1
|
Anneke, Sujiwo J, Jang A. Korean Native Black Goat: A Review on Its Characteristics and Meat Quality. Food Sci Anim Resour 2025; 45:329-352. [PMID: 40093635 PMCID: PMC11907424 DOI: 10.5851/kosfa.2024.e134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 03/19/2025] Open
Abstract
The Korean native black goat (Capra hircus coreanae, KNBG) is an indigenous breed of Korea, consisting of three registered strains: Jangsu, Tongyeong, and Dangjin. KNBG meat is highly valued for its health benefits, including low levels of saturated fat and cholesterol, along with high levels of protein, calcium, and iron. It is a rich source of essential amino acids and other bioactive compounds, including L-carnitine, creatine, creatinine, carnosine, and anserine, which contribute significantly to maintaining good health. The increasing popularity of KNBG meat has expanded its culinary applications, including its use in various traditional dishes. Herbs and spices are often employed to further mitigate its distinct aroma and increase consumer appeal. This review highlights the distinctive attributes of KNBG, focusing on its nutritional composition, bioactive compounds, and meat quality. It underscores its potential as a health-promoting food source and explores innovative pathways for product development to address market challenges. Further research is needed to clarify KNBG's health impacts, ensure the authenticity and integrity of goat meat considering regulatory shifts, and optimize its role as a sustainable, health-promoting food for domestic and global markets.
Collapse
Affiliation(s)
- Anneke
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Joko Sujiwo
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
2
|
Akter R, Son JS, Ahn JC, Morshed MN, Lee GJ, Kim MJ, An JT, Kong BM, Song JH, Yang DC, Awais M, Yang DU. Korean Black Goat Extract Exerts Estrogen-like Osteoprotective Effects by Stimulating Osteoblast Differentiation in MC3T3-E1 Cells and Suppressing Osteoclastogenesis in RAW 264.7 Cells. Int J Mol Sci 2024; 25:7247. [PMID: 39000355 PMCID: PMC11241464 DOI: 10.3390/ijms25137247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Postmenopausal osteoporosis, characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-driven bone formation, presents substantial health implications. In this study, we investigated the role of black goat extract (BGE), derived from a domesticated native Korean goat, estrogen-like activity, and osteoprotective effects in vitro. BGE's mineral and fatty acid compositions were analyzed via the ICP-AES method and gas chromatography-mass spectrometry, respectively. In vitro experiments were conducted using MCF-7 breast cancer cells, MC3T3-E1 osteoblasts, and RAW264.7 osteoclasts. BGE exhibits a favorable amount of mineral and fatty acid content. It displayed antimenopausal activity by stimulating MCF-7 cell proliferation and augmenting estrogen-related gene expression (ERα, ERβ, and pS2). Moreover, BGE positively impacted osteogenesis and mineralization in MC3T3-E1 cells through Wnt/β-catenin pathway modulation, leading to heightened expression of Runt-related transcription factor 2, osteoprotegerin, and collagen type 1. Significantly, BGE effectively suppressed osteoclastogenesis by curtailing osteoclast formation and activity in RAW264.7 cells, concurrently downregulating pivotal signaling molecules, including receptor activator of nuclear factor κ B and tumor necrosis factor receptor-associated factor 6. This study offers a shred of preliminary evidence for the prospective use of BGE as an effective postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Jin Sung Son
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
- Hanbangbio Inc., Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Md Niaj Morshed
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Gyong Jai Lee
- SD Leo R&D Center, 9-16, Yeonmujang 5-gil, Seongdong-gu, Seoul 04782, Republic of Korea
| | - Min Jun Kim
- SaeromHanbang R&D Center, 76, Cheonseok-gil, Geumcheon-myeon, Naju-si 58216, Jeollanam-do, Republic of Korea
| | - Jeong Taek An
- Happiness Sales Co., Ltd., 403, Water Valley, 8, Dongtanjungsimsangga 1-gil, Hwaseong-si 18455, Gyeonggi-do, Republic of Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Joong-Hyun Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
- Hanbangbio Inc., Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Muhammad Awais
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Dong Uk Yang
- Hanbangbio Inc., Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Hur H, Kim HJ, Lee D, Jo C. Beef peptides mitigate skeletal muscle atrophy in C2C12 myotubes through protein degradation, protein synthesis, and the oxidative stress pathway. Food Funct 2024; 15:4564-4574. [PMID: 38584588 DOI: 10.1039/d3fo03911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study aimed to investigate the potential of beef peptides (BPs) in mitigating muscle atrophy induced by dexamethasone (DEX) with underlying three mechanisms in vitro (protein degradation, protein synthesis, and the oxidative stress pathway). Finally, the anti-atrophic effect of BPs was enhanced through purification and isolation. BPs were generated using beef loin hydrolyzed with alcalase/ProteAX/trypsin, each at a concentration of 0.67%, followed by ultrafiltration through a 3 kDa cut-off. BPs (10-100 μg mL-1) dose-dependently counteracted the DEX-induced reductions in myotube diameters, differentiation, fusion, and maturation indices (p < 0.05). Additionally, BPs significantly reduced FoxO1 protein dephosphorylation, thereby suppressing muscle-specific E3 ubiquitin ligases such as muscle RING-finger containing protein-1 and muscle atrophy F-box protein in C2C12 myotubes at concentrations exceeding 25 μg mL-1 (p < 0.05). BPs also enhanced the phosphorylation of protein synthesis markers, including mTOR, 4E-BP1, and p70S6K1, in a dose-dependent manner (p < 0.05) and increased the mRNA expression of antioxidant enzymes. Fractionated peptides derived from BPs, through size exclusion and polarity-based fractionation, also demonstrated enhanced anti-atrophic effects compared to BPs. These peptides downregulated the mRNA expression of primary muscle atrophy markers while upregulated that of antioxidant enzymes. Specifically, peptides GAGAAGAPAGGA (MW 924.5) and AFRSSTKK (MW 826.4) were identified from fractionated peptides of BPs. These findings suggest that BPs, specifically the peptide fractions GAGAAGAPAGGA and AFRSSTKK, could be a potential strategy to mitigate glucocorticoid-induced skeletal muscle atrophy by reducing the E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Hyeonjin Hur
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hye-Jin Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dongheon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Department of Animal Product Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, West Java 45363, Indonesia
| |
Collapse
|
4
|
Joo ST, Lee EY, Son YM, Hossain MJ, Kim CJ, Kim SH, Hwang YH. Aging mechanism for improving the tenderness and taste characteristics of meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1151-1168. [PMID: 38616883 PMCID: PMC11007300 DOI: 10.5187/jast.2023.e110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 04/16/2024]
Abstract
Tenderness and taste characteristics of meat are the key determinants of the meat choices of consumers. This review summarizes the contemporary research on the molecular mechanisms by which postmortem aging of meat improves the tenderness and taste characteristics. The fundamental mechanism by which postmortem aging improves the tenderness of meat involves the operation of the calpain system due to apoptosis, resulting in proteolytic enzyme-induced degradation of cytoskeletal myofibrillar proteins. The improvement of taste characteristics by postmortem aging is mainly explained by the increase in the content of taste-related peptides, free amino acids, and nucleotides produced by increased hydrolysis activity. This review improves our understanding of the published research on tenderness and taste characteristics of meat and provides insights to improve these attributes of meat through postmortem aging.
