1
|
Hameed SS, Sharma TP. Generation of Retinal Ganglion Cells from Reprogrammed Keratocytes of Non-Glaucoma and Glaucoma Donors. Curr Protoc 2025; 5:e70091. [PMID: 39781605 PMCID: PMC11713219 DOI: 10.1002/cpz1.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures. Given that keratocytes originate from the neural crest and previous reports suggest that ocular fibroblasts from glaucomatous donors carry pathogenic signatures, it is highly plausible that these signatures imprinted within the keratocytes will also be present in the derived RGCs. Thus, we aimed to generate RGCs from both glaucomatous and non-glaucomatous donor keratocytes and validate disease-specific signatures in 3D retinal organoids and in isolated RGCs. Our protocol describes the generation of iPSCs from keratocytes of both glaucomatous and non-glaucomatous donors, followed by their differentiation into retinal organoids. Subsequent isolation and culturing of RGCs were performed. Disease signatures in the RGCs were validated in both 3D retinal organoids (ROs) and 2D RGC cultures, and glaucomatous RGCs in 3D and 2D cultures demonstrated increased cleaved CASP3 and significant RGC loss, indicating disease imprints in the hiPSC-derived RGCs. This model offers a venue and high throughput platform for studying glaucomatous disease pathology and holds significant potential for drug discovery using RGCs derived from human donors. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culturing of keratocytes from human cadaveric donors Basic Protocol 2: Reprogramming donor keratocytes into iPSCs Basic Protocol 3: Evaluation of chromosomal loss during reprogramming in iPSCs by karyotyping Basic Protocol 4: Generation of 3D ROs Basic Protocol 5: Dissociation and culturing of RGCs from 3D ROs Support Protocol 1: Immunostaining for phenotypic characterization of cells Support Protocol 2: Sectioning of 3D ROs and immunostaining Support Protocol 3: Western blotting for cleaved CASP3 and THY1.
Collapse
Affiliation(s)
- Shahna S. Hameed
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndiana
| | - Tasneem P. Sharma
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndiana
| |
Collapse
|
2
|
Rzhanova LA, Alpeeva EV, Aleksandrova MA. Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease. Cells 2024; 13:1931. [PMID: 39682681 PMCID: PMC11640686 DOI: 10.3390/cells13231931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The main purpose of regenerative medicine for degenerative eye diseases is to create cells to replace lost or damaged ones. Due to their anatomical, genetic, and epigenetic features, characteristics of origin, evolutionary inheritance, capacity for dedifferentiation, proliferation, and plasticity, mammalian and human RPE cells are of great interest as endogenous sources of new photoreceptors and other neurons for the degrading retina. Promising methods for the reprogramming of RPE cells into retinal cells include genetic methods and chemical methods under the influence of certain low-molecular-weight compounds, so-called small molecules. Depending on the goal, which can be the preservation or the replacement of lost RPE cells and cellular structures, various small molecules are used to influence certain biological processes at different levels of cellular regulation. This review discusses the potential of the chemical reprogramming of RPE cells in comparison with other somatic cells and induced pluripotent stem cells (iPSCs) into neural cells of the brain and retina. Possible mechanisms of the chemically induced reprogramming of somatic cells under the influence of small molecules are explored and compared. This review also considers other possibilities in using them in the treatment of retinal degenerative diseases based on the protection, preservation, and support of survived RPE and retinal cells.
