1
|
Brascia D, De Iaco G, Panza T, Signore F, Carleo G, Zang W, Sharma R, Riahi P, Scott J, Fan X, Marulli G. Breathomics: may it become an affordable, new tool for early diagnosis of non-small-cell lung cancer? An exploratory study on a cohort of 60 patients. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 39:ivae149. [PMID: 39226187 PMCID: PMC11379464 DOI: 10.1093/icvts/ivae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES Analysis of breath, specifically the patterns of volatile organic compounds (VOCs), has shown the potential to distinguish between patients with lung cancer (LC) and healthy individuals (HC). However, the current technology relies on complex, expensive and low throughput analytical platforms, which provide an offline response, making it unsuitable for mass screening. A new portable device has been developed to enable fast and on-site LC diagnosis, and its reliability is being tested. METHODS Breath samples were collected from patients with histologically proven non-small-cell lung cancer (NSCLC) and healthy controls using Tedlar bags and a Nafion filter attached to a one-way mouthpiece. These samples were then analysed using an automated micro portable gas chromatography device that was developed in-house. The device consisted of a thermal desorption tube, thermal injector, separation column, photoionization detector, as well as other accessories such as pumps, valves and a helium cartridge. The resulting chromatograms were analysed using both chemometrics and machine learning techniques. RESULTS Thirty NSCLC patients and 30 HC entered the study. After a training set (20 NSCLC and 20 HC) and a testing set (10 NSCLC and 10 HC), an overall specificity of 83.3%, a sensitivity of 86.7% and an accuracy of 85.0% to identify NSCLC patients were found based on 3 VOCs. CONCLUSIONS These results are a significant step towards creating a low-cost, user-friendly and accessible tool for rapid on-site LC screening. CLINICAL REGISTRATION NUMBER ClinicalTrials.gov Identifier: NCT06034730.
Collapse
Affiliation(s)
- Debora Brascia
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giulia De Iaco
- Thoracic Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area, University Hospital of Bari, Bari, Italy
| | - Teodora Panza
- Thoracic Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area, University Hospital of Bari, Bari, Italy
| | - Francesca Signore
- Thoracic Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area, University Hospital of Bari, Bari, Italy
| | - Graziana Carleo
- Thoracic Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area, University Hospital of Bari, Bari, Italy
| | - Wenzhe Zang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ruchi Sharma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Riahi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jared Scott
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Giuseppe Marulli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
2
|
Alhajlah S. The molecular mechanisms of various long non-coding RNA (lncRNA) in human lung tumors: Shedding light on the molecular mechanisms. Pathol Res Pract 2024; 256:155253. [PMID: 38513578 DOI: 10.1016/j.prp.2024.155253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Although it is still mostly incomplete, unraveling the gene expression networks controlling the initiation and progression of cancer is crucial. The rapid identification and characterization of long noncoding RNAs (lncRNAs) is made possible by advancements in computational biology and RNA-seq technology. According to recent research, lncRNAs are involved in several stages in the genesis of lung cancer. These lncRNAs interact with DNA, RNA, protein molecules, and/or their combinations. They play a crucial role in transcriptional and post-transcriptional regulation, as well as chromatin architecture. Their misexpression gives cancer cells the ability to start, grow, and spread tumors. This review will focus on their abnormal expression and function in lung cancer, as well as their involvement in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
3
|
Ozturk AE, Komurcuoglu B, Karakurt GK, Ozturk O. Prognostic value of diffuse cancer inflammation index (ALI), serum neutrophil/lymphocyte (NLR) and platelet/lymphocyte (PLR) in advanced-stage lung cancer. J Cancer Res Ther 2024; 20:893-897. [PMID: 38102903 DOI: 10.4103/jcrt.jcrt_1762_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/13/2022] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Lung cancer is the most common type of cancer that causes death worldwide. Systemic inflammation has been shown to play a role in cancer etiopathogenesis and can be activated from oncogenic changes in cancer cells. In our study, the prognostic effects of inflammatory parameters calculated from serum were investigated in lung cancer. METHOD One hundred fifteen patients with locally advanced and advanced lung cancer who were diagnosed in our chest diseases clinic between 2013 and 2015 were retrospectively analyzed. The relationship between advanced lung cancer inflammation index (ALI index), serum neutrophil/lymphocyte ratio (NLR), and platelet/lymphocyte ratio (PLR) levels at the time of diagnosis were calculated, and their relationship with overall survival (OS), disease-free survival, and the treatment response and their effect on predicting prognosis were investigated. FINDINGS When the ALI value was examined in the group with non-small cell lung, the OS was found to be 9.018 months in the group over 18 years of age and it was 3.78 months in the group below. Low ALI index was significantly associated with short survival ( P <.05). When the NLR values were examined in the entire patient group, OS more than 5 was 5.95 months and less than 9.63 months. A high NLR value was significantly associated with short survival ( P <.05). No significant relationships were detected between PLR and OS. When the determined cut-off values were used, no significant correlation was found between NLR, ALI, and PLR levels and progression-free survival ( P >.05). CONCLUSION In our study, it was concluded that elevated NLR levels and low ALI values at the time of diagnosis of advanced-stage lung cancer were associated with poor survival, and those values may be useful in predicting survival and prognosis when the cut-off values were used. These parameters can be useful in routine use because they can be easily calculated without additional costs.
Collapse
Affiliation(s)
- Aysen Evkan Ozturk
- University of Health Sciences, Izmir Dr. Suat Seren Training and Research Hospital for Thoracic Medicine and Surgery, Pulmonology, Izmir, Turkey
| | - Berna Komurcuoglu
- University of Health Sciences, Izmir Dr. Suat Seren Training and Research Hospital for Thoracic Medicine and Surgery, Pulmonology, Izmir, Turkey
| | - Gamze Kaplan Karakurt
- University of Health Sciences, Izmir Dr. Suat Seren Training and Research Hospital for Thoracic Medicine and Surgery, Pulmonology, Izmir, Turkey
| | - Ozgur Ozturk
- University of Health Sciences, Izmir Dr. Suat Seren Training and Research Hospital for Thoracic Medicine and Surgery, Thoracic Surgery, Izmir, Turkey
| |
Collapse
|
4
|
Feng M, Wang J, Zhou J. Unraveling the therapeutic mechanisms of dichloroacetic acid in lung cancer through integrated multi-omics approaches: metabolomics and transcriptomics. Front Genet 2023; 14:1199566. [PMID: 37359381 PMCID: PMC10285292 DOI: 10.3389/fgene.2023.1199566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Objective: The aim of this study was to investigate the molecular mechanisms underlying the therapeutic effects of dichloroacetic acid (DCA) in lung cancer by integrating multi-omics approaches, as the current understanding of DCA's role in cancer treatment remains insufficiently elucidated. Methods: We conducted a comprehensive analysis of publicly available RNA-seq and metabolomic datasets and established a subcutaneous xenograft model of lung cancer in BALB/c nude mice (n = 5 per group) treated with DCA (50 mg/kg, administered via intraperitoneal injection). Metabolomic profiling, gene expression analysis, and metabolite-gene interaction pathway analysis were employed to identify key pathways and molecular players involved in the response to DCA treatment. In vivo evaluation of DCA treatment on tumor growth and MIF gene expression was performed in the xenograft model. Results: Metabolomic profiling and gene expression analysis revealed significant alterations in metabolic pathways, including the Warburg effect and citric acid cycle, and identified the MIF gene as a potential therapeutic target in lung cancer. Our analysis indicated that DCA treatment led to a decrease in MIF gene expression and an increase in citric acid levels in the treatment group. Furthermore, we observed a potential interaction between citric acid and the MIF gene, suggesting a novel mechanism underlying the therapeutic effects of DCA in lung cancer. Conclusion: This study underscores the importance of integrated omics approaches in deciphering the complex molecular mechanisms of DCA treatment in lung cancer. The identification of key metabolic pathways and the novel finding of citric acid elevation, together with its interaction with the MIF gene, provide promising directions for the development of targeted therapeutic strategies and improving clinical outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Malong Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Respiration, Fenghua District People’s Hospital of Ningbo, Ningbo, China
| | - Ji Wang
- Department of Infectious Diseases, Fenghua District People’s Hospital of Ningbo, Ningbo, China
| | - Jianying Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Cao L, Liu H, Huang C, Guo C, Zhao L, Gao C, Xu Y, Wang G, Liang N, Li S. USP5 knockdown alleviates lung cancer progression via activating PARP1-mediated mTOR signaling pathway. Biol Direct 2023; 18:16. [PMID: 37060095 PMCID: PMC10103446 DOI: 10.1186/s13062-023-00371-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND With the rapidly increasing morbidity and mortality, lung cancer has been considered one of the serious malignant tumors, affecting millions of patients globally. Currently, the pathogenesis of lung cancer remains unclear, hindering the development of effective treatment. This study aims to investigate the mechanisms of lung cancer and develop an effective therapeutic approach for intervention in preventing lung cancer progress. METHODS The USP5 levels are detected in lung cancerous and paracancerous tissue by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting methods to explore their roles in lung cancer progression. MTT, colony assay, and transwell chamber approaches are employed to measure cell viability, proliferation, and migration, respectively. Further, flow cytometry experiments are performed to examine the effect of USP5 on lung cancer. Finally, the investigations in vivo are executed using the mice subcutaneous tumor model to identify the effect of USP5 in promoting lung cancer development. RESULTS Notably, USP5 is highly expressed in lung cancer, USP5 overexpression promoted the proliferation and migration in the lung cancer cell lines, H1299 and A549, while knockdown of USP5 inhibited these via regulating the PARP1-mediated mTOR signaling pathway. Furthermore, the subcutaneous tumors model was established in C57BL/6 mice, and the volume of subcutaneous tumors was significantly reduced after silencing USP5, while increased after USP5 overexpression and decreased significantly with shRARP1 treatment at the same time. CONCLUSIONS Together, USP5 could promote the progression of lung cancer cells by mTOR signaling pathway and interacting with PARP1, indicating that USP5 may become a new target for lung cancer treatment.
Collapse
Affiliation(s)
- Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Luo Zhao
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Guige Wang
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1, Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Suppression of Ribose-5-Phosphate Isomerase a Induces ROS to Activate Autophagy, Apoptosis, and Cellular Senescence in Lung Cancer. Int J Mol Sci 2022; 23:ijms23147883. [PMID: 35887232 PMCID: PMC9322731 DOI: 10.3390/ijms23147883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ribose-5-phosphate isomerase A (RPIA) regulates tumorigenesis in liver and colorectal cancer. However, the role of RPIA in lung cancer remains obscure. Here we report that the suppression of RPIA diminishes cellular proliferation and activates autophagy, apoptosis, and cellular senescence in lung cancer cells. First, we detected that RPIA protein was increased in the human lung cancer versus adjust normal tissue via tissue array. Next, the knockdown of RPIA in lung cancer cells displayed autophagic vacuoles, enhanced acridine orange staining, GFP-LC3 punctae, accumulated autophagosomes, and showed elevated levels of LC3-II and reduced levels of p62, together suggesting that the suppression of RPIA stimulates autophagy in lung cancer cells. In addition, decreased RPIA expression induced apoptosis by increasing levels of Bax, cleaved PARP and caspase-3 and apoptotic cells. Moreover, RPIA knockdown triggered cellular senescence and increased p53 and p21 levels in lung cancer cells. Importantly, RPIA knockdown elevated reactive oxygen species (ROS) levels. Treatment of ROS scavenger N-acetyl-L-cysteine (NAC) reverts the activation of autophagy, apoptosis and cellular senescence by RPIA knockdown in lung cancer cells. In conclusion, RPIA knockdown induces ROS levels to activate autophagy, apoptosis, and cellular senescence in lung cancer cells. Our study sheds new light on RPIA suppression in lung cancer therapy.
Collapse
|
7
|
PDSM-LGCN: Prediction of drug sensitivity associated microRNAs via Light Graph Convolution Neural Network. Methods 2022; 205:106-113. [PMID: 35753591 DOI: 10.1016/j.ymeth.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the critical diseases threatening human life and health. The sensitivity difference of cancer drugs has always been a critical cause of the treatment come to nothing. Once drug resistance occurs, it will make the anticancer treatment or even various drugs ineffective. With the deepening of cancer research, a growing number of evidence shows that microRNA has a particular regulatory effect on the sensitivity of cancer drugs, which provides new research ideas. However, using traditional biological experiments to verify and discover the relations of microRNA-drug sensitivity is cumbersome and time-consuming, significantly slowing down cancer drug sensitivity's research progress. Therefore, this paper proposes a computational method (PDSM-LGCN) that spreads information through the high-order connection between cancer drug sensitivity and microRNA. At the same time, the model constructs an optimized-GCN as an embedding propagation layer to obtain the practical embeddings of microRNA and medicines. Finally, based on a collaborative filtering algorithm, the model brings the prediction score between microRNA and drug sensitivity. The results of five-fold cross-validation show that the AUC of PDSM-LGCN is 0.8872, and the AUPR is as high as 0.9026. At the same time, we also reproduced the five latest models of similar problems and compared the results. Our model has the best comprehensive effect among them. In addition, the reliability of PDSM-LGCN was further confirmed through the case study of Cisplatin and Doxorubicin, which can be used as a powerful tool for clinical and biological research. The source code and datasets can be obtained from https://github.com/19990915fzy/PDSM-LGCN/.
Collapse
|
8
|
The effect of performance score, prognostic nutritional index, serum neutrophil-to-lymphocyte ratio, and thrombocyte-to-lymphocyte ratio on prognosis in non-small cell lung cancer. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1065820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
The effect of performance score, prognostic nutritional index, serum neutrophil-to-lymphocyte ratio, and thrombocyte-to-lymphocyte ratio on prognosis in non-small cell lung cancer. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
The role of YAP1 in small cell lung cancer. Hum Cell 2022; 35:628-638. [DOI: 10.1007/s13577-022-00669-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/03/2022] [Indexed: 11/04/2022]
|
11
|
Tao F, Gu C, Li N, Ying Y, Feng Y, Ni D, Zhang Q, Xiao Q. SIRT3 acts as a novel biomarker for the diagnosis of lung cancer: A retrospective study. Medicine (Baltimore) 2021; 100:e26580. [PMID: 34232204 PMCID: PMC8270582 DOI: 10.1097/md.0000000000026580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
Lung cancer (LC) is a prevalent malignancy worldwide with increased morbidity and mortality. Mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase sirtuin-3 (SIRT3) has been reported to be involved in tumorigenesis. In this retrospective study, we measured the expression and diagnostic value of SIRT3 in LC patients.Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure serum SIRT3 mRNA level in 150 LC patients and 52 healthy volunteers. SIRT3 protein level was detected using western blot for 84 pairs of LC and adjacent normal tissues. The association of SIRT3 mRNA level with clinical parameters of LC patients was estimated via chi-square test. Receiver operating characteristic curve (ROC) was plotted to evaluate the diagnostic performance of serum SIRT3 in LC patients.SIRT3 mRNA and protein levels were significantly decreased in LC tissues and serum samples, compared with corresponding controls (P < .05). Moreover, the expression of SIRT3 mRNA was negatively associated with tumor size (P = .002), tumor node metastasis stage (P < .001), and metastasis (P < .001). ROC curve demonstrated that serum SIRT3 could distinguish LC patients from healthy individuals, with an area under the curve of 0.918. The optimal cutoff value was 3.12, reaching a sensitivity of 86.4%, and a specificity of 94%.SIRT3 expression is significantly down-regulated in LC serum and tissues. SIRT3 may be employed as a promising biomarker in the early diagnosis of LC.
Collapse
|
12
|
Hassan WA, Ito T. Identifying specific Notch1 target proteins in lung carcinoma cells. Histol Histopathol 2020; 36:69-76. [PMID: 33094831 DOI: 10.14670/hh-18-271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Notch signaling pathway has different roles in many human neoplasms, being either tumor-promoting or anti-proliferative. In addition, Notch signaling in carcinogenesis can be tissue dependent. The aim of the current study is to elucidate the relation between Notch1 protein expression in lung cancer cells and the following Notch related proteins: Hes1, c-Myc, Jagged1 and Jagged2. METHODS Notch1 and its related proteins were detected in human lung cancer cell lines and in 54 surgically resected different lung carcinoma tissues. Then, we used small interfering RNA (siRNA) technology, to down-regulate the expression of Notch1 in H69AR and SBC3 small cell lung carcinoma (SCLC) cells. Also, we transfected venus Notch1 intracellular domain (v.NICD) plasmid into human SCLC lines; H69. RESULTS The expression of Hes1, c-Myc and Jagged2 is affected by Notch1 in SCLC. CONCLUSION There is a strong association between the expression of Notch1 protein and the expression of Hes1, c-Myc and Jagged2 proteins, which could aid in better understanding tumorigenesis in SCLC.
Collapse
Affiliation(s)
- Wael Abdo Hassan
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Basic sciences, Sulaiman Al Rajhi University, College of Medicine, Al-Bukayriyah, KSA.
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
13
|
Yin XH, Yu LP, Zhao XH, Li QM, Liu XP, He L. Development and validation of a 4-gene combination for the prognostication in lung adenocarcinoma patients. J Cancer 2020; 11:1940-1948. [PMID: 32194805 PMCID: PMC7052877 DOI: 10.7150/jca.37003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: To identify a multi-gene prognostic factor in patients with lung adenocarcinoma (LUAD). Materials and methods Prognosis-related genes were screened in the TCGA-LUAD cohort. Then, patients in this cohort were randomly separated into training set and test set. Least absolute shrinkage and selection operator (LASSO) regression was performed to the penalized the Cox proportional hazards regression (CPH) model on the training set, and a prognostication combination based on the result of LASSO analysis was developed. By performing Kaplan-Meier curve analysis, univariate and multivariable CPH model on the overall survival (OS) as well as recurrence free survival (RFS), the prognostication performance of the multigene combination were evaluated. Moreover, we constructed a nomogram and performed decision curve analysis to evaluate the clinical application of the multigene combination. Results We obtained 99 prognosis-related genes and screened out a 4-gene combination (including CIDEC, ZFP3, DKK1, and USP4) according to the LASSO analysis. The results of survival analyses suggested that patients in the 4-gene combination low-risk group had better OS and RFS than those in the 4-gene combination high-risk group. The 4-gene mentioned was demonstrated to be independent prognostic factor of patients with LUAD in the training set(OS, HR=11.962, P<0.001; RFS, HR=9.281, P<0.001) and test set (OS, HR=5.377, P=0.003; RFS, HR=2.949, P=0.104). More importantly, its prognosis performance was well in the validation set (OS, HR=0.955, P=0.002; RFS, HR=1.042, P<0.001). Conclusions We introduced a 4-gene combination which could predict the survival of LUAD patients and might be an independent prognostic factor in LUAD.
Collapse
Affiliation(s)
- Xiao-Hong Yin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China.,Wuhan University School of Health Sciences, Wuhan, Hubei province, China
| | - Li-Ping Yu
- Wuhan University School of Health Sciences, Wuhan, Hubei province, China
| | - Xiao-Hong Zhao
- Wuhan University School of Health Sciences, Wuhan, Hubei province, China
| | - Qin-Mei Li
- Department of Epidemiology, Department of Epidemiology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| |
Collapse
|
14
|
Sergi CM. Lower Respiratory Tract. PATHOLOGY OF CHILDHOOD AND ADOLESCENCE 2020:139-253. [DOI: 10.1007/978-3-662-59169-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
15
|
Shankar A, Saini D, Dubey A, Roy S, Bharati SJ, Singh N, Khanna M, Prasad CP, Singh M, Kumar S, Sirohi B, Seth T, Rinki M, Mohan A, Guleria R, Rath GK. Feasibility of lung cancer screening in developing countries: challenges, opportunities and way forward. Transl Lung Cancer Res 2019; 8:S106-S121. [PMID: 31211111 PMCID: PMC6546626 DOI: 10.21037/tlcr.2019.03.03] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of all cancer deaths worldwide, comprising 18.4% of all cancer deaths. Low-dose computed tomography (LDCT) has shown mortality benefit in various trials and now a standard tool for lung cancer screening. Most researches have been carried out in developed countries where lung cancer incidence and mortality is very high. There is an increasing trend in lung cancer incidence in developing countries attributed to tobacco smoking and various environmental and occupational risk factors. Implementation of lung cancer screening is challenging, so organised lung cancer screening is practically non-existent. There are numerous challenges in implementing such programs ranging from infrastructure, trained human resources, referral algorithm to cost and psychological trauma due to over-diagnosis. Pulmonary tuberculosis and other chest infections are important issues to be addressed while planning for lung cancer screening in developing countries. Burden of these diseases is very high and can lead to over-diagnosis in view of cut off of lung nodule size in various studies. Assessment of high risk cases for lung cancer is difficult as various forms of smoking make quantification non-uniform and difficult. Lung cancer screening targets only high risk population unlike screening programs for other cancers where entire population is targeted. There is a need of lung cancer screening for high risk cases as it saves life. Tobacco control and smoking cessation remain the most important long term intervention to decrease morbidity and mortality from lung cancer in developing countries. There is no sufficient evidence supporting the introduction of population-based screening for lung cancer in public health services.
Collapse
Affiliation(s)
- Abhishek Shankar
- Preventive Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Deepak Saini
- Indian Society of Clinical Oncology, Delhi, India
| | - Anusha Dubey
- Indian Society of Clinical Oncology, Delhi, India
| | - Shubham Roy
- Indian Society of Clinical Oncology, Delhi, India
| | - Sachidanand Jee Bharati
- Oncoanaesthesia and Palliative Medicine, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Navneet Singh
- Pulmonary Medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Chandra Prakash Prasad
- Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Mayank Singh
- Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Sunil Kumar
- Surgical Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Bhawna Sirohi
- Medical Oncology, Max Institute of Cancer Care, Delhi, India
| | - Tulika Seth
- Clinical Hematology, All India Institute of Medical Sciences, Delhi, India
| | - Minakshi Rinki
- Biotechnology, Swami Shraddhanand College, Delhi University, Delhi, India
| | - Anant Mohan
- Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, Delhi, India
| | - Randeep Guleria
- Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, Delhi, India
| | - Goura Kishor Rath
- Radiation Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
16
|
Feng H, Zhang Z, Qing X, French SW, Liu D. miR-186-5p promotes cell growth, migration and invasion of lung adenocarcinoma by targeting PTEN. Exp Mol Pathol 2019; 108:105-113. [PMID: 30981721 DOI: 10.1016/j.yexmp.2019.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/13/2019] [Accepted: 04/10/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To explore the expression of miR-186-5p in lung adenocarcinoma (LUAD) and its possible function associated with cancer cell proliferation, migration and invasion. METHODS MiR-186-5p expression levels in LUAD samples, human LUAD cell lines H1299 and NCI-H1975, and normal human lung epithelial cell line BEAS-IB were assessed by quantitative real-time PCR (qRT-PCR). H1299 and NCI-H1975 cells were transfected with miR-186-5p mimic or miRNA negative control. CCK-8 assay was performed to evaluate the cell proliferation. Transwell assay and transwell-matrigel™ invasion assay were applied to assess the migration and invasion abilities of H1299 and NCI-H1975 cells. RESULTS miR-186-5p expression was significantly up-regulated in LUAD tumor tissues and LUAD cell lines as compared with tumor-adjacent tissues and normal human lung epithelial cells, respectively. MiR-186-5p overexpression remarkably promoted the proliferation, migration and invasion of LUAD cells. Furthermore, phosphatase and tensin homolog (PTEN) was a direct target of miR-186-5p verified by luciferase reporter assay. Overexpression of PTEN significantly suppressed LUAD cells to proliferate, migrate and invade. MiR-186-5p overexpression-induced LUAD cell phenotype could be partially rescued by co-overexpression of miR-186-5p and PTEN. CONCLUSION This study demonstrated that miR-186-5p is up-regulated in LUAD, and functionally associated with cell proliferation, migration and invasion. MiR-186-5p promotes the proliferation, migration and invasion of LUAD cells by targeting PTEN. MiR-186-5p may be utilized as a novel molecular marker and therapeutic target of LUAD.
Collapse
Affiliation(s)
- Hongxiang Feng
- Department of Thoracic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Zhenrong Zhang
- Department of Thoracic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Xin Qing
- Department of Pathology, Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - Deruo Liu
- Department of Thoracic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.
| |
Collapse
|
17
|
Sánchez-Fdez A, Ortiz-Ruiz MJ, Re-Louhau MF, Ramos I, Blanco-Múñez Ó, Ludeña D, Abad M, Sánchez-Martín M, Pandiella A, Esparís-Ogando A. MEK5 promotes lung adenocarcinoma. Eur Respir J 2019; 53:13993003.01327-2018. [PMID: 30442718 PMCID: PMC6393765 DOI: 10.1183/13993003.01327-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/05/2018] [Indexed: 11/05/2022]
Abstract
Lung cancer represents the leading cause of cancer death worldwide [1]. Because of that, intense efforts are being devoted to the development of novel therapeutic strategies to fight the disease [2]. In this respect, identification of new oncogenic drivers offers therapeutic opportunities in tumours in which those molecules or other cooperating elements play a pathophysiological role. Here, we show that the MEK5 mitogen-activated protein kinase kinase has a pivotal role in lung cancer. MEK5 acts as an oncogenic driver in mice lung cancer and is pivotal for human lung adenocarcinomahttp://ow.ly/M9e830mZb8N
Collapse
Affiliation(s)
- Adrián Sánchez-Fdez
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain.,CIBERONC, Salamanca, Spain
| | - María Jesús Ortiz-Ruiz
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain
| | - María Florencia Re-Louhau
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain
| | - Isabel Ramos
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain
| | - Óscar Blanco-Múñez
- IBSAL, Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Dolores Ludeña
- IBSAL, Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Mar Abad
- IBSAL, Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Manuel Sánchez-Martín
- CIBERONC, Salamanca, Spain.,Transgenic Facility of the Nucleus Platform, University of Salamanca, Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain.,CIBERONC, Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain.,CIBERONC, Salamanca, Spain
| |
Collapse
|
18
|
Silva PJ, Ramos KS. Academic Medical Centers as Innovation Ecosystems: Evolution of Industry Partnership Models Beyond the Bayh-Dole Act. ACADEMIC MEDICINE : JOURNAL OF THE ASSOCIATION OF AMERICAN MEDICAL COLLEGES 2018; 93:1135-1141. [PMID: 29668523 DOI: 10.1097/acm.0000000000002259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Innovation ecosystems tied to academic medical centers (AMCs) are inextricably linked to policy, practices, and infrastructure resulting from the Bayh-Dole Act in 1980. Bayh-Dole smoothed the way to patenting and licensing new drugs and, to some degree, medical devices and diagnostic reagents. Property rights under Bayh-Dole provided significant incentive for industry investments in clinical trials, clinical validation, and industrial scale-up of products that advanced health care. Bayh-Dole amplified private investment in biotechnology drug development and, from the authors' perspective, did not significantly interfere with the ability of AMCs to produce excellent peer-reviewed science. In today's policy environment, it is increasingly difficult to patent and license products based on the laws of nature-as the scope of patentability has been narrowed by case law and development of a suitable clinical and business case for the technology is increasingly a gating consideration for licensees. Consequently, fewer academic patents are commercially valuable. The role of technology transfer organizations in engaging industry partners has thus become increasingly complex. The partnering toolbox and organizational mandate for commercialization must evolve toward novel collaborative models that exploit opportunities for future patent creation (early drug discovery), data exchange (precision medicine using big data), cohort assembly (clinical trials), and decision rule validation (clinical trials). These inputs contribute to intellectual property rights, and their clinical exploitation manifests the commercialization of translational science. New collaboration models between AMCs and industry must be established to leverage the assets within AMCs that industry partners deem valuable.
Collapse
Affiliation(s)
- Patrick J Silva
- P.J. Silva is executive director, Biomedical Corporate Alliances, Office of the Senior Vice President for Health Sciences, University of Arizona, Tucson, Arizona. K.S. Ramos is professor of medicine, associate vice president for precision health sciences, director, Center for Applied Genetics and Genomic Medicine, and director, MD-PhD Program, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
19
|
Wang L, Kong W, Liu B, Zhang X. Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer. Biomed Pharmacother 2018; 104:595-602. [PMID: 29803172 DOI: 10.1016/j.biopha.2018.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) functions as a bridging molecule, which targets proteins that have distinct roles in cell growth. The expression of PCNA is dysregulated in some tumors and takes part in the progression of oncogenesis. However, the roles of PCNA in the progression of non-small cell lung cancer (NSCLC) remain unknown. The present study aimed to investigate the function of PCNA in the occurrence and development of NSCLC and its underlying molecular mechanisms. Western blotting, RT-PCR, and immunohistochemistry assays were used to detect the expression pattern of PCNA in NSCLC tissues and cells. A log rank test was performed to compare the overall survival (OS) of patients with high/low expression of PCNA. Besides, the relationship between PCNA and signal transducer and activator of transcription-3 (STAT3) proteins were evaluated. Then, MTT, flow cytometry, clonal formation, and in vivo xenograft assays were conducted to investigate the effects of PCNA/STAT3 on cell growth, clonal formation, apoptosis, and tumorigenesis. Results showed that PCNA expression was elevated in NSCLC tissues and cells and it could combine with STAT3 and increased its expression and phosphorylation. Moreover, the expression of PCNA showed a positive correlation with the TNM grade and occurrence rate of the lymphatic metastasis and poor prognosis of NSCLC patients. Overexpression of PCNA promoted cell proliferation, clonal formation, and tumorigenesis in lung cancer cells and inhibited cell apoptosis. In contrast, these effects were inhibited when knockdown of STAT3. In conclusion, this study demonstrates that PCNA functions as an oncogene in the progression of NSCLC through up-regulation of STAT3. These findings point to a potentially new therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Liuxin Wang
- Department of Respiration, Jining First People's Hospital, Jining, Shandong, China
| | - Weixiang Kong
- Department of Respiration, Jining First People's Hospital, Jining, Shandong, China
| | - Bing Liu
- Department of Respiration, Jining First People's Hospital, Jining, Shandong, China
| | - Xueqing Zhang
- Department of Respiration, Jining First People's Hospital, Jining, Shandong, China.
| |
Collapse
|
20
|
Silva PJ, Schaibley VM, Ramos KS. Academic medical centers as innovation ecosystems to address population -omics challenges in precision medicine. J Transl Med 2018; 16:28. [PMID: 29448963 PMCID: PMC5815198 DOI: 10.1186/s12967-018-1401-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023] Open
Abstract
While the promise of the Human Genome Project provided significant insights into the structure of the human genome, the complexities of disease at the individual level have made it difficult to utilize -omic information in clinical decision making. Some of the existing constraints have been minimized by technological advancements that have reduced the cost of sequencing to a rate far in excess of Moore's Law (a halving in cost per unit output every 18 months). The reduction in sequencing costs has made it economically feasible to create large data commons capturing the diversity of disease across populations. Until recently, these data have primarily been consumed in clinical research, but now increasingly being considered in clinical decision- making. Such advances are disrupting common diagnostic business models around which academic medical centers (AMCs) and molecular diagnostic companies have collaborated over the last decade. Proprietary biomarkers and patents on proprietary diagnostic content are no longer driving biomarker collaborations between industry and AMCs. Increasingly the scope of the data commons and biorepositories that AMCs can assemble through a nexus of academic and pharma collaborations is driving a virtuous cycle of precision medicine capabilities that make an AMC relevant and highly competitive. A rebalancing of proprietary strategies and open innovation strategies is warranted to enable institutional precision medicine asset portfolios. The scope of the AMC's clinical trial and research collaboration portfolios with industry are increasingly dependent on the currency of data, and less on patents. Intrapeneurial support of internal service offerings, clinical trials and clinical laboratory services for example, will be important new points of emphasis at the academic-industry interface. Streamlining these new models of industry collaboration for AMCs are a new area for technology transfer offices to offer partnerships and to add value beyond the traditional intellectual property offering.
Collapse
Affiliation(s)
- Patrick J. Silva
- Office of the Senior Vice President Health Sciences, University of Arizona Health Sciences, Drachman Hall, Room B207, 1295 North Martin Avenue, P.O. Box 210202, Tucson, AZ 85721-0202 USA
| | - Valerie M. Schaibley
- Center for Applied Genetics and Genomic Medicine, University of Arizona, 1295 North Martin Avenue, Drachman Hall, Room B207, Tucson, AZ 85721-0202 USA
| | - Kenneth S. Ramos
- Office of the Senior Vice President Health Sciences, University of Arizona Health Sciences, Drachman Hall, Room B207, 1295 North Martin Avenue, P.O. Box 210202, Tucson, AZ 85721-0202 USA
- University of Arizona College of Medicine-Phoenix, 550 E. Van Buren Street, Phoenix, 85004 USA
- University of Arizona College of Medicine-Tucson, 1295 North Martin Avenue, Drachman Hall, Room B207, P.O. Box 210202, Tucson, AZ 85721-0202 USA
- Center for Applied Genetics and Genomic Medicine, University of Arizona, 1295 North Martin Avenue, Drachman Hall, Room B207, Tucson, AZ 85721-0202 USA
| |
Collapse
|
21
|
Dimastromatteo J, Charles EJ, Laubach VE. Molecular imaging of pulmonary diseases. Respir Res 2018; 19:17. [PMID: 29368614 PMCID: PMC5784614 DOI: 10.1186/s12931-018-0716-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022] Open
Abstract
Imaging holds an important role in the diagnosis of lung diseases. Along with clinical tests, noninvasive imaging techniques provide complementary and valuable information that enables a complete differential diagnosis. Various novel molecular imaging tools are currently under investigation aimed toward achieving a better understanding of lung disease physiopathology as well as early detection and accurate diagnosis leading to targeted treatment. Recent research on molecular imaging methods that may permit differentiation of the cellular and molecular components of pulmonary disease and monitoring of immune activation are detailed in this review. The application of molecular imaging to lung disease is currently in its early stage, especially compared to other organs or tissues, but future studies will undoubtedly reveal useful pulmonary imaging probes and imaging modalities.
Collapse
Affiliation(s)
- Julien Dimastromatteo
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Eric J. Charles
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA 22908 USA
| | - Victor E. Laubach
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA 22908 USA
| |
Collapse
|
22
|
Dai X, Guo G, Zou P, Cui R, Chen W, Chen X, Yin C, He W, Vinothkumar R, Yang F, Zhang X, Liang G. (S)-crizotinib induces apoptosis in human non-small cell lung cancer cells by activating ROS independent of MTH1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:120. [PMID: 28882182 PMCID: PMC5590185 DOI: 10.1186/s13046-017-0584-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all lung cancers and is usually diagnosed at an advanced stage with poor prognosis. Targeted therapy has produced unprecedented outcomes in patients with NSCLC as a number of oncogenic drivers have been found. Crizotinib, a selective small-molecule inhibitor, has been widely used for the treatment of NSCLC patients with ALK gene rearrangements. A recent study has also shown that (S)-enantiomer of crizotinib exhibits anticancer activity by targeting the protein mutT homologue (MTH1). Since this discovery, contradictory studies have cast a doubt on MTH1 as a therapeutic target of (S)-crizotinib. METHODS NCI-H460, H1975, and A549 cells and immunodeficient mice were chosen as a model to study the (S)-crizotinib treatment. The changes induced by (S)-crizotinib treatment in cell viability, apoptosis as well as ROS, and endoplasmic reticulum stress pathway in the cells were analyzed by MTT assay, FACSCalibur, Western blotting, ROS imaging and electron microscopy. RESULTS Here, we report that MTH1 does not affect survival of NSCLC cells. We found that (S)-crizotinib induces lethal endoplasmic reticulum stress (ER) response in cultured NSCLC cells by increasing intracellular levels of reactive oxygen species (ROS). Blockage of ROS production markedly reversed (S)-crizotinib-induced ER stress and cell apoptosis, independent of MTH1. We confirmed these findings in NSCLC xenograft studies and showed that (S)-crizotinib-induced ER stress and cell apoptosis. CONCLUSIONS Our results reveal a novel antitumor mechanism of (S)-crizotinib in NSCLC which involves activation of ROS-dependent ER stress apoptotic pathway and is independent of MTH1 inhibition.
Collapse
Affiliation(s)
- Xuanxuan Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Guilong Guo
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weiqian Chen
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Changtian Yin
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rajamanickam Vinothkumar
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fan Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohua Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
23
|
He F, Chen LM, Xiong WM, Xu QP, Xiao RD, Li X, Lin T, Cai L. A case-control study of the association between self-reported occupational and recreational physical activity and lung cancer. Medicine (Baltimore) 2017; 96:e7923. [PMID: 28885346 PMCID: PMC6392977 DOI: 10.1097/md.0000000000007923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022] Open
Abstract
This case-control study with a Fujian population investigated whether self-reported occupational and recreational physical activity may be associated with lung cancer.The population comprised 1622 patients with newly diagnosed primary lung cancer and 1622 age- and gender-matched healthy controls.High-intensity occupational physical activity was associated with significantly higher risk of lung cancer (OR = 1.354, 95% CI: 1.068-1.717), especially nonsmall cell lung carcinoma (OR = 1.384, 95% CI: 1.087-1.762). Moderate or low intensity recreational physical activity was associated with reduced risk of lung cancer. The protective effect of recreational physical activity was observed in current or former smokers, but not never-smokers, and in subjects with normal or high BMI, but not low BMI, as well as people without a history of chronic lung disease. The frequency of recreational physical activity was associated with a linear reduction in the risk of lung cancer (P < .001), and also specifically nonsmall cell lung cancer (P < .001).Occupational and recreational physical activity was associated with different effects on the risk of lung cancer in a Fujian population. While recreational physical activity was associated with decreased risk of lung cancer, occupational physical activity was associated with increased risk of lung cancer.
Collapse
Affiliation(s)
- Fei He
- Department of Epidemiology, School of Public Health
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health
| | - Li-mei Chen
- Department of Sports, School of Basic Medicine, Fujian Medical University
| | - Wei-min Xiong
- Department of Epidemiology, School of Public Health
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health
| | - Qiu-ping Xu
- Department of Epidemiology, School of Public Health
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health
| | - Ren-dong Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tao Lin
- Department of Epidemiology, School of Public Health
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health
| | - Lin Cai
- Department of Epidemiology, School of Public Health
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health
| |
Collapse
|
24
|
He F, Du T, Jiang Q, Zhang Y. Synergistic Effect of Notch-3-Specific Inhibition and Paclitaxel in Non-Small Cell Lung Cancer (NSCLC) Cells Via Activation of The Intrinsic Apoptosis Pathway. Med Sci Monit 2017; 23:3760-3769. [PMID: 28769027 PMCID: PMC5553439 DOI: 10.12659/msm.902641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/24/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Lung cancers are resistant to conventional chemotherapeutic interventions such as paclitaxel. Notch signaling is crucial in the chemoresistance of lung cancer cells. The Notch inhibitor gamma-secretase inhibitor (GSI) inhibits the Notch signaling pathway. MATERIAL AND METHODS Here, we evaluated how Notch-3 inhibition by GSI can enhance the sensitivity of lung cancer cells to paclitaxel. To study how Notch-3-specific inhibition affects non-small cell lung cancer (NSCLC), we compared the cell viability, apoptosis, and colony formation of A549 and H1299 cells treated with Notch-3 siRNA and GSI. RESULTS The expression levels of Notch-3 or Notch intracellular domain 3 (NICD3) and apoptosis-related proteins were measured and compared between different groups. Notch-3 was significantly overexpressed in both cell lines, and Notch-3 expression was elevated after paclitaxel treatment, indicating activation of the Notch signaling pathway. Inhibition of the Notch signaling pathway by GSI and Notch-3 siRNA reduced cell proliferation and induced apoptosis in A549 and H1299 cells, thereby boosting sensitivity of the cell lines to paclitaxel. Concomitant treatment with paclitaxel and GSI or siRNA downregulated Bcl-2 expression and upregulated Bax expression levels. CONCLUSIONS These results indicate a synergistic effect of Notch-3-specific inhibition and paclitaxel through alteration of the intrinsic apoptosis pathway, which was involved in Notch-3-induced chemoresistance in NSCLC cells, and GSI inhibited Notch-3-induced chemoresistance in a concentration-dependent manner. This approach that combines Notch-3-specific inhibition and paclitaxel would be likely to apply in NSCLC.
Collapse
|
25
|
Hu W, Wei H, Li K, Li P, Lin J, Feng R. Downregulation of USP32 inhibits cell proliferation, migration and invasion in human small cell lung cancer. Cell Prolif 2017; 50. [PMID: 28597490 DOI: 10.1111/cpr.12343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/14/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Ubiquitin specific protease 32 (USP32) is a highly conserved but uncharacterized gene, which has been reported to be associated with growth of breast cancer cells. However, the role of USP32 in human small cell lung cancer (SCLC) has not been uncovered. The aim of this study was to investigate and evaluate the clinical significance of USP32 in patients with SCLC. MATERIALS AND METHODS Expression of USP32 was firstly investigated using public online data sets and then determined in SCLC tissues and cell lines using quantitative real-time PCR, Western blotting and immunohistochemical staining. SCLC cells were transfected with a small-interfering RNA targeting USP32 mRNA and analysed for cell viability, proliferation ability, cell cycle distribution, apoptosis and invasion. RESULTS USP32 was found to be overexpressed in SCLC tissues compared with normal tissues. High USP32 expression was significantly correlated with disease stage and invasion. In vitro experiments demonstrated that silencing of USP32 caused a significant decrease in the proliferation and migration rate of cells. Furthermore, USP32 silencing arrested cell cycle progression at G0/G1 phase via decreasing CDK4/Cyclin D1 complex and elevating p21. In addition, downregulation of USP32 significantly induced cell apoptosis by activating cleaved caspase-3 and cleaved PARP, as well as inhibiting cell invasiveness via altering epithelial mesenchymal transition expression. CONCLUSIONS Our results suggest for the first time that USP32 is important for SCLC progression and might be a potential target for molecular therapy of SCLC.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Haiyan Wei
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Ji Nan, Shandong, China
| | - Keming Li
- Department of Medicine science, Shandong Academy of Traditional Medicine, Ji Nan, Shandong, China
| | - Pei Li
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Jiamao Lin
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Rui Feng
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| |
Collapse
|
26
|
Morgillo F, Fasano M, Della Corte CM, Sasso FC, Papaccio F, Viscardi G, Esposito G, Di Liello R, Normanno N, Capuano A, Berrino L, Vicidomini G, Fiorelli A, Santini M, Ciardiello F. Results of the safety run-in part of the METAL (METformin in Advanced Lung cancer) study: a multicentre, open-label phase I-II study of metformin with erlotinib in second-line therapy of patients with stage IV non-small-cell lung cancer. ESMO Open 2017; 2:e000132. [PMID: 28761738 PMCID: PMC5519802 DOI: 10.1136/esmoopen-2016-000132] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 01/14/2023] Open
Abstract
Purpose Our previous works demonstrated the ability of metformin to revert resistance to gefitinib, a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, in non-small-cell lung cancer (NSCLC) EGFR/LKB1 wild-type (WT) cell lines. However, the optimal dose of metformin to be used in non-diabetic patients still remains to be defined. The phase I–II trial METformin in Advanced Lung cancer (METAL) was designed to identify the maximum tolerated dose and to evaluate safety and activity of metformin combined with erlotinib in second-line treatment of patients with stage IV NSCLC, whose tumours harbour the WT EGFR gene. Patients and methods We report results from the safety run-in part designed to detect acute toxicities, to study pharmacokinetics and to identify the recommended phase II dose (RPD) to be used for the following phase of the study. In the run-in phase, metformin treatment was administered according to a dose escalation scheme and, subsequently, combined with erlotinib. Results Twelve patients were enrolled. Common adverse events were diarrhoea, decreased appetite, abdominal pain, vomiting and skin toxicity, mostly reversible with symptomatic medical treatment. Dose-limiting toxicities were vomiting and diarrhoea registered in the initial cohort receiving metformin 2000 mg plus erlotinib at 150 mg die, which was declared the maximum administered dose. Only one of nine patients treated at the next lower dose of 1500 mg of metformin plus erlotinib at 150 mg experienced G3 gastrointestinal toxicity. Metformin plasma-concentration profile confirmed the trend already observed in non-diabetic population. Glycemic profiles showed stability of the blood glucose level within the physiological range for non-diabetic subjects. At a follow-up of 30 weeks, six (50%) patients experienced a disease control (5 SD and 1 partial response). Conclusions The RP2D of metformin dose was defined at 1500 mg/day to be combined with erlotinib 150 mg. Trial registration number EudraCT number: 2014-000349-59.
Collapse
Affiliation(s)
- Floriana Morgillo
- Oncologia medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Morena Fasano
- Oncologia medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Carminia Maria Della Corte
- Oncologia medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Medicina interna, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Federica Papaccio
- Oncologia medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Giuseppe Viscardi
- Oncologia medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Giovanna Esposito
- Oncologia medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Raimondo Di Liello
- Oncologia medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Nicola Normanno
- Biologia cellulare e bioterapie, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Annalisa Capuano
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia, Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Liberato Berrino
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia, Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Giovanni Vicidomini
- Chirurgia toracica, Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Alfonso Fiorelli
- Chirurgia toracica, Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Mario Santini
- Chirurgia toracica, Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Seconda Universita degli Studi di Napoli, Naples, Italy
| | - Fortunato Ciardiello
- Oncologia medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Seconda Universita degli Studi di Napoli, Naples, Italy
| |
Collapse
|
27
|
Zhao Y, Zheng R, Li J, Lin F, Liu L. Loss of phosphatase and tensin homolog expression correlates with clinicopathological features of non-small cell lung cancer patients and its impact on survival: A systematic review and meta-analysis. Thorac Cancer 2017; 8:203-213. [PMID: 28263037 PMCID: PMC5415467 DOI: 10.1111/1759-7714.12425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homolog ( PTEN ), regarded as a tumor suppressor gene, may act as a prognostic biomarker in human cancers. METHODS All eligible studies from MEDLINE, Embase, CENTRAL, and the Chinese BioMedical Literature Database to October 2016 were incorporated. Two reviewers independently screened the literature according to inclusion and exclusion criteria, extracted the data, assessed the methodological quality of the included studies, and conducted meta-analysis. RESULTS A total of 2486 patients from 19 studies were included. PTEN expression was significantly correlated with gender, smoking history, histology (adenocarcinoma [ADC] vs. squamous cell carcinoma), tumor node metastasis stage (I-II vs. III-IV), N status (N0 vs. N1-N3), and distant metastasis (M0 vs. M1). Loss of PTEN expression was associated with poorer overall survival, but had no significant association with disease-free survival. Subgroup analysis showed that negative PTEN expression was associated with a poorer outcome in Asian and ADC patients, but not in Western or squamous cell carcinoma patients. CONCLUSION Loss of PTEN might play an unfavorable prognostic role for overall survival of non-small cell lung cancer patients, especially Asian or ADC patients.
Collapse
Affiliation(s)
- Yongsheng Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Renyan Zheng
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Urgard E, Reigo A, Reinmaa E, Rebane A, Metspalu A. Human basonuclin 2 up-regulates a cascade set of interferon-stimulated genes with anti-cancerous properties in a lung cancer model. Cancer Cell Int 2017; 17:18. [PMID: 28184177 PMCID: PMC5294813 DOI: 10.1186/s12935-017-0394-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human basonuclin 2 (BNC2) acts as a tumor suppressor in multiple cancers in an as yet unidentified manner. The role and expression of the BNC2 gene in lung cancer has not yet been investigated. METHODS BNC2 expression was studied in the A549 and BEAS-2B cell lines, as well as in lung cancer tissue. Illumina array analysis and a viability assay were used to study the effects of transient transfection of BNC2 in A549 cells. Ingenuity pathway analysis and g:Profiler were applied to identify affected pathways and networks. RT-qPCR was used to validate the array results. RESULTS We showed the reduced mRNA expression of BNC2 in non-small cell lung cancer tissue and lung cancer cell line A549 compared to non-cancerous lung tissue and BEAS-2B cells, respectively. Further array analysis demonstrated that the transfection of BNC2 into A549 cells resulted in the increased expression of 139 genes and the down-regulation of 13 genes. Pathway analysis revealed that half of the up-regulated genes were from the interferon/signal transducer and activator of transcription signaling pathways. The differential expression of selected sets of genes, including interferon-stimulated and tumor suppressor genes of the XAF1 and OAS families, was confirmed by RT-qPCR. In addition, we showed that the over-expression of BNC2 inhibited the proliferation of A549 cells. CONCLUSION Our data suggest that human BNC2 is an activator of a subset of IFN-regulated genes and might thereby act as a tumor suppressor.
Collapse
Affiliation(s)
- Egon Urgard
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Eva Reinmaa
- Department of Immunoanalysis, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.,Estonian Genome Center, University of Tartu, Tartu, Estonia
| |
Collapse
|
29
|
Hassan WA, Yoshida R, Kudoh S, Motooka Y, Ito T. Evaluation of role of Notch3 signaling pathway in human lung cancer cells. J Cancer Res Clin Oncol 2016; 142:981-93. [PMID: 26838758 DOI: 10.1007/s00432-016-2117-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED There is still a debate on the extent to which Notch3 signaling is involved in lung carcinogenesis and whether such function is dependent on cancer type or not. PURPOSE To evaluate Notch3 expression in different types of human lung cancer cells. METHODS Notch3 was detected in human lung cancer cell lines and in tissues. Then, small interfering RNA (siRNA) was used to down-regulate the expression of Notch3 in H69AR small cell lung carcinoma (SCLC) cells; two non-small cell lung carcinoma (NSCLC) cells; A549 adenocarcinoma (ADC); and H2170 squamous cell carcinoma (SCC). In addition, Notch3 intracellular domain (N3ICD) plasmid was transfected into H1688 human SCLC cells. We observed the effect of deregulating Notch3 signaling on the following cell properties: Notch-related proteins, cell morphology, adhesion, epithelial-mesenchymal transition (EMT), motility, proliferation and neuroendocrine (NE) features of SCLC. RESULTS Notch3 is mainly expressed in NSCLC, and the expression of Notch1, Hes1 and Jagged1 is affected by Notch3. Notch3 has opposite functions in SCLC and NSCLC, being a tumor suppressor in the former and tumor promoting in the latter, in the context of cell adhesion, EMT and motility. Regarding cell proliferation, we found that inhibiting Notch3 in NSCLC decreases cell proliferation and induces apoptosis in NSCLC. Notch3 has no effect on cell proliferation or NE features of SCLC. CONCLUSION Notch3 signaling in lung carcinoma is dependent on cell type. In SCLC, Notch3 behaves as a tumor suppressor pathway, while in NSCLC it acts as a tumor-promoting pathway.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Apoptosis
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Epithelial-Mesenchymal Transition
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, Notch3
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wael Abdo Hassan
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismaïlia, Egypt
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yamato Motooka
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
30
|
Song B, Zhang H, Jiang L, Chi Y, Tian J, Du W, Yu B, Han Z. Down-regulation of lipocalin 2 suppresses the growth of human lung adenocarcinoma through oxidative stress involving Nrf2/HO-1 signaling. Acta Biochim Biophys Sin (Shanghai) 2015; 47:805-14. [PMID: 26350099 DOI: 10.1093/abbs/gmv085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 01/14/2023] Open
Abstract
Lipocalin 2 (LCN2), a multifunctional secretory protein known as neutrophil gelatinase-associated lipocalin (NGAL), is expressed in a variety of cancers. However, little is known about the biological functions of NGAL in the development of lung adenocarcinoma. In the present study, we primarily found that NGAL expression was up-regulated in human lung adenocarcinoma tissues. Additionally, depletion of NGAL expression decreased the ability of cell proliferation and induced cell apoptosis. Furthermore, with the addition of N-acetylcysteine, a scavenger of reactive oxygen species (ROS), it was found that NGAL depletion was sufficient to cause apoptosis of lung adenocarcinoma cells by generating ROS through the inhibition of the nuclear factor E2-related factor 2/heme oxygenase-1 anti-oxidant pathway. Finally, the effect of NGAL down-regulation on the growth of human lung adenocarcinoma was determined in BALB/c nude mice. These findings demonstrate that NGAL may be a potential therapy target for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Baoquan Song
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hairui Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lei Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jianjian Tian
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wenjing Du
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Bentong Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
31
|
Pei N, Cao L, Liu Y, Wu J, Song Q, Zhang Z, Yuan J, Zhang X. XAB2 tagSNPs contribute to non-small cell lung cancer susceptibility in Chinese population. BMC Cancer 2015; 15:560. [PMID: 26228655 PMCID: PMC4520281 DOI: 10.1186/s12885-015-1567-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
Background XPA-binding protein 2 (XAB2) interacts with Cockayne syndrome complementation group A (CSA), group B (CSB) and RNA polymerase II to initiate nucleotide excision repair. This study aims to evaluate the association of XAB2 genetic variants with the risk of non-small cell lung cancer (NSCLC) using a tagging approach. Methods A hospital-based case-control study was conducted in 470 patients with NSCLC and 470 controls in Chinese population. Totally, 5 tag single nucleotide polymorphisms (SNPs) in XAB2 gene were selected by Haploview software using Hapmap database. Genotyping was performed using iPlex Gold Genotyping Asssy and Sequenom MassArray. Unconditional logistic regression was conducted to estimate odd ratios (ORs) and 95 % confidence intervals (95 % CI). Results Unconditional logistic regression analysis showed that the XAB2 genotype with rs794078 AA or at least one rs4134816 C allele were associated with the decreased risk of NSCLC with OR (95 % CI) of 0.12 (0.03–0.54) and 0.46 (0.26–0.84). When stratified by gender, we found that the subjects carrying rs4134816 CC or CT genotype had a decreased risk for developing NSCLC among males with OR (95 % CI) of 0.39 (0.18–0.82), but not among females. In age stratification analysis, we found that younger subjects (age ≤ 60) with at least one C allele had a decreased risk of NSCLC with OR (95 % CI) of 0.35 (0.17–0.74), but older subjects didn’t. We didn’t find that XAB2 4134816 C > T variant effect on the risk of NSCLC when stratified by smoking status. The environmental factors, such as age, sex and smoking had no effect on the risk of NSCLC related to XAB2 genotypes at other polymorphic sites. Conclusions The XAB2 tagSNPs (rs794078 and rs4134816) were significantly associated with the risk of NSCLC in Chinese population, which supports the XAB2 plays a significant role in the development of NSCLC.
Collapse
Affiliation(s)
- Na Pei
- Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, 063000, China. .,Department of Epidemiology, College of Public Health, Hebei United University, Tangshan, 063000, China.
| | - Lei Cao
- Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, 063000, China.
| | - Yingwen Liu
- Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, 063000, China. .,Department of Epidemiology, College of Public Health, Hebei United University, Tangshan, 063000, China.
| | - Jing Wu
- Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, 063000, China.
| | - Qinqin Song
- Tangshan Gongren Hospital, Hebei United University, Tangshan, China.
| | - Zhi Zhang
- Tangshan Gongren Hospital, Hebei United University, Tangshan, China.
| | - Juxiang Yuan
- Department of Epidemiology, College of Public Health, Hebei United University, Tangshan, 063000, China.
| | - Xuemei Zhang
- Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, 063000, China.
| |
Collapse
|
32
|
Hassan WA, Yoshida R, Kudoh S, Kameyama H, Hasegawa K, Niimori-Kita K, Ito T. Notch1 controls cell chemoresistance in small cell lung carcinoma cells. Thorac Cancer 2015; 7:123-8. [PMID: 26816546 PMCID: PMC4718138 DOI: 10.1111/1759-7714.12297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/21/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Small cell lung carcinoma (SCLC) is characterized by a high rate of relapse and failure of chemotherapy because of the emergence of drug resistant cells. Notch signaling controls carcinogenesis in several human malignancies and could be involved in the resistance of cells to several chemotherapeutic agents. Herein, we analyzed the role of Notch1 signaling in the resistance of human SCLC cells to doxorubicin. METHODS Small interfering ribonucleic acid technology was used to knock down (KD) Notch1 in H69AR and SBC-3 SCLC cells. We detected the effect of inhibiting Notch1 on the expression of drug resistant related molecules: multidrug resistance-associated protein (MRP-1) and anti-apoptotic factor B-cell lymphoma-2, as well as to cell adhesion molecule E-cadherin, which contributes to the adhesion of SCLC cells to the extracellular matrix and confers chemoresistance in a process known as cell adhesion-mediated drug resistance (CAM-DR). We also observed the effect of KD Notch1 on cell survival under high concentrations of doxorubicin treated media. RESULTS H69AR and SBC-3 cells expressed Notch1 protein and grew as adherent aggregates, which confer resistance to high concentrations of doxorubicin. On inhibiting Notch1, we observed activation of the apoptotic pathway in cells, possibly resulting from the loss of CAM-DR and, thus, SBC-3 cells showed a loss of chemoresistant ability. However, in H69AR cells with KD Notch1, the expression of MRP-1 was increased and, thus, sustained the chemoresistant ability of cells. CONCLUSION The Notch1 signaling pathway is involved in mediating the drug resistance phenotype of SCLC cells.
Collapse
Affiliation(s)
- Wael Abdo Hassan
- Department of Pathology Faculty of Medicine Suez Canal University Ismailia Egypt; Department of Pathology and Experimental Medicine Kumamoto University Graduate School of Medical Sciences Kumamoto Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery Kumamoto University Graduate School of Medical Sciences Kumamoto Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine Kumamoto University Graduate School of Medical Sciences Kumamoto Japan
| | - Hiroki Kameyama
- Division of Pathology Kumamoto Health Science University Kumamoto Japan
| | - Koki Hasegawa
- Department of Pathology and Experimental Medicine Kumamoto University Graduate School of Medical Sciences Kumamoto Japan
| | - Kanako Niimori-Kita
- Department of Pathology and Experimental Medicine Kumamoto University Graduate School of Medical Sciences Kumamoto Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine Kumamoto University Graduate School of Medical Sciences Kumamoto Japan
| |
Collapse
|
33
|
CHIANG ITSANG, WANG WEISHU, LIU HSINCHUNG, YANG SUTSO, TANG NOUYING, CHUNG JINGGUNG. Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro. Oncol Rep 2015; 34:1853-74. [DOI: 10.3892/or.2015.4159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
|
34
|
Serum calprotectin, CD26 and EGF to establish a panel for the diagnosis of lung cancer. PLoS One 2015; 10:e0127318. [PMID: 25992884 PMCID: PMC4436352 DOI: 10.1371/journal.pone.0127318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most lethal neoplasia, and an early diagnosis is the best way for improving survival. Symptomatic patients attending Pulmonary Services could be diagnosed with lung cancer earlier if high-risk individuals are promptly separated from healthy individuals and patients with benign respiratory pathologies. We searched for a convenient non-invasive serum test to define which patients should have more immediate clinical tests. Six cancer-associated molecules (HB-EGF, EGF, EGFR, sCD26, VEGF, and Calprotectin) were investigated in this study. Markers were measured in serum by specific ELISAs, in an unselected population that included 72 lung cancer patients of different histological types and 56 control subjects (healthy individuals and patients with benign pulmonary pathologies). Boosted regression and random forests analysis were conducted for the selection of the best candidate biomarkers. A remarkable discriminatory capacity was observed for EGF, sCD26, and especially for Calprotectin, these three molecules constituting a marker panel boasting a sensitivity of 83% and specificity of 87%, resulting in an associated misclassification rate of 15%. Finally, an algorithm derived by logistic regression and a nomogram allowed generating classification scores in terms of the risk of a patient of suffering lung cancer. In conclusion, we propose a non-invasive test to identify patients at high-risk for lung cancer from a non-selected population attending a Pulmonary Service. The efficacy of this three-marker panel must be tested in a larger population for lung cancer.
Collapse
|
35
|
Zhang J, Tao W, Chen Y, Chang D, Wang T, Zhang X, Mei L, Zeng X, Huang L. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:165. [PMID: 25791459 DOI: 10.1007/s10856-015-5498-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/15/2015] [Indexed: 05/20/2023]
Abstract
A doxorubicin-loaded mannitol-functionalized poly(lactide-co-glycolide)-b-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles (DOX-loaded M-PLGA-b-TPGS NPs) were prepared by a modified nanoprecipitation method. The NPs were characterized by the particle size, surface morphology, particle stability, in vitro drug release and cellular uptake efficiency. The NPs were near-spherical with narrow size distribution. The size of M-PLGA-b-TPGS NPs was ~110.9 nm (much smaller than ~143.7 nm of PLGA NPs) and the zeta potential was -35.8 mV (higher than -42.6 mV of PLGA NPs). The NPs exhibited a good redispersion since the particle size and surface charge hardly changed during 3-month storage period. In the release medium (phosphate buffer solution vs. fetal bovine serum), the cumulative drug release of DOX-loaded M-PLGA-b-TPGS, PLGA-b-TPGS, and PLGA NPs were 76.41 versus 83.11 %, 58.94 versus 73.44 % and 45.14 versus 53.12 %, respectively. Compared with PLGA-b-TPGS NPs and PLGA NPs, the M-PLGA-b-TPGS NPs possessed the highest cellular uptake efficiency in A549 and H1975 cells (lung cancer cells). Ultimately, both in vitro and in vivo antitumor activities were evaluated. The results showed that M-PLGA-b-TPGS NPs could achieve a significantly higher level of cytotoxicity in cancer cells and a better antitumor efficiency on xenograft BALB/c nude mice tumor model than free DOX. In conclusion, the DOX-loaded M-PLGA-b-TPGS could be used as a potential DOX-loaded nanoformulation in lung cancer chemotherapy.
Collapse
Affiliation(s)
- Jinxie Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Khan N, Mukhtar H. Dietary agents for prevention and treatment of lung cancer. Cancer Lett 2015; 359:155-64. [PMID: 25644088 DOI: 10.1016/j.canlet.2015.01.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/10/2023]
Abstract
Lung cancer is a prominent cause of cancer-associated mortality worldwide. The main reason for high mortality due to lung cancer is attributable to the fact that the diagnosis is generally made when it has spread beyond a curable stage and cannot be treated surgically or with radiation therapy. Therefore, new approaches like dietary modifications could be extremely useful in reducing lung cancer incidences. Several fruits and vegetables offer a variety of bioactive compounds to afford protection against several diseases, including lung cancer. A number of research studies involving dietary agents provide strong evidence for their role in the prevention and treatment of lung cancer, and have identified their molecular mechanisms of action and potential targets. In this review article, we summarize data from in-vitro and in-vivo studies and where available, in clinical trials, on the effects of some of the most promising dietary agents against lung cancer.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Xu S, Xi J, Jiang W, Lu S, Wang Q. Solid component and tumor size correlate with prognosis of stage IB lung adenocarcinoma. Ann Thorac Surg 2015; 99:961-7. [PMID: 25633461 DOI: 10.1016/j.athoracsur.2014.10.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Prognostic factors for stage IB lung cancer remain controversial. The International Association for the Study of Lung Cancer, American Thoracic Society, and European Respiratory Society proposed a new classification for pulmonary adenocarcinoma. We investigated the prognostic value of this new classification in resected stage IB pulmonary adenocarcinoma. METHODS The study included 187 patients with stage IB pulmonary adenocarcinoma. All pathologic slides were reevaluated according to the new classification for pulmonary adenocarcinoma, with each histologic component recorded in 5% increments. Survival analyses were performed to determine the prognostic factors for stage IB pulmonary adenocarcinoma. RESULTS Univariable analysis showed tumor size was prognostic for overall survival (hazard ratio [HR], 2.083; p < 0.001) and progression-free survival (HR, 1.991; p < 0.001); gender (HR, 0.558; p = 0.033), presence of the solid component (HR, 1.976; p = 0.016), and presence of a micropapillary component (HR, 2.371; p = 0.018) were prognostic for progression-free survival. Multivariable analysis revealed that tumor size was an independent prognostic factor for overall survival (HR, 2.083; 95% confidence interval, 1.433 to 3.029; p < 0.001) and progression-free survival (HR, 2.036; 95% confidence interval, 1.546 to 2.681; p < 0.001) and that the presence of the solid component (HR, 2.045; 95% confidence interval, 1.172 to 3.568; p = 0.012) was an independent prognostic factor for progression-free survival. CONCLUSIONS Solid component and tumor size significantly correlate with prognosis in stage IB pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Songtao Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China
| | - Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China.
| |
Collapse
|
38
|
Ali H, Du Z, Li X, Yang Q, Zhang YC, Wu M, Li Y, Zhang G. Identification of suitable reference genes for gene expression studies using quantitative polymerase chain reaction in lung cancer in vitro. Mol Med Rep 2015; 11:3767-73. [PMID: 25573171 DOI: 10.3892/mmr.2015.3159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/05/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to examine 10 housekeeping genes (HKGs), including 18s ribosomal RNA (18S), glyceraldehyde‑3‑phosphate dehydrogenase (GAPDH), ribosomal protein large P0 (RPLP0), β‑actin (ACTB), peptidylprolyl isomerase A (PPIA), phosphoglycerate kinase‑1 (PGK1), β‑2‑microglobulin (B2M), ribosomal protein LI3a (RPL13A), hypoxanthine phosphoribosyl transferase‑1 (HPRT1) and TATA box binding protein (TBP) in order to identify the most stable and suitable reference genes for use in expression studies in non‑small cell lung cancer. The mRNA expression encoding the panel of the 10 HKGs was determined using reverse transcription‑quantitative PCR (RT‑qPCR) in human lung cancer cell lines. Three software programs, BestKeeper, NormFinder and geNorm, were used to ascertain the most suitable reference genes to normalize the RNA input. The present study examined three lung cancer cell lines (A549, NCI‑H446 and NCI‑H460). The analysis of the experimental data using BestKeeper software revealed that all 10 HKGs were stable, with GADPH, followed by 18S being the most stable genes and PPIA and HPRT1 being the least stable genes. The NormFinder software results demonstrated that PPIA followed by ACTB were the most stable and B2M and RPLP0 were the least stable. The geNorm software results revealed that ACTB and PGK1, followed by PPIA were the most stable genes and B2M and RPLP0 were identified as the least stable genes. Due to discrepancies in the ranking orders of the reference genes obtained by different analyzing software programs, it was not possible to determine a single universal reference gene. The suitability of selected reference genes requires unconditional validation prior to each study. Based on the three analyzing programs, ACTB, PPIA and PGK1 were the most stable reference genes in lung cancer cell lines.
Collapse
Affiliation(s)
- Hassan Ali
- Department of Central Laboratory, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhenwu Du
- Department of Central Laboratory, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiuying Li
- Department of Central Research, China‑Japan Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Qiwei Yang
- Department of Central Research, China‑Japan Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yu Cheng Zhang
- Department of Central Research, China‑Japan Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Mei Wu
- Department of Central Research, China‑Japan Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yi Li
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guizhen Zhang
- Department of Central Laboratory, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
39
|
Borkowski R, Du L, Zhao Z, McMillan E, Kosti A, Yang CR, Suraokar M, Wistuba II, Gazdar AF, Minna JD, White MA, Pertsemlidis A. Genetic mutation of p53 and suppression of the miR-17∼92 cluster are synthetic lethal in non-small cell lung cancer due to upregulation of vitamin D Signaling. Cancer Res 2014; 75:666-75. [PMID: 25519225 DOI: 10.1158/0008-5472.can-14-1329] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer-related fatalities. Recent success developing genotypically targeted therapies, with potency only in well-defined subpopulations of tumors, suggests a path to improving patient survival. We used a library of oligonucleotide inhibitors of microRNAs, a class of posttranscriptional gene regulators, to identify novel synthetic lethal interactions between miRNA inhibition and molecular mechanisms in non-small cell lung cancer (NSCLC). Two inhibitors, those for miR-92a and miR-1226*, produced a toxicity distribution across a panel of 27 cell lines that correlated with loss of p53 protein expression. Notably, depletion of p53 was sufficient to confer sensitivity to otherwise resistant telomerase-immortalized bronchial epithelial cells. We found that both miR inhibitors cause sequence-specific downregulation of the miR-17∼92 polycistron, and this downregulation was toxic only in the context of p53 loss. Mechanistic studies indicated that the selective toxicity of miR-17∼92 polycistron inactivation was the consequence of derepression of vitamin D signaling via suppression of CYP24A1, a rate-limiting enzyme in the 1α,25-dihydroxyvitamin D3 metabolic pathway. Of note, high CYP24A1 expression significantly correlated with poor patient outcome in multiple lung cancer cohorts. Our results indicate that the screening approach used in this study can identify clinically relevant synthetic lethal interactions and that vitamin D receptor agonists may show enhanced efficacy in p53-negative lung cancer patients.
Collapse
Affiliation(s)
- Robert Borkowski
- Division of Basic Sciences, Southwestern Graduate School of Biomedical Sciences, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Liqin Du
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Zhenze Zhao
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Elizabeth McMillan
- Division of Basic Sciences, Southwestern Graduate School of Biomedical Sciences, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Adam Kosti
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chin-Rang Yang
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Milind Suraokar
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adi F Gazdar
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - John D Minna
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michael A White
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|
40
|
Hassan WA, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K, Ito T. Notch1 controls cell invasion and metastasis in small cell lung carcinoma cell lines. Lung Cancer 2014; 86:304-10. [PMID: 25456735 DOI: 10.1016/j.lungcan.2014.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Notch signaling plays a key role in a wide variety of human neoplasms, and it can be either oncogenic or anti-proliferative. Moreover, Notch function in regulating cancer is unpredictable, and its outcome is strictly context-dependent. AIM To study the role of Notch1 signaling in human small cell lung carcinoma (SCLC) and its effect on cell invasion and metastasis. MATERIALS AND METHODS We used small interfering RNA (siRNA) technology, to down-regulate the expression of Notch1 in H69AR and SBC3 SCLC cells. On the other hand, we up-regulated Notch1 in H69 and H1688 SCLC cells through transfection with venus Notch1 intracellular domain (v.NICD) plasmid. In addition, H69 cells with v.NICD were xenotransplanted into immune-compromised Rag2(-/-) Jak3(-/-) mice, for analysis of ex vivo tumor epithelial mesenchymal transition (EMT) phenotype and for detection of metastatic cancer cells in the lung tissues. Moreover, we examined the metastatic ability for H69AR and SBC3 cells transfected with siRNA against Notch1, compared to their subsequent controls, by use of tail vein xenograft mouse models. RESULTS Notch1 controls cell adhesion and EMT. Overexpression of Notch1 in SCLC switched off EMT, cell motility and cell metastatic potential. CONCLUSION Our results demonstrate that activation of Notch1 signaling pathway may represent a new strategy for treating human SCLC.
Collapse
Affiliation(s)
- Wael Abdo Hassan
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan; Department of Pathology, Faculty of Medicine, Suez Canal University, Egypt
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Graduate School of Medical Sciences, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan
| | - Koki Hasegawa
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan
| | - Kanako Niimori-Kita
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan.
| |
Collapse
|
41
|
Liu D, Li L, Yang Y, Liu W, Wu J. The Axin2 rs2240308 polymorphism and susceptibility to lung cancer in a Chinese population. Tumour Biol 2014; 35:10987-91. [PMID: 25091576 DOI: 10.1007/s13277-014-2399-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022] Open
Abstract
Axis inhibition protein 2 (Axin2) is a negative regulator of the canonical Wnt/β-catenin signaling pathway, and functions as a tumor suppressor in a number of human cancers. Previous pilot studies have suggested an association between Axin2 exon1 148 (rs2240308) SNP polymorphism and risk for lung cancer. In the present study, we aimed to investigate the Axin2 exon1 148 polymorphism and its association with lung cancer susceptibility in Han Chinese population. The Axin2 exon1 148 SNP was genotyped in 555 controls and 520 lung cancer patients using TaqMan SNP Genotyping Assays. Unconditional logistic regression analysis was used to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs). We observed that the genotype frequencies of TC, TT, and CC were significantly different between controls and cases (χ(2) = 6.849, P = 0.03256, df = 2). Subjects carrying T allele (TC + TT genotypes) had decreased susceptibility to lung cancer as compared to those carrying CC genotype (OR = 0.733, 95% CI = 0.5726-0.9393, P = 0.01382). No significant association was found between rs2240308 polymorphism and histological subtypes of lung cancers. Findings from this study suggest that Axin2 exon1 T148C polymorphism (rs2240308) contributes to increased susceptibility to lung cancer in Chinese population. This further implicates Axin2 as a lung cancer-related gene.
Collapse
Affiliation(s)
- Dan Liu
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, No. 150, Haping Road, Nangang, 150081, Harbin, China
| | | | | | | | | |
Collapse
|
42
|
Nair S, Bora-Singhal N, Perumal D, Chellappan S. Nicotine-mediated invasion and migration of non-small cell lung carcinoma cells by modulating STMN3 and GSPT1 genes in an ID1-dependent manner. Mol Cancer 2014; 13:173. [PMID: 25028095 PMCID: PMC4121302 DOI: 10.1186/1476-4598-13-173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 11/20/2022] Open
Abstract
Background Inhibitor of DNA binding/Differentiation 1 (ID1) is a helix loop helix transcription factor that lacks the basic DNA binding domain. Over-expression of ID1 has been correlated with a variety of human cancers; our earlier studies had shown that reported ID1 is induced by nicotine or EGF stimulation of non-small cell lung cancer (NSCLC) cells and its down regulation abrogates cell proliferation, invasion and migration. Here we made attempts to identify downstream targets of ID1 that mediate these effects. Methods A microarray analysis was done on two different NSCLC cell lines (A549 and H1650) that were transfected with a siRNA to ID1 or a control, non-targeting siRNA. Cells were stimulated with nicotine and genes that were differentially expressed upon nicotine stimulation and ID1 depletion were analyzed to identify potential downstream targets of ID1. The prospective role of the identified genes was validated by RT-PCR. Additional functional assays were conducted to assess the role of these genes in nicotine induced proliferation, invasion and migration. Experiments were also conducted to elucidate the role of ID1, which does not bind to DNA directly, affects the expression of these genes at transcriptional level. Results A microarray analysis showed multiple genes are affected by the depletion of ID1; we focused on two of them: Stathmin-like3 (STMN3), a microtubule destabilizing protein, and GSPT1, a protein involved in translation termination; these proteins were induced by both nicotine and EGF in an ID1 dependent fashion. Overexpression of ID1 in two different cell lines induced STMN3 and GSPT1 at the transcriptional level, while depletion of ID1 reduced their expression. STMN3 and GSPT1 were found to facilitate the proliferation, invasion and migration of NSCLC cells in response to nAChR activation. Attempts made to assess how ID1, which is a transcriptional repressor, induces these genes showed that ID1 down regulates the expression of two transcriptional co-repressors, NRSF and ZBP89, involved in the repression of these genes. Conclusions Collectively, our data suggests that nicotine and EGF induce genes such as STMN3 and GSPT1 to promote the proliferation, invasion and migration of NSCLC, thus enhancing their tumorigenic properties. These studies thus reveal a central role for ID1 and its downstream targets in facilitating lung cancer progression.
Collapse
Affiliation(s)
| | | | | | - Srikumar Chellappan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
43
|
Human marrow stromal cells downsize the stem cell fraction of lung cancers by fibroblast growth factor 10. Mol Cell Biol 2014; 34:2848-56. [PMID: 24865969 DOI: 10.1128/mcb.00871-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional interplay between cancer cells and marrow stromal cells (MSCs) has attracted a great deal of interest due to the MSC tropism for tumors but remains to be fully elucidated. In this study, we investigated human MSC-secreted paracrine factors that appear to have critical functions in cancer stem cell subpopulations. We show that MSC-conditioned medium reduced the cancer stem cell-enriched subpopulation, which was detected as a side population and quiescent (G0) cell cycle fraction in human lung cancer cells by virtue of fibroblast growth factor 10 (FGF10). This reduction of the stem cell-enriched fraction was also observed in lung cancer cells supplemented with recombinant human FGF10 protein. Moreover, supplementary FGF10 attenuated the expression of stemness genes encoding transcription factors, such as OCT3/4 and SOX2, and crippled the self-renewal capacity of lung cancer cells, as evidenced by the impaired formation of floating spheres in the suspension culture. We finally confirmed the therapeutic potential of the FGF10 treatment, which rendered lung cancer cells prone to a chemotherapeutic agent, probably due to the reduced cancer stem cell subpopulation. Collectively, these results add further clarification to the molecular mechanisms underlying MSC-mediated cancer cell kinetics, facilitating the development of future therapies.
Collapse
|
44
|
Pop LM, Barman S, Shao C, Poe JC, Venturi GM, Shelton JM, Pop IV, Gerber DE, Girard L, Liu XY, Behrens C, Rodriguez-Canales J, Liu H, Wistuba II, Richardson JA, Minna JD, Tedder TF, Vitetta ES. A reevaluation of CD22 expression in human lung cancer. Cancer Res 2014; 74:263-71. [PMID: 24395821 DOI: 10.1158/0008-5472.can-13-1436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B-cell receptor and its coreceptor CD19. Recent reports indicate that most human lung cancer cells and cell lines express CD22, making it an important new therapeutic target for lung cancer. The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by quantitative real-time PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200 to 60,000-fold lower than those observed in the human CD22(+) Burkitt lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by either CD22 antibodies or our highly potent anti-CD22 immunotoxin. In contrast, CD22(+) Daudi cells expressed high levels of CD22 mRNA and protein, and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from more than 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells, and that these cells cannot be killed by anti-CD22 immunotoxins.
Collapse
Affiliation(s)
- Laurentiu M Pop
- Authors' Affiliations: Cancer Immunobiology Center and Hamon Center for Therapeutic Oncology Research; Departments of Immunology, Internal Medicine, Microbiology, Pathology, and Pharmacology, University of Texas Southwestern Medical Center, Dallas; Departments of Thoracic/Head and Neck Medical Oncology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston; Bio-Synthesis Inc., Lewisville, Texas; and Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. ScientificWorldJournal 2014; 2014:260348. [PMID: 24550697 PMCID: PMC3914447 DOI: 10.1155/2014/260348] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/08/2013] [Indexed: 12/14/2022] Open
Abstract
Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Nina Kocevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
46
|
Yang C, Li Z, Shi Z, He K, Tian A, Wu J, Zhang Y, Li Z. Regulation of cell survival by the HIP-55 signaling network. MOLECULAR BIOSYSTEMS 2014; 10:1393-9. [DOI: 10.1039/c3mb70552h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Chemical suppression of an oncogenic splicing variant of AIMP2 induces tumour regression. Biochem J 2013; 454:411-6. [PMID: 23815603 DOI: 10.1042/bj20130550] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIMP2 (aminoacyl-tRNA synthetase-interacting multifunctional protein 2) is a potent tumour suppressor that induces apoptosis in response to various oncogenic signals. AIMP2-DX2, an exon2-deleted splicing variant of AIMP2, is up-regulated in lung cancer and competitively suppresses the pro-apoptotic activity of AIMP2, resulting in tumorigenesis. In the present study we report that BC-DXI01, a synthetic compound, specifically reduces the cellular levels of AIMP2-DX2 through selective degradation of the AIMP2-DX2 mRNA transcript. We found that BC-DXI01-mediated cell death positively correlates with AIMP2-DX2 expression in the lung cancer cell lines tested. Administration of BC-DXI01 in a AIMP2-DX2-driven tumour xenograft mice model led to reduced tumour sizes and volumes of up to 60% in comparison with vehicle-treated mice group, consistent with decreases in AIMP2-DX2 transcript and protein levels. Taken together, our findings suggest that tumorigenic activity of AIMP2-DX2 can be controlled by the small chemical BC-DXI01, which can selectively suppress the AIMP2-DX2 mRNA transcript.
Collapse
|
48
|
Naidoo R, Windsor MN, Goldstraw P. Surgery in 2013 and beyond. J Thorac Dis 2013; 5 Suppl 5:S593-606. [PMID: 24163751 PMCID: PMC3804869 DOI: 10.3978/j.issn.2072-1439.2013.07.39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 01/12/2023]
Abstract
Lung cancer is a leading cause of cancer related mortality. The role of surgery continues to evolve and in the last ten years there have been a number of significant changes in the surgical management of lung cancer. These changes extend across the entire surgical spectrum of lung cancer management including diagnosis, staging, treatment and pathology. Positron Emission Tomography (PET) scanning and ultrasound (EBUS) have redefined traditional staging paradigms, and surgical techniques, including video-assisted thoracoscopy (VATS), robotic surgery and uniportal surgery, are now accepted as standard of care in many centers. The changing pathology of lung cancer, with more peripheral tumours and an increase in adenocarcinomas has important implications for the Thoracic surgeon. Screening, using Low-Dose CT scanning, is having an impact, with not only a higher percentage of lower stage cancers detected, but also redefining the role of sublobar resection. The incidence of pneumonectomy has reduced as have the rates of "exploratory thoracotomy". In general, lung resection is considered for stage I and II patients with a selected role in more advanced stage disease as part of a multimodality approach. This paper will look at these issues and how they impact on Thoracic Surgical practice in 2013 and beyond.
Collapse
Affiliation(s)
- Rishendran Naidoo
- Department of Cardiothoracic Surgery, The Prince Charles Hospital, Brisbane, Australia
| | - Morgan N. Windsor
- Department of Cardiothoracic Surgery, The Prince Charles Hospital, Brisbane, Australia
| | - Peter Goldstraw
- Academic Department of Thoracic Surgery, Royal Brompton Hospital, London, UK
| |
Collapse
|
49
|
Pleil JD, Stiegel MA. Evolution of Environmental Exposure Science: Using Breath-Borne Biomarkers for “Discovery” of the Human Exposome. Anal Chem 2013; 85:9984-90. [DOI: 10.1021/ac402306f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joachim D. Pleil
- National Exposure Research Laboratory,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Matthew A. Stiegel
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
50
|
Morgillo F, Sasso FC, Della Corte CM, Festino L, Manzo A, Martinelli E, Troiani T, Capuano A, Ciardiello F. Metformin in lung cancer: rationale for a combination therapy. Expert Opin Investig Drugs 2013; 22:1401-9. [PMID: 23937224 DOI: 10.1517/13543784.2013.828691] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Metformin is a widely used antidiabetic drug, which also displays significant growth inhibitory and proapoptotic effects in several cancer models, including lung cancer, alone or in combination with chemotherapeutic drugs. AREAS COVERED The role of metformin as a chemopreventive drug in lung cancer is still an object of debate as epidemiological studies have shown contrasting results. More preclinical data support its role as an adjuvant drug in the treatment of lung cancer, in combination with chemotherapy or targeted molecular drugs, although the complete mechanism of action of metformin is still unclear, and potentially may exert unexpected effects with contradictory clinical implications. EXPERT OPINION Future perspective studies are required in nonsmall-cell lung cancer (NSCLC) patients to better investigate the effect of metformin action on the RAS/RAF/MAPK pathway and the best context in which to use metformin in combination with molecularly targeted agents.
Collapse
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Medicina Interna , Via S. Pansini 5, 80131 Napoli , Italia
| | | | | | | | | | | | | | | | | |
Collapse
|