1
|
Scholes RC. Emerging investigator series: contributions of reactive nitrogen species to transformations of organic compounds in water: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:851-869. [PMID: 35546580 DOI: 10.1039/d2em00102k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive nitrogen species (RNS) pose a potential risk to drinking water quality because they react with organic compounds to form toxic byproducts. Since the discovery of RNS formation in sunlit surface waters, these reactive intermediates have been detected in numerous sunlit natural waters and engineered water treatment systems. This critical review summarizes what is known regarding RNS, including their formation, contributions to contaminant transformation, and products resulting from RNS reactions. Reaction mechanisms and rate constants have been described for nitrogen dioxide (˙NO2) reacting with phenolic compounds. However, significant knowledge gaps remain regarding reactions of RNS with other types of organic compounds. Promising methods to quantify RNS concentrations and reaction rates include the use of selective quenchers and probe compounds as well as electron paramagnetic resonance spectroscopy. Additionally, high resolution mass spectrometry methods have enabled the identification of nitr(os)ated byproducts that form via RNS reactions in sunlit surface waters, UV-based treatment systems, treatment systems that employ chemical oxidants such as chlorine and ozone, and certain types of biological treatment processes. Recommendations are provided for future research to increase understanding of RNS reactions and products, and the implications for drinking water toxicity.
Collapse
Affiliation(s)
- Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
2
|
Liu X, Park M, Beitel SC, Hoppe-Jones C, Meng XZ, Snyder SA. Formation of nitrogenous disinfection byproducts in MP UV-based water treatments of natural organic matters: The role of nitrate. WATER RESEARCH 2021; 204:117583. [PMID: 34478995 DOI: 10.1016/j.watres.2021.117583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
UV-based water treatment processes have been reported to induce genotoxicity during the treatments of surface water, drinking water and artificial water with natural organic matters (NOMs), causing genotoxicity concerns for the drinking water safety. Nitrogenous disinfection byproducts (N-DBPs) were generally reported to be much more genotoxic than their non-nitrogenous analogues, and might be responsible for the genotoxicity in UV processes. Although nitrate-rich water was getting attention for the possibility of genotoxicity and N-DBPs during UV treatments, the impact mechanism of nitrate on the degradation of NOMs, the formation of N-DBPs and genotoxicity has not been explicated. Here simulation experiments of NOM degradation under medium-pressure (MP) UV and MP UV/H2O2 treatments were conducted to explore the effect of nitrate on the molecular characteristics of NOM, the nitrate-derived N-DBPs and the potential genotoxicity through non-targeted analysis and CALUX® reporter gene assays. The results showed that nitrate can accelerate the degradation of NOMs in the MP UV process but inhibit the degradation of NOMs in the MP UV/H2O2 process. During the degradation of NOMs, the molecular compositions varied by the effect of nitrate on oxygen atoms, molecule analogs, and saturation. A total of 105 and 374 nitrate-derived N-DBPs were identified in the MP UV and MP UV/H2O2 treatment, respectively. Most of these N-DBPs contain one nitrogen atom, and the representative features are nitro-, methoxy- (or hydroxyl-) and ester- groups on benzene. No genotoxicity was observed without nitrate spiking, whereas genotoxicity was induced after both MP UV and MP UV/H2O2 treatments when nitrate was spiked, which is worthy of attention for the drinking water safety management.
Collapse
Affiliation(s)
- Xiao Liu
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Bio5 Institute, Department of Chemical and Environmental Engineering, University of Arizona, 1657 E Helen St, Tucson, AZ 85719, United States
| | - Minkyu Park
- Bio5 Institute, Department of Chemical and Environmental Engineering, University of Arizona, 1657 E Helen St, Tucson, AZ 85719, United States
| | - Shawn C Beitel
- Bio5 Institute, Department of Chemical and Environmental Engineering, University of Arizona, 1657 E Helen St, Tucson, AZ 85719, United States
| | - Christiane Hoppe-Jones
- Bio5 Institute, Department of Chemical and Environmental Engineering, University of Arizona, 1657 E Helen St, Tucson, AZ 85719, United States
| | - Xiang-Zhou Meng
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, Zhejiang Province, China.
| | - Shane A Snyder
- Bio5 Institute, Department of Chemical and Environmental Engineering, University of Arizona, 1657 E Helen St, Tucson, AZ 85719, United States.