Collapse
Affiliation(s)
- Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Yu-Min Son
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Md. Jakir Hossain
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - So-Hee Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
5
|
Lee SY, Lee DY, Mariano EJ, Yun SH, Lee J, Park J, Choi Y, Han D, Kim JS, Joo ST, Hur SJ. Study on the current research trends and future agenda in animal products: an Asian perspective. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1124-1150. [PMID: 38616880 PMCID: PMC11007299 DOI: 10.5187/jast.2023.e121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 04/16/2024]
Abstract
This study aimed to analyze the leading research materials and research trends related to livestock food in Asia in recent years and propose future research agendas to ultimately contribute to the development of related livestock species. On analyzing more than 200 relevant articles, a high frequency of studies on livestock species and products with large breeding scales and vast markets was observed. Asia possesses the largest pig population and most extensive pork market, followed by that of beef, chicken, and milk; moreover, blood and egg markets have also been studied. Regarding research keywords, "meat quality" and "probiotics" were the most common, followed by "antioxidants", which have been extensively studied in the past, and "cultured meat", which has recently gained traction. The future research agenda for meat products is expected to be dominated by alternative livestock products, such as cultured and plant-derived meats; improved meat product functionality and safety; the environmental impacts of livestock farming; and animal welfare research. The future research agenda for dairy products is anticipated to include animal welfare, dairy production, probiotic-based development of high-quality functional dairy products, the development of alternative dairy products, and the advancement of lactose-free or personalized dairy products. However, determining the extent to which the various research articles' findings have been applied in real-world industry proved challenging, and research related to animal food laws and policies and consumer surveys was lacking. In addition, studies on alternatives for sustainable livestock development could not be identified. Therefore, future research may augment industrial application, and multidisciplinary research related to animal food laws and policies as well as eco-friendly livestock production should be strengthened.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Division of
Applied Life Science (BK21 Four), Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Jr Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seon-Tea Joo
- Division of Animal Science, Division of
Applied Life Science (BK21 Four), Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
6
|
Choi DM, Kang KM, Kang SM, Kim HY. Physicochemical Properties of Black Korean Goat Meat with Various Slaughter Ages. Animals (Basel) 2023; 13:ani13040692. [PMID: 36830479 PMCID: PMC9951984 DOI: 10.3390/ani13040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
This study was conducted to analyze the physicochemical properties of black goat meat according to the slaughter age (3, 6, 9, 12, 24, 36 months). The moisture content tended to decrease, whereas the fat content, pH, and free amino acid composition tended to increase with increasing slaughter age. The collagen content increased significantly with the increasing slaughter age (p < 0.05). The cooking yield showed a tendency to increase up to 12 months of age, and there was no significant difference after 12 months of age. In all mineral contents, the sample for 12 months of age showed higher values than the others. Considering fatty acid composition, the saturated fatty acid content of the 12-month sample had a lower value than the other samples. However, the unsaturated fatty acid of the 12-month sample had higher values than the other samples. Therefore, the best slaughter age for black goats occurs at 12 months of age when nutrition is excellent.
Collapse
Affiliation(s)
- Da-Mi Choi
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Kyu-Min Kang
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Sun-Moon Kang
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
- Correspondence: (S.-M.K.); (H.-Y.K.)
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
- Correspondence: (S.-M.K.); (H.-Y.K.)
| |
Collapse
|
7
|
Wu ZL, Yang X, Zhang J, Wang W, Liu D, Hou B, Bai T, Zhang R, Zhang Y, Liu H, Hu H, Xia Y. Effects of forage type on the rumen microbiota, growth performance, carcass traits, and meat quality in fattening goats. Front Vet Sci 2023; 10:1147685. [PMID: 37180069 PMCID: PMC10172669 DOI: 10.3389/fvets.2023.1147685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Forages fed to goats influence ruminal microbiota, and further contribute to affect growth performance, meat quality and its nutritional composition. Our objective for current study was to investigate the effects of different forages on growth performance, carcass traits, meat nutritional composition, rumen microflora, and the relationships between key bacteria and amino acids and fatty acids in the longissimus dorsi and semimembranosus muscles of goats. Boer crossbred goats were separately fed commercial concentrate diet supplemented with Hemarthria altissima (HA), Pennisetum sinese (PS), or forage maize (FG), and then slaughtered 90 days after the beginning of the experiment. Growth performances did not vary but carcass traits of dressing percentage, semi-eviscerated slaughter percentage, and eviscerated slaughter percentage displayed significant difference with the treatment studied. Meats from goats fed forage maize, especially semimembranosus muscles are rich in essential amino acids, as well as an increase in the amount of beneficial fatty acids. Our 16S rRNA gene sequencing results showed that the Firmicutes, Bacteroidetes, and Proteobacteria were the most dominant phyla in all groups but different in relative abundance. Further, the taxonomic analysis and linear discriminant analysis effect size (LEfSe) identified the specific taxa that were differentially represented among three forage treatments. The spearman's correlation analysis showed that rumen microbiota was significantly associated with the goat meat nutritional composition, and more significant positive correlations were identified in semimembranosus muscles when compared with longissimus dorsi muscles. More specifically, the lipid metabolism-related bacteria Rikenellaceae_RC9_gut_group showed positively correlated with meat amino acid profile, while genera Oscillospiraceae_UCG-005 were positively correlated with fatty acid composition. These bacteria genera might have the potential to improve nutritional value and meat quality. Collectively, our results showed that different forages alter the carcass traits, meat nutritional composition, and rumen microflora in fattening goats, and forage maize induced an improvement in its nutritional value.
Collapse
Affiliation(s)
- Zhou-lin Wu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xue Yang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanyang Liu
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Hongwen Hu
- Neijiang Academy of Agricultural Sciences, Neijiang, China
| | - Yunhong Xia
- Neijiang Academy of Agricultural Sciences, Neijiang, China
- *Correspondence: Yunhong Xia,
| |
Collapse
|
8
|
Cho J, Barido FH, Kim HJ, Kwon JS, Kim HJ, Kim D, Hur SJ, Jang A. Effect of Extract of Perilla Leaves on the Quality Characteristics and Polycyclic Aromatic Hydrocarbons of Charcoal Barbecued Pork Patty. Food Sci Anim Resour 2023; 43:139-156. [PMID: 36789195 PMCID: PMC9890369 DOI: 10.5851/kosfa.2022.e67] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
This study aimed to investigate the effect of ethanolic extracts from perilla leaves (PLE) on the quality attributes and polycyclic aromatic hydrocarbons (PAHs) in charcoal-barbecued pork patties. The PLE addition and doneness had no significant effect on the pH of pork patties (p>0.05). Regardless of the concentration, the PLE significantly lower malondialdehyde concentrations and reduced the CIE L*, CIE a*, and CIE b* when compared to control. The addition of 0.2% of PLE did not adversely affect the organoleptic properties of doneness of medium and well-done pork patties. Addition of PLE at 0.4% to medium-cooked pork patties had stronger suppressing effect on the formation of light PAHs compare to control (p<0.05), also adding it to well-done pork patties had the lowest concentration of 4 PAHs and 8 PAHs, and a total of 16 PAHs (p<0.05). Therefore, PLE at 0.4% can be used for suppressing the formation of PAHs and lipid oxidation in well-cooked pork patty.
Collapse
Affiliation(s)
- Jinwoo Cho
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
- Department of Research and Development,
Shinsegae Food, Seoul 04793, Korea
| | - Farouq Heidar Barido
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
- Department of Animal Science, Faculty of
Agriculture, Universitas Sebelas Maret, Surakarta 57126,
Indonesia
| | - Hye-Jin Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
- Department of Agricultural Biotechnology,
Seoul National University, Seoul 08826, Korea
| | - Ji-Seon Kwon
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Hee-Jin Kim
- Poultry Research Institute, National
Institute of Animal Science, Pyeongchang 25342, Korea
| | - Dongwook Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Sun-Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Aera Jang
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| |
Collapse
|