Collapse
Affiliation(s)
- Lyubov A. Rzhanova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena V. Alpeeva
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | | |
Collapse
|
3
|
Moyo MTG, Adali T, Tulay P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen Ther 2024; 26:235-250. [PMID: 38966602 PMCID: PMC11222715 DOI: 10.1016/j.reth.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Near East University, Faculty of Engineering, Department of Biomedical Engineering, P.O. Box: 99138, Nicosia, Cyprus, Mersin 10, Turkey
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Terin Adali
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus, Mersin 10, Turkey
- Near East University, DESAM Research Institute, Nicosia, Cyprus, Mersin 10, Turkey
| |
Collapse
|
4
|
Xu Z, Guo Y, Xiang K, Xiao D, Xiang M. Rapid and efficient generation of a transplantable population of functional retinal ganglion cells from fibroblasts. Cell Prolif 2024; 57:e13550. [PMID: 37740641 PMCID: PMC10849786 DOI: 10.1111/cpr.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Glaucoma and other optic neuropathies lead to progressive and irreversible vision loss by damaging retinal ganglion cells (RGCs) and their axons. Cell replacement therapy is a potential promising treatment. However, current methods to obtain RGCs have inherent limitations, including time-consuming procedures, inefficient yields and complex protocols, which hinder their practical application. Here, we have developed a straightforward, rapid and efficient approach for directly inducing RGCs from mouse embryonic fibroblasts (MEFs) using a combination of triple transcription factors (TFs): ASCL1, BRN3B and PAX6 (ABP). We showed that on the 6th day following ABP induction, neurons with molecular characteristics of RGCs were observed, and more than 60% of induced neurons became iRGCs (induced retinal ganglion cells) in the end. Transplanted iRGCs had the ability to survive and appropriately integrate into the RGC layer of mouse retinal explants and N-methyl-D-aspartic acid (NMDA)-damaged retinas. Moreover, they exhibited electrophysiological properties typical of RGCs, and were able to regrow dendrites and axons and form synaptic connections with host retinal cells. Together, we have established a rapid and efficient approach to acquire functional RGCs for potential cell replacement therapy to treat glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- Zihui Xu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yanan Guo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Kangjian Xiang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Dongchang Xiao
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Mengqing Xiang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Du JL, Gao LX, Wang T, Ye Z, Li HY, Li W, Zeng Q, Xi JF, Yue W, Li ZH. Influence of hypoxia on retinal progenitor and ganglion cells in human induced pluripotent stem cell-derived retinal organoids. Int J Ophthalmol 2023; 16:1574-1581. [PMID: 37854379 PMCID: PMC10559029 DOI: 10.18240/ijo.2023.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/03/2023] [Indexed: 10/20/2023] Open
Abstract
AIM To observe the effect of low oxygen concentration on the neural retina in human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs). METHODS The hiPSC and a three-dimensional culture method were used for the experiments. Generated embryoid bodies (EBs) were randomly and equally divided into hypoxic and normoxic groups. Photographs of the EBs were taken on days 38, 45, and 52, and the corresponding volume of EBs was calculated. Simultaneously, samples were collected at these three timepoints, followed by fixation, sectioning, and immunofluorescence. RESULTS The proportion of Ki67-positive proliferating cells increased steadily on day 38; this proliferation-promoting effect tended to increase tissue density rather than tissue volume. On days 45 and 52, the two groups had relatively similar ratios of Ki67-positive cells. Further immunofluorescence analysis showed that the ratio of SOX2-positive cells significantly increased within the neural retina on day 52 (P<0.05). In contrast, the percentage of PAX6- and CHX10-positive cells significantly decreased following hypoxia treatment at all three timepoints (P<0.01), except for CHX10 at day 45 (P>0.05). Moreover, the proportion of PAX6-/TUJ1+ cells within the neural retinas increased considerably (P<0.01, <0.05, <0.05 respectively). CONCLUSION Low oxygen promotes stemness and proliferation of neural retinas, suggesting that hypoxic conditions can enlarge the retinal progenitor cell pool in hiPSC-derived ROs.
Collapse
Affiliation(s)
- Jin-Lin Du
- Medical School of Chinese PLA, Beijing 100853, China
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Li-Xiong Gao
- Departement of Ophthalmology, the 6 Medical Center of PLA General Hospital, Beijing 100048, China
| | - Tao Wang
- Medical School of Chinese PLA, Beijing 100853, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hong-Yu Li
- Medical School of Chinese PLA, Beijing 100853, China
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Wen Li
- Medical School of Chinese PLA, Beijing 100853, China
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao-Hui Li
- Medical School of Chinese PLA, Beijing 100853, China
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
6
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
7
|
Wong NK, Yip SP, Huang CL. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int J Mol Sci 2023; 24:13652. [PMID: 37686457 PMCID: PMC10487913 DOI: 10.3390/ijms241713652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The human eye plays a critical role in vision perception, but various retinal degenerative diseases such as retinitis pigmentosa (RP), glaucoma, and age-related macular degeneration (AMD) can lead to vision loss or blindness. Although progress has been made in understanding retinal development and in clinical research, current treatments remain inadequate for curing or reversing these degenerative conditions. Animal models have limited relevance to humans, and obtaining human eye tissue samples is challenging due to ethical and legal considerations. Consequently, researchers have turned to stem cell-based approaches, specifically induced pluripotent stem cells (iPSCs), to generate distinct retinal cell populations and develop cell replacement therapies. iPSCs offer a novel platform for studying the key stages of human retinogenesis and disease-specific mechanisms. Stem cell technology has facilitated the production of diverse retinal cell types, including retinal ganglion cells (RGCs) and photoreceptors, and the development of retinal organoids has emerged as a valuable in vitro tool for investigating retinal neuron differentiation and modeling retinal diseases. This review focuses on the protocols, culture conditions, and techniques employed in differentiating retinal neurons from iPSCs. Furthermore, it emphasizes the significance of molecular and functional validation of the differentiated cells.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
8
|
Katsura M, Urade Y, Nansai H, Kobayashi M, Taguchi A, Ishikawa Y, Ito T, Fukunaga H, Tozawa H, Chikaoka Y, Nakaki R, Echigo A, Kohro T, Sone H, Wada Y. Low-dose radiation induces unstable gene expression in developing human iPSC-derived retinal ganglion organoids. Sci Rep 2023; 13:12888. [PMID: 37558727 PMCID: PMC10412642 DOI: 10.1038/s41598-023-40051-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
The effects of low-dose radiation on undifferentiated cells carry important implications. However, the effects on developing retinal cells remain unclear. Here, we analyzed the gene expression characteristics of neuronal organoids containing immature human retinal cells under low-dose radiation and predicted their changes. Developing retinal cells generated from human induced pluripotent stem cells (iPSCs) were irradiated with either 30 or 180 mGy on days 4-5 of development for 24 h. Genome-wide gene expression was observed until day 35. A knowledge-based pathway analysis algorithm revealed fluctuations in Rho signaling and many other pathways. After a month, the levels of an essential transcription factor of eye development, the proportion of paired box 6 (PAX6)-positive cells, and the proportion of retinal ganglion cell (RGC)-specific transcription factor POU class 4 homeobox 2 (POU4F2)-positive cells increased with 30 mGy of irradiation. In contrast, they decreased after 180 mGy of irradiation. Activation of the "development of neurons" pathway after 180 mGy indicated the dedifferentiation and development of other neural cells. Fluctuating effects after low-dose radiation exposure suggest that developing retinal cells employ hormesis and dedifferentiation mechanisms in response to stress.
Collapse
Affiliation(s)
- Mari Katsura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Reiwa Eye Clinic, Hatsukaichi, Hiroshima, Japan
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Hiroko Nansai
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Kobayashi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yukiko Ishikawa
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hisako Fukunaga
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideto Tozawa
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoko Chikaoka
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | | | - Takahide Kohro
- Department of Clinical Informatics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, Yokohama, Japan.
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Tao Y, Zhang Q, Meng M, Huang J. A bibliometric analysis of the application of stem cells in glaucoma research from 1999 to 2022. Front Cell Dev Biol 2023; 11:1081898. [PMID: 36743419 PMCID: PMC9889543 DOI: 10.3389/fcell.2023.1081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Glaucoma, a neurodegenerative disease of the retina, is the leading cause of irreversible blindness. Stem cells have therapeutic potential for glaucoma. However, few bibliometric studies have been published in this field. Concerning a visual map, this article aims to characterize the research context, cooperation relationship, hotspots, and trends concerning the application of stem cells in glaucoma research. Methods: Publications focusing on stem cell research and glaucoma were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, Microsoft Excel, and Scimago Graphica were used to map the contributions of countries or regions, authors, organizations, and journals. Journal Impact Factor data were obtained from the Web of Science Core Collection. We analyzed the tendencies, hotspots, and knowledge networks using VOSviewