.001) suggesting that ingestion of 2000 mg l-carnitine per day provides the maximum effect in adults. This association was not seen for BMI, WC and body fat percent. CONCLUSIONS l-carnitine supplementation provides a modest reducing effect on body weight, BMI and fat mass, especially among adults with overweight/obesity.
Collapse
Affiliation(s)
- Nasir Talenezhad
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mohammadi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nahid Ramezani-Jolfaie
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Ibrahim Mohammed Ebid AH, Ashraf Ahmed O, Hassan Agwa S, Mohamed Abdel-Motaleb S, Mohamed Elsawy A, Hagag RS. Safety, efficacy and cost of two direct-acting antiviral regimens: A comparative study in chronic hepatitis C Egyptian patients. J Clin Pharm Ther 2019; 45:539-546. [PMID: 31889322 DOI: 10.1111/jcpt.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Direct-acting antivirals (DAAs) have become the most widely used treatment of chronic hepatitis C infection. Comparative studies on DAAs regimens approved by the Egyptian Ministry of Health for easy-to-treat genotype 4 (G4) Egyptian patients are still deficient. In this prospective study, we compared the efficacy and cost of two DAA regimens that are used in the treatment of Egyptian chronic hepatitis C virus (HCV) G4. The cost-saving regimen is determined. METHODS Eligible patients were randomized into 2 groups. Group 1 (Gp 1) received sofosbuvir plus daclatasvir, and group 2 (Gp 2) received ombitasvir, paritaprevir and ritonavir plus ribavirin (RBV) for 12 weeks. Data were collected and evaluated at baseline and at weeks 4, 8 and 12. Sustained virologic response 12 weeks after the end of treatment (SVR12 ) was evaluated. Cost-minimization analysis (CMA) was performed. RESULTS AND DISCUSSION Eligibility was achieved in 107 patients, Gp1 included 57 patients, and Gp 2 included 50 patients. Two patients dropped out from Gp 2 due to non-compliance. All patients in the two groups showed negative HCV blood levels at the end of treatment. At the 24th week, 3 relapsers (5.2%) were detected in Gp1 and 2 relapsers (4.1%) were detected in Gp 2. SVR12 was 54/57 (94.7%) and 46/48 (95.8%) for Gp 1 and Gp 2, respectively. After the 12th week of treatment, a significant decrease in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and haemoglobin levels were observed in both groups. Albumin levels declined in Gp 2 only. CMA showed higher cost in Gp 2 than Gp 1, although similar efficacy and safety. WHAT IS NEW AND CONCLUSION The two DAA regimens showed high SVR12 and safety in Egyptian HCV G4 patients. Sofosbuvir plus daclatasvir is the cost-saving regimen.
Collapse
Affiliation(s)
| | - Osama Ashraf Ahmed
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara Hassan Agwa
- Department of Clinical & Chemical Pathology at MASRI, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Amira Mohamed Elsawy
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Radwa Samir Hagag
- Department of Pharmacy Practice, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| |
Collapse
|
11
|
Sato S, Moriya K, Furukawa M, Saikawa S, Namisaki T, Kitade M, Kawaratani H, Kaji K, Takaya H, Shimozato N, Sawada Y, Seki K, Kitagawa K, Akahane T, Mitoro A, Okura Y, Yamao J, Yoshiji H. Efficacy of L-carnitine on ribavirin-induced hemolytic anemia in patients with hepatitis C virus infection. Clin Mol Hepatol 2019; 25:65-73. [PMID: 30798587 PMCID: PMC6435976 DOI: 10.3350/cmh.2018.0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/02/2018] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND/AIMS L-carnitine not only alleviates hyperammonemia and reduces muscle cramps in patients with liver cirrhosis, but also improves anemia in patients with chronic hepatitis and renal dysfunction. This study prospectively evaluated the preventative efficacy of L-carnitine supplementation against hemolytic anemia during antiviral treatment using ribavirin in patients with hepatitis C virus (HCV)-related chronic liver disease. METHODS A total of 41 patients with chronic hepatitis were consecutively enrolled in this study. Group A (n=22) received sofosbuvir plus ribavirin for 3 months, whereas group B (n=19) was treated with sofosbuvir, ribavirin, and L-carnitine. Hemoglobin concentration changes, the effects of antiviral treatment, and the health status of patients were analyzed using short form-8 questionnaires. RESULTS A significantly smaller decrease in hemoglobin concentration was observed in group B compared to group A at every time point. Moreover, the prescribed dose intensity of ribavirin in group B was higher than that of group A, resulting in a higher ratio of sustained virological response (SVR) 24 in group B compared with group A. The physical function of patients in group B was also significantly improved compared to group A at the end of antiviral treatment. CONCLUSION L-carnitine supplementation alleviates ribavirin-induced hemolytic anemia in patients with HCV and helps relieve the physical burden of treatment with ribavirin-containing regimens. These advantages significantly increase the likelihood of achieving SVR.
Collapse
Affiliation(s)
- Shinya Sato
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kei Moriya
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Masanori Furukawa
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Soichiro Saikawa
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Tadashi Namisaki
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Mitsuteru Kitade
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hideto Kawaratani
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kosuke Kaji
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hiroaki Takaya
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Naotaka Shimozato
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yasuhiko Sawada
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kenichiro Seki
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Koh Kitagawa
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Takemi Akahane
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Akira Mitoro
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yasushi Okura
- Department of Endoscopy, Nara Medical University, Nara, Japan
| | - Junichi Yamao
- Department of Endoscopy, Nara Medical University, Nara, Japan
| | - Hitoshi Yoshiji
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
12
|
Martí‐Carvajal AJ, Gluud C, Arevalo‐Rodriguez I, Martí‐Amarista CE, Cochrane Hepato‐Biliary Group. Acetyl-L-carnitine for patients with hepatic encephalopathy. Cochrane Database Syst Rev 2019; 1:CD011451. [PMID: 30610762 PMCID: PMC6353234 DOI: 10.1002/14651858.cd011451.pub2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatic encephalopathy is a common and devastating neuropsychiatric complication of acute liver failure or chronic liver disease. Ammonia content in the blood seems to play a role in the development of hepatic encephalopathy. Treatment for hepatic encephalopathy is complex. Acetyl-L-carnitine is a substance that may reduce ammonia toxicity. This review assessed the benefits and harms of acetyl-L-carnitine for patients with hepatic encephalopathy. OBJECTIVES To assess the benefits and harms of acetyl-L-carnitine for patients with hepatic encephalopathy. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE Ovid, Embase Ovid, LILACS, and Science Citation Index Expanded for randomised clinical trials. We sought additional randomised clinical trials from the World Health Organization Clinical Trials Search Portal and ClinicalTrials.gov. We performed all electronic searches until 10 September 2018. We looked through the reference lists of retrieved publications and review articles, and we searched the FDA and EMA websites. SELECTION CRITERIA We searched for randomised clinical trials in any setting, recruiting people with hepatic encephalopathy. Trials were eligible for inclusion if they compared acetyl-L-carnitine plus standard care (e.g. antibiotics, lactulose) versus placebo or no acetyl-L-carnitine plus standard care. We are well aware that by selecting randomised clinical trials, we placed greater focus on potential benefits than on potential harms. DATA COLLECTION AND ANALYSIS We selected randomised clinical trials, assessed risk of bias in eight domains, and extracted data in a duplicate and independent fashion. We estimated risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes. We measured statistical heterogeneity using I² and D² statistics. We subjected our analyses to fixed-effect and random-effects model meta-analyses. We assessed bias risk domains to control systematic errors. We assessed overall quality of the data for each individual outcome by using the GRADE approach. MAIN RESULTS We identified five randomised clinical trials involving 398 participants. All trials included only participants with cirrhosis as the underlying cause of hepatic encephalopathy. Trials included participants with covert or overt hepatic encephalopathy. All trials were conducted in Italy by a single team and assessed acetyl-L-carnitine compared with placebo. Oral intervention was the most frequent route of administration. All trials were at high risk of bias and were underpowered. None of the trials were sponsored by the pharmaceutical industry.None of the identified trials reported information on all-cause mortality, serious adverse events, or days of hospitalisation. Only one trial assessed quality of life using the Short Form (SF)-36 scale (67 participants; very low-quality evidence). The effects of acetyl-L-carnitine compared with placebo on general health at 90 days are uncertain (MD -6.20 points, 95% confidence interval (CI) -9.51 to -2.89). Results for additional domains of the SF-36 are also uncertain. One trial assessed fatigue using the Wessely and Powell test (121 participants; very low-quality evidence). The effects are uncertain in people with moderate-grade hepatic encephalopathy (mental fatigue: MD 0.40 points, 95% CI -0.21 to 1.01; physical fatigue: MD -0.20 points, 95% CI -0.92 to 0.52) and mild-grade hepatic encephalopathy (mental fatigue: -0.80 points, 95% CI -1.48 to -0.12; physical fatigue: 0.20 points, 95% CI -0.72 to 1.12). Meta-analysis showed a reduction in blood ammonium levels favouring acetyl-L-carnitine versus placebo (MD -13.06 mg/dL, 95% CI -17.24 to -8.99; 387 participants; 5 trials; very low-quality evidence). It is unclear whether acetyl-L-carnitine versus placebo increases the risk of non-serious adverse events (8/126 (6.34%) vs 3/120 (2.50%); RR 2.51, 95% CI 0.68 to 9.22; 2 trials; very low-quality evidence). Overall, adverse events data were poorly reported and harms may have been underestimated. AUTHORS' CONCLUSIONS This Cochrane systematic review analysed a heterogeneous group of five trials at high risk of bias and with high risk of random errors conducted by only one research team. We assessed acetyl-L-carnitine versus placebo in participants with cirrhosis with covert or overt hepatic encephalopathy. Hence, we have no data on the drug for hepatic encephalopathy in acute liver failure. We found no information about all-cause mortality, serious adverse events, or days of hospitalisation. We found no clear differences in effect between acetyl-L-carnitine and placebo regarding quality of life, fatigue, and non-serious adverse events. Acetyl-L-carnitine reduces blood ammonium levels compared with placebo. We rated all evidence as of very low quality due to pitfalls in design and execution, inconsistency, small sample sizes, and very few events. The harms profile for acetyl-L-carnitine is presently unclear. Accordingly, we need further randomised clinical trials to assess acetyl-L-carnitine versus placebo conducted according to the SPIRIT statements and reported according to the CONSORT statements.
Collapse
Affiliation(s)
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | - Ingrid Arevalo‐Rodriguez
- Hospital Universitario Ramon y Cajal (IRYCIS)Clinical Biostatistics UnitMadridSpain
- CIBER Epidemiology and Public Health (CIBERESP)MadridSpain
| | | | | |
Collapse
|
13
|
Resveratrol in Hepatitis C Patients Treated with Pegylated-Interferon-α-2b and Ribavirin Reduces Sleep Disturbance. Nutrients 2017; 9:nu9080897. [PMID: 28820468 PMCID: PMC5579690 DOI: 10.3390/nu9080897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Hepatitis C virus infection and interferon treatment have shown to be risk factors for sleep disorder health-related quality of life. Aim: To determine whether the effects of resveratrol on sleep disorders were associated with different tests in subjects with chronic hepatitis C treated with Peg-IFN-α and RBV. Patients and Methods: In this prospective, randomized, placebo controlled, double blind clinical trial, 30 subjects (Group A) with chronic hepatitis received Pegylated-Interferon-α2b (1.5 mg/kg per week), Ribavirin and placebo (N-acetylcysteine 600 mg and lactoferrin 23.6 g), while 30 subjects (Group B) received the same dosage of Pegylated-Interferon-α2b, Ribavirin and association of N-acetylcysteine 600 mg, lactoferrin 23.6 g and Resveratrol 19.8 mg for 12 months. All subjects underwent laboratory exams and questionnaires to evaluate mood and sleep disorders (General Health Questionnaire (GHQ), Profile of Mood States (POMS), Pittsburgh Sleep Quality Inventory (PSQI), Epworth Sleepiness Scale (ESS)). Results: The comparison between Group A and Group B showed significant differences after six months in C-reactive protein (p < 0.0001); after 12 months in aspartate aminotransferase (AST) (p < 0.0001) Viremia (p < 0.0001), HAI (p < 0.0012) and C-reactive protein (p < 0.0001); and at follow up in AST (p < 0.0001), Viremia (p < 0.0026) and C-reactive protein (p < 0.0001). Significant differences were observed after 12 month and follow-up in General Health Questionnaire, after 1, 6, 12 and follow-up in Profile of Mood States, after 6, 12, follow-up in Pittsburgh Sleep Quality Inventory and Epworth Sleepiness Scale. Conclusions: Supplementation with Resveratrol decreased General Health Questionnaire score and reduced sleep disorders in patients treated with Peg–IFN-α and RBV.
Collapse
|
14
|
Jamilian H, Jamilian M, Samimi M, Afshar Ebrahimi F, Rahimi M, Bahmani F, Aghababayan S, Kouhi M, Shahabbaspour S, Asemi Z. Oral carnitine supplementation influences mental health parameters and biomarkers of oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Gynecol Endocrinol 2017; 33:442-447. [PMID: 28277138 DOI: 10.1080/09513590.2017.1290071] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Limited data are available assessing the effects of oral carnitine supplementation on mental health parameters and biomarkers of oxidative stress of women with polycystic ovary syndrome (PCOS).This study was designed to determine the effects of oral carnitine supplementation on mental health parameters and biomarkers of oxidative stress in women with PCOS. METHODS In the current randomized, double-blind, placebo-controlled trial, 60 patients diagnosed with PCOS were randomized to take either 250 mg carnitine supplements (n = 30) or placebo (n = 30) for 12 weeks. RESULTS After 12 weeks' intervention, compared with the placebo, carnitine supplementation resulted in a significant improvement in Beck Depression Inventory total score (-2.7 ± 2.3 versus -0.2 ± 0.7, p < 0.001), General Health Questionnaire scores (-6.9 ± 4.9 versus -0.9 ± 1.5, p < 0.001) and Depression Anxiety and Stress Scale scores (-8.7 ± 5.9 versus -1.2 ± 2.9, p = 0.001). In addition, changes in plasma total antioxidant capacity (TAC) (+84.1 ± 151.8 versus +4.6 ± 64.5 mmol/L, p = 0.01), malondialdehyde (MDA) (-0.4 ± 1.0 versus +0.5 ± 1.5 μmol/L, p = 0.01) and MDA/TAC ratio (-0.0005 ± 0.0010 versus +0.0006 ± 0.0019, p = 0.003) in the supplemented group were significantly different from the changes in these indicators in the placebo group. CONCLUSIONS Overall, our study demonstrated that carnitine supplementation for 12 weeks among patients with PCOS had favorable effects on parameters of mental health and biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Hamidreza Jamilian
- a Department of Psychiatry , Arak University of Medical Sciences , Arak , Iran
| | - Mehri Jamilian
- b Endocrinology and Metabolism Research Center, Department of Gynecology and Obstetrics, School of Medicine, Arak University of Medical Sciences , Arak , Iran
| | - Mansooreh Samimi
- c Department of Gynecology and Obstetrics , School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| | - Faraneh Afshar Ebrahimi
- c Department of Gynecology and Obstetrics , School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| | - Maryam Rahimi
- d Department of Gynecology and Obstetrics , School of Medicine, Iran University of Medical Sciences , Tehran , Iran , and
| | - Fereshteh Bahmani
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Sama Aghababayan
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Mobina Kouhi
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Sedighe Shahabbaspour
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Zatollah Asemi
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
15
|
Chen N, Yang M, Zhou M, Xiao J, Guo J, He L, Cochrane Dementia and Cognitive Improvement Group. L-carnitine for cognitive enhancement in people without cognitive impairment. Cochrane Database Syst Rev 2017; 3:CD009374. [PMID: 28349514 PMCID: PMC6464592 DOI: 10.1002/14651858.cd009374.pub3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Safe interventions to enhance cognitive function in cognitively healthy people would be very valuable for several reasons, including a better quality of life and professional success. While L-carnitine has been reported to enhance cognitive function in some conditions, its efficacy is disputed. The evidence of its efficacy for cognitively healthy people has not previously been systematically reviewed. OBJECTIVES To assess the efficacy and safety of L-carnitine for the enhancement of cognitive function in people without cognitive impairment. SEARCH METHODS We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group's Specialized Register, on 4 November 2016. We used the search terms 'L-carnitine' or 'acetyl-L-carnitine' or 'propionyl-L-carnitine' or 'ALC' or 'PLC' or 'ALCAR' or 'ALPAR'. We ran additional separate searches in several other sources to ensure that we retrieved the most up-to-date results. We also reviewed the bibliographies of the randomised controlled trials identified and contacted the authors and known experts in the field and pharmaceutical companies to identify additional published or unpublished data. SELECTION CRITERIA Eligible trials were randomised controlled trials (RCTs) or quasi-RCTs, parallel-group or cross-over, that compared L-carnitine or its derivatives, acetyl-L-carnitine or propionyl-L-carnitine, at any dose and for any length of treatment, with placebo or no treatment in cognitively healthy people of any age and either gender. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Two review authors independently selected trials and evaluated the methodological quality, then extracted and analysed data from the included trials. MAIN RESULTS Only two RCTs were eligible. One was a cross-over trial with 18 participants. The other randomised 400 participants to one of four treatments, of which two (L-carnitine and placebo) were relevant to this review, but the exact numbers of participants in these two treatment groups was not reported. All participants were young adults. Methodological details were poorly reported, and we considered the risk of bias in both studies to be unclear. The trials assessed different cognitive outcomes. We could extract cognitive data on approximately 200 participants from one trial. We found no evidence that L-carnitine has any effect on reaction time, vigilance, immediate memory, or delayed recall after three days of treatment. This trial report stated that there was a small number of adverse effects, none of which were serious. The small cross-over trial also reported no effect of L-carnitine on cognition, but did not provide data; no information was provided on adverse effects. We considered the available evidence to be of very low quality for all reported outcomes. AUTHORS' CONCLUSIONS Due to the limited number of included trials, short-term treatment, and inadequate reporting, we were unable to draw any conclusions about the efficacy or safety of L-carnitine for cognitive enhancement in healthy adults. Well-designed, randomised, placebo-controlled trials of L-carnitine for cognition enhancement in cognitively healthy people, with large samples and relatively long-term follow-up, are still needed.
Collapse
Affiliation(s)
- Ning Chen
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Mi Yang
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Muke Zhou
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Jing Xiao
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Jian Guo
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Li He
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | | |
Collapse
|
16
|
Malaguarnera G, Bertino G, Chisari G, Motta M, Vecchio M, Vacante M, Caraci F, Greco C, Drago F, Nunnari G, Malaguarnera M. Silybin supplementation during HCV therapy with pegylated interferon-α plus ribavirin reduces depression and anxiety and increases work ability. BMC Psychiatry 2016; 16:398. [PMID: 27842532 PMCID: PMC5109776 DOI: 10.1186/s12888-016-1115-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatitis C virus infection and interferon treatment are often associated with anxiety, depressive symptoms and poor health-related quality of life. To evaluate the Silybin-vitamin E-phospholipids complex effect on work ability and whether health related factors (anxiety and depression) were associated with work ability in subjects with chronic hepatitis C treated with Pegylated-Interferon-α2b (Peg-IFN) and Ribavirin (RBV). METHODS Thirty-one patients (Group A) with chronic hepatitis and other 31 subjects in Group B were recruited in a randomized, prospective, placebo controlled, double blind clinical trial. Group A received 1.5 mg/kg per week of Peg-IFN plus RBV and placebo, while Group B received the same dosage of Peg-IFN plus RBV plus association of Silybin 94 mg + vitamin E 30 mg + phospholipids 194 mg in pills for 12 months. All subjects underwent to laboratory exams and questionnaires to evaluate depression (Beck Depression Inventory - BDI), anxiety (State-trait anxiety inventory - STAI) and work ability (Work ability Index - WAI). RESULTS The comparison between group A and group B showed significant differences after 6 months in ALT (P < 0.001), and viremia (P < 0.05), after 12 months in ALT (P < 0.001), and AST (P < 0.001), at follow up in AST (P < 0.05), and ALT (P < 0.001). Significant difference were observed after 1 month in WAI (p < 0.001) and BDI (P < 0.05), after 6 months in WAI (P < 0.05) and STAI (P < 0.05), after 12 months and at follow up in WAI, STAI and BDI (p < 0.01). CONCLUSIONS The supplementation with Silybin-vitamin E -phospholipids complex increased work ability and reduced depression and anxiety in patients treated with Peg-IFN and RBV. TRIAL REGISTRATION NCT01957319 , First received: September 25, 2013. Last updated: September 30, 2013 (retrospectively registered).
Collapse
Affiliation(s)
- Giulia Malaguarnera
- Research Center "The Great Senescence", University of Catania, Catania, Italy. .,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Gaetano Bertino
- Department of Experimental and Clinical Medicine, University of Catania, Catania, Italy
| | - Giuseppe Chisari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Motta
- Research Center “The Great Senescence”, University of Catania, Catania, Italy ,Department of Experimental and Clinical Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- U.O.C Physical Medicine and Rehabilitation, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Marco Vacante
- Research Center “The Great Senescence”, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy ,IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Carmela Greco
- Research Center “The Great Senescence”, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Nunnari
- Department of Experimental and Clinical Medicine, University of Catania, Catania, Italy
| | - Michele Malaguarnera
- Research Center “The Great Senescence”, University of Catania, Catania, Italy ,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Rapisarda V, Loreto C, Malaguarnera M, Ardiri A, Proiti M, Rigano G, Frazzetto E, Ruggeri MI, Malaguarnera G, Bertino N, Malaguarnera M, Catania VE, Di Carlo I, Toro A, Bertino E, Mangano D, Bertino G. Hepatocellular carcinoma and the risk of occupational exposure. World J Hepatol 2016; 8:573-90. [PMID: 27168870 PMCID: PMC4858622 DOI: 10.4254/wjh.v8.i13.573] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. The main risk factors for HCC are alcoholism, hepatitis B virus, hepatitis C virus, nonalcoholic steatohepatitis, obesity, type 2 diabetes, cirrhosis, aflatoxin, hemochromatosis, Wilson's disease and hemophilia. Occupational exposure to chemicals is another risk factor for HCC. Often the relationship between occupational risk and HCC is unclear and the reports are fragmented and inconsistent. This review aims to summarize the current knowledge regarding the association of infective and non-infective occupational risk exposure and HCC in order to encourage further research and draw attention to this global occupational public health problem.
Collapse
Affiliation(s)
- Venerando Rapisarda
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Carla Loreto
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Michele Malaguarnera
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Annalisa Ardiri
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Proiti
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Rigano
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Evelise Frazzetto
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Irene Ruggeri
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giulia Malaguarnera
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Nicoletta Bertino
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Mariano Malaguarnera
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Vito Emanuele Catania
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Isidoro Di Carlo
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Adriana Toro
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Emanuele Bertino
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Dario Mangano
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Gaetano Bertino
- Venerando Rapisarda, Dario Mangano, Occupational Medi-cine Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
18
|
Huisman EJ, van Meer S, van Hoek B, van Soest H, van Nieuwkerk KMJ, Arends JE, Siersema PD, van Erpecum KJ. Effects of preventive versus "on-demand" nutritional support on paid labour productivity, physical exercise and performance status during PEG-interferon-containing treatment for hepatitis C. Clin Res Hepatol Gastroenterol 2016; 40:221-9. [PMID: 26188490 DOI: 10.1016/j.clinre.2015.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/31/2015] [Accepted: 06/08/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Deterioration of nutritional status during PEG-interferon containing therapy for chronic hepatitis C can be ameliorated by preventive nutritional support. We aimed to explore whether such support also affects paid labour productivity, physical exercise and performance status. METHODS In this prospective randomized controlled trial (J Hepatol 2012;57:1069-75), 53 patients with chronic hepatitis C had been allocated to "on demand" support (n=26: nutritional intervention if weight loss>5%) or preventive support (n=27: regular dietary advice plus energy- and protein-rich evening snack) during PEG-interferon-containing therapy. Paid labour productivity, physical exercise and performance status were evaluated at baseline, after 24 and (if applicable) after 48 weeks of treatment. RESULTS At baseline, 46% of patients performed paid labour and 62% performed some kind of physical exercise. Furthermore, most patients were able to carry out normal activity with only minor symptoms of disease (mean Karnofsky performance score: 94). Decreases of paid labour productivity (-21% vs. -70%, P=0.003), physical exercise activity (-43% vs. -87%, P=0.005) and Karnofsky performance scores (-12% vs. -24%, P<0.001) were less in the preventive than in "on demand" group after 24 weeks of treatment. Effects of preventive nutritional support were even more pronounced after 48 weeks. CONCLUSIONS Preventive nutritional support markedly ameliorates decreases of paid labour productivity, physical exercise and performance status during PEG-interferon-containing treatment for chronic hepatitis C.
Collapse
Affiliation(s)
- Ellen J Huisman
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands
| | - Suzanne van Meer
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, University Medical Center, Leiden, The Netherlands
| | - Hanneke van Soest
- Department of Gastroenterology and Hepatology, Medical Center Haaglanden, The Hague, The Netherlands
| | - Karin M J van Nieuwkerk
- Department of Gastroenterology and Hepatology, VU Medical Center, Amsterdam, The Netherlands
| | - Joop E Arends
- Department of Internal Medicine and Infectious Diseases, University Medical Center, Utrecht, The Netherlands
| | - Peter D Siersema
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands
| | - Karel J van Erpecum
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Bertino G, Ardiri A, Proiti M, Rigano G, Frazzetto E, Demma S, Ruggeri MI, Scuderi L, Malaguarnera G, Bertino N, Rapisarda V, Di Carlo I, Toro A, Salomone F, Malaguarnera M, Bertino E, Malaguarnera M. Chronic hepatitis C: This and the new era of treatment. World J Hepatol 2016; 8:92-106. [PMID: 26807205 PMCID: PMC4716531 DOI: 10.4254/wjh.v8.i2.92] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/29/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over the last years it has started a real revolution in the treatment of chronic hepatitis C. This occurred for the availability of direct-acting antiviral agents that allow to reach sustained virologic response in approximately 90% of cases. In the near future further progress will be achieved with the use of pan-genotypic drugs with high efficacy but without side effects.
Collapse
|
20
|
Malaguarnera M, Motta M, Vacante M, Malaguarnera G, Caraci F, Nunnari G, Gagliano C, Greco C, Chisari G, Drago F, Bertino G. Silybin-vitamin E-phospholipids complex reduces liver fibrosis in patients with chronic hepatitis C treated with pegylated interferon α and ribavirin. Am J Transl Res 2015; 7:2510-2518. [PMID: 26807195 PMCID: PMC4697727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
Chronic hepatitis C is both a virologic and a fibrotic disease, with mortality resulting mainly from the complications of cirrhosis and HCC. The aim was to evaluate the impact on of supplementation with a new pharmaceutical complex of silybinvitamin E-phospholipids in patients with chronic hepatitis C treated with Pegylated-Interferon-α2b plus Ribavirin. In this prospective, randomized, placebo controlled, double blind clinical trial, 32 subjects with chronic hepatitis, received Pegylated-Interferon-α2b (1.5 mg/kg per week) plus Ribavirin and placebo, while 32 subjects received the same dosage of Pegylated-Interferon-α2b plus Ribavirin plus association of Silybin 47 mg + vitamin E 15 mg + phospholipids 97 mg in two pill for 12 months. Serum levels of the following markers of liver fibrosis were evaluated: transforming growth factor beta, hyaluronic acid, metalloproteinase 2, amino-terminal pro-peptide of type III procollagen, tissue inhibitor of matrix metalloproteinase type I. The comparison between group A and group B showed a significant difference in ALT (P<0.001), and viremia (P<0.05) after 12 months; in TGF beta levels after 12 months and at follow up (P<0.05); in MMP-2 after 6 months (P<0.05); in PIIINP after 6, 12 months and at follow up (P<0.05); in TIMP-1 after 6, 12 months and at follow up (P<0.001). In conclusion, the supplementation with silybin-vitamin E-phosholipids complex ameliorated the response to Peg-IFN plus RBV treatment and reduced serum levels of markers of liver fibrosis. The ameliorative effect of the complex maybe related to a direct effect on the activation of hepatic stellate cells, or mediated via antioxidants.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Research Center, The Great Senescence, University of CataniaItaly
- Department of Biomedical and Biotechnological Sciences, University of CataniaItaly
| | - Massimo Motta
- Research Center, The Great Senescence, University of CataniaItaly
| | - Marco Vacante
- Research Center, The Great Senescence, University of CataniaItaly
| | - Giulia Malaguarnera
- Research Center, The Great Senescence, University of CataniaItaly
- Department of Biomedical and Biotechnological Sciences, University of CataniaItaly