| |
Collapse
|
3
|
UV/H2O2 oxidation of chloronitrobenzenes in waters revisited: Hydroxyl radical induced self-nitration. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Hull NM, Rosenblum JS, Robertson CE, Harris JK, Linden KG. Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver-Julesburg Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:183-192. [PMID: 29981518 DOI: 10.1016/j.scitotenv.2018.06.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 05/25/2023]
Abstract
Hydraulic fracturing flowback and produced water (FPW) samples were analyzed for toxicity and microbiome characterization over 220 days for a horizontally drilled well in the Denver-Julesberg (DJ) Basin in Colorado. Cytotoxicity, mutagenicity, and estrogenicity of FPW were measured via the BioLuminescence Inhibition Assay (BLIA), Ames II mutagenicity assay (AMES), and Yeast Estrogen Screen (YES). Raw FPW stimulated bacteria in BLIA, but were cytotoxic to yeast in YES. Filtered FPW stimulated cell growth in both BLIA and YES. Concentrating 25× by solid phase extraction (SPE) revealed significant toxicity throughout well production by BLIA, toxicity during the first 55 days of flowback by YES, and mutagenicity by AMES. The selective pressures of fracturing conditions (including toxicity) affected bacterial and archaeal communities, which were characterized by 16S rRNA gene V4V5 region sequencing. Conditions selected for thermophilic, anaerobic, halophilic bacteria and methanogenic archaea from the groundwater used for fracturing fluid, and from the native shale community. Trends in toxicity echoed the microbial community, which indicated distinct stages of early flowback water, a transition stage, and produced water. Biota in another sampled DJ Basin horizontal well resembled similarly aged samples from this well. However, microbial signatures were unique compared to samples from DJ Basin vertical wells, and wells from other basins. These data can inform treatability, reuse, and management decisions specific to the DJ Basin to minimize adverse environmental health and well production outcomes.
Collapse
Affiliation(s)
- Natalie M Hull
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, Boulder, CO 80303, USA.
| | - James S Rosenblum
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, Boulder, CO 80303, USA.
| | - Charles E Robertson
- University of Colorado School of Medicine, Anschutz Campus, Division of Infectious Disease, Aurora, CO 80405, USA.
| | - J Kirk Harris
- University of Colorado School of Medicine, Anschutz Campus, Department of Pediatrics, Aurora, CO 80405, USA.
| | - Karl G Linden
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, Boulder, CO 80303, USA.
| |
Collapse
|
5
|
Sharma A, Ahmad J, Flora SJS. Application of advanced oxidation processes and toxicity assessment of transformation products. ENVIRONMENTAL RESEARCH 2018; 167:223-233. [PMID: 30055452 DOI: 10.1016/j.envres.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Advanced Oxidation Processes (AOPs) are the techniques employed for oxidation of various organic contaminants in polluted water with the objective of making it suitable for human consumption like household and drinking purpose. AOPs use potent chemical oxidants to bring down the contaminant level in the water. In addition to this function, these processes are also capable to kills microbes (as disinfectant) and remove odor as well as improve taste of the drinking water. The non-photochemical AOPs methods include generation of hydroxyl radical in absence of light either by ozonation or through Fenton reaction. The photochemical AOPs methods use UV light along with H2O2, O3 and/or Fe+2 to generate reactive hydroxyl radical. Non-photochemical method is the commonly used whereas, photochemical method is used when conventional O3 and H2O2 cannot completely oxidize organic pollutants. However, the choice of AOPs methods is depended upon the type of contaminant to be removed. AOPs cause loss of biological activity of the pollutant present in drinking water without generation of any toxicity. Conventional ozonation and AOPs can inactivate estrogenic compounds, antiviral compounds, antibiotics, and herbicides. However, the study of different AOPs methods for the treatment of drinking water has shown that oxidation of parent compound can also lead to the generation of a degradation/transformation product having biological activity/chemical toxicity similar to or different from the parent compound. Furthermore, an increased toxicity can also occur in AOPs treated drinking water. This review discusses various methods of AOPs, their merits, its application in drinking water treatment, the related issue of the evolution of toxicity in AOPs treated drinking water, biocatalyst, and analytical methods for identification of pollutants /transformed products and provides future directions to address such an issue.
Collapse
Affiliation(s)
- Abha Sharma
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - Javed Ahmad
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India.
| |
Collapse
|
6
|
UV Induced Mutagenicity in Water: Causes, Detection, Identification and Prevention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29124705 DOI: 10.1007/978-3-319-56017-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
At first it seemed that UV processes for disinfection and advanced oxidation were "harmless", as they didn't involve the addition of "dangerous" chemicals nor seemed to result in the formation of toxic byproducts. However, recently it has become clear that also during UV processes mutagentic/genotoxic byproducts may be formed. It was found that these are nitrogen containing aromatic compounds, which are formed by the reaction of photolysis products of nitrate with (photolysis products of) natural organic matter. Now more has become clear on the formation process of these compounds, it is possible to limit or even prevent their formation during e.g. UV/H2O2 processes. Besides, it appears to be possible to remove such byproducts by means of filtration processes. Thus, UV based processes can safely be applied in water treatment.
Collapse
|
7
|
Lee Y, Gerrity D, Lee M, Gamage S, Pisarenko A, Trenholm RA, Canonica S, Snyder SA, von Gunten U. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3809-3819. [PMID: 26909504 DOI: 10.1021/acs.est.5b04904] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.
Collapse
Affiliation(s)
- Yunho Lee
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology , 123, Oryong-dong, Buk-gu, Gwangju 500-712, Korea
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf, Switzerland
| | - Daniel Gerrity
- Department of Civil and Environmental Engineering, University of Nevada, Las Vegas , Box 454015, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4015, United States
- Trussell Technologies, Inc. , 6540 Lusk Boulevard, Suite C274, San Diego, California 92121, United States
- Applied Research and Development Center, Southern Nevada Water Authority , P.O. Box 99954, Las Vegas, Nevada 89193-9954, United States
| | - Minju Lee
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf, Switzerland
- School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne , CH-1015, Lausanne, Switzerland
| | - Sujanie Gamage
- Applied Research and Development Center, Southern Nevada Water Authority , P.O. Box 99954, Las Vegas, Nevada 89193-9954, United States
| | - Aleksey Pisarenko
- Trussell Technologies, Inc. , 6540 Lusk Boulevard, Suite C274, San Diego, California 92121, United States
- Applied Research and Development Center, Southern Nevada Water Authority , P.O. Box 99954, Las Vegas, Nevada 89193-9954, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority , P.O. Box 99954, Las Vegas, Nevada 89193-9954, United States
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf, Switzerland
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf, Switzerland
- School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne , CH-1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Semitsoglou-Tsiapou S, Templeton MR, Graham NJD, Hernández Leal L, Martijn BJ, Royce A, Kruithof JC. Low pressure UV/H2O2 treatment for the degradation of the pesticides metaldehyde, clopyralid and mecoprop - Kinetics and reaction product formation. WATER RESEARCH 2016; 91:285-94. [PMID: 26803264 DOI: 10.1016/j.watres.2016.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/19/2015] [Accepted: 01/09/2016] [Indexed: 05/23/2023]
Abstract
The degradation kinetics of three pesticides - metaldehyde, clopyralid and mecoprop - by ultraviolet photolysis and hydroxyl radical oxidation by low pressure ultraviolet hydrogen peroxide (LP-UV/H2O2) advanced oxidation was determined. Mecoprop was susceptible to both LP-UV photolysis and hydroxyl radical oxidation, and exhibited the fastest degradation kinetics, achieving 99.6% (2.4-log) degradation with a UV fluence of 800 mJ/cm(2) and 5 mg/L hydrogen peroxide. Metaldehyde was poorly degraded by LP-UV photolysis while 97.7% (1.6-log) degradation was achieved with LP-UV/H2O2 treatment at the maximum tested UV fluence of 1000 mJ/cm(2) and 15 mg/L hydrogen peroxide. Clopyralid was hardly susceptible to LP-UV photolysis and exhibited the lowest degradation by LP-UV/H2O2 among the three pesticides. The second-order reaction rate constants for the reactions between the pesticides and OH-radicals were calculated applying a kinetic model for LP-UV/H2O2 treatment to be 3.6 × 10(8), 2.0 × 10(8) and 1.1 × 10(9) M(-1) s(-1) for metaldehyde, clopyralid and mecoprop, respectively. The main LP-UV photolysis reaction product from mecoprop was 2-(4-hydroxy-2-methylphenoxy) propanoic acid, while photo-oxidation by LP-UV/H2O2 treatment formed several oxidation products. The photo-oxidation of clopyralid involved either hydroxylation or dechlorination of the ring, while metaldehyde underwent hydroxylation and produced acetic acid as a major end product. Based on the findings, degradation pathways for the three pesticides by LP-UV/H2O2 treatment were proposed.
Collapse
Affiliation(s)
- Sofia Semitsoglou-Tsiapou
- Department of Civil and Environmental Engineering, Imperial College London, London, UK; Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Lucía Hernández Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | | | - Alan Royce
- Trojan Technologies, London, Ontario, Canada
| | - Joop C Kruithof
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| |
Collapse
|
9
|
Martijn BJ, Van Rompay AR, Penders EJM, Alharbi Y, Baggelaar PK, Kruithof JC, Rietjens IMCM. Development of a 4-NQO toxic equivalency factor (TEF) approach to enable a preliminary risk assessment of unknown genotoxic compounds detected by the Ames II test in UV/H₂O₂ water treatment samples. CHEMOSPHERE 2016; 144:338-345. [PMID: 26378870 DOI: 10.1016/j.chemosphere.2015.08.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
An approach to enable a preliminary risk assessment of unknown genotoxic compounds formed by MP UV/H2O2 treatment of nitrate rich water, is described. Since the identity and concentration of specific genotoxic compounds is not established yet, a compound specific risk assessment cannot be performed. This limitation is circumvented by introducing a toxic equivalency factor, converting the concentration of unknown genotoxic compounds expressed by an Ames II test response into equivalent concentrations of 4-nitroquinoline oxide (4-NQO), to enable a preliminary risk assessment. Based on the obtained 4-NQO equivalent concentrations for the tested water samples and 4-NQO carcinogenicity data, an indication of the associated risk of the by MP UV/H2O2 treatment produced nitrated genotoxic compounds is obtained via the margin of exposure (MOE) approach. Based on a carcinogen study by Tang et al. (2004), a body weight of 70 kg and a drinking water consumption of 2 L per day, the 4-NQO equivalent concentration should not exceed 80 ng/L associated with a negligible risk. Application of this approach on samples from MP UV/H2O2 treated water of a full scale drinking water production facility, a 4-NQO equivalent concentration of 107 ng/L was established. These results indicate a safety concern in case this water would be distributed as drinking water without further post treatment.
Collapse
Affiliation(s)
- Bram J Martijn
- Wageningen University, Division of Toxicology, P.O. Box 8000, 6700 EA Wageningen, The Netherlands; Wetsus European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113; 8900 CC Leeuwarden, The Netherlands; PWN Water Supply Company North Holland, P.O. Box 2113, 1990 AC Velserbroek, The Netherlands.
| | - An R Van Rompay
- VITO - Environmental Risk & Health - Team ABS, Industriezone Vlasmeer 7, 2400 Mol, Belgium
| | - Eric J M Penders
- Het Waterlaboratorium, P.O Box 734, 2300 RS Haarlem, The Netherlands
| | - Yousif Alharbi
- Wageningen University, Division of Toxicology, P.O. Box 8000, 6700 EA Wageningen, The Netherlands
| | | | - Joop C Kruithof
- Wetsus European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113; 8900 CC Leeuwarden, The Netherlands
| | - Ivonne M C M Rietjens
- Wageningen University, Division of Toxicology, P.O. Box 8000, 6700 EA Wageningen, The Netherlands
| |
Collapse
|
10
|
Kolkman A, Martijn BJ, Vughs D, Baken KA, van Wezel AP. Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4458-4465. [PMID: 25760315 DOI: 10.1021/es506063h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples.
Collapse
Affiliation(s)
- Annemieke Kolkman
- †KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Bram J Martijn
- ‡PWN Water Supply Company North Holland, P.O. Box 2046, 1990 AA, Velserbroek, The Netherlands
| | - Dennis Vughs
- †KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Kirsten A Baken
- †KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Annemarie P van Wezel
- †KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
- §Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|