| | - Filippo Caraci
- IRCCS Oasi Maria S.S. Institute for Research on Mental Retardation and Brain AgingTroina, Enna, Italy
- Department of Drug Sciences, University of CataniaItaly
| | - Giuseppe Nunnari
- Department of Experimental and Clinical Medicine, University of CataniaItaly
| | - Caterina Gagliano
- Research Center, The Great Senescence, University of CataniaItaly
- Neurovisual Science Technology (NEST) CataniaItaly
| | - Carmela Greco
- Research Center, The Great Senescence, University of CataniaItaly
| | - Giuseppe Chisari
- Department of Biomedical and Biotechnological Sciences, University of CataniaItaly
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of CataniaItaly
| | - Gaetano Bertino
- Department of Experimental and Clinical Medicine, University of CataniaItaly
| |
Collapse
|
21
|
Bertino G, Demma S, Ardiri A, Proiti M, Malaguarnera G, Bertino N, Malaguarnera M, Malaguarnera M. The immune system in hepatocellular carcinoma and potential new immunotherapeutic strategies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731469. [PMID: 25893197 PMCID: PMC4393929 DOI: 10.1155/2015/731469] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hepatocellular carcinoma is a major health problem worldwide and the third most common cause of cancer-related death. HCC treatment decisions are complex and dependent upon tumor staging. Several molecular targeted agents have been evaluated in clinical trials in advanced HCC. Despite of only modest objective response rates according to the Response Evaluation Criteria in Solid Tumors, several studies showed encouraging results in terms of prolongation of the time to progression, disease stabilization, and survival. Cellular immunotherapy would improve the immune state and has potential in enhancing the therapeutic outcome for HCC patients. MATERIALS AND METHODS A search of the literature was made using cancer literature, the PubMed, Scopus, and Web of Science (WOS) database for the following keywords: "hepatocellular carcinoma," "molecular hepatocarcinogenesis," "targeted therapy," "molecular immunological targets," "tumour-associated antigens," "Tregs," "MDSCs," "immunotherapy." DISCUSSION AND CONCLUSION Treatment strategies combining blockade of immunoregulatory cell types such as Tregs and MDSCs and of inhibitory receptors, with vaccine-induced activation of TAA-specific T cells, may be necessary to achieve the most effective therapeutic antitumour activity in HCC. In the future, new therapeutic options will be represented by a blend of immunotherapy-like vaccines and T-cell modulators, supplemented by molecularly targeted inhibitors of tumor signaling pathways.
Collapse
Affiliation(s)
- Gaetano Bertino
- Department of Medical and Pediatric Sciences, Hepatology Unit, University of Catania, Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Shirin Demma
- Department of Medical and Pediatric Sciences, Hepatology Unit, University of Catania, Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Annalisa Ardiri
- Department of Medical and Pediatric Sciences, Hepatology Unit, University of Catania, Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Maria Proiti
- Department of Medical and Pediatric Sciences, Hepatology Unit, University of Catania, Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Giulia Malaguarnera
- Research Centre “The Great Senescence”, University of Catania, Cannizzaro Hospital, Via Messina No. 829, 95100 Catania, Italy
| | - Nicoletta Bertino
- Faculty of Pharmacy, University of Catania, Viale Andrea Doria No. 6, 95123 Catania, Italy
- Faculty of Pharmacy, University of Catania, University of Catania Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Mariano Malaguarnera
- Department of Medical and Pediatric Science, Research Centre “The Great Senescence”, University of Catania, Cannizzaro Hospital, Via Messina No. 829, 95100 Catania, Italy
| | - Michele Malaguarnera
- Research Centre “The Great Senescence”, University of Catania, Cannizzaro Hospital, Via Messina No. 829, 95100 Catania, Italy
- International Ph.D. Program in Neuropharmacology, University of Catania, Cannizzaro Hospital, Via Messina No. 829, 95100 Catania, Italy
| |
Collapse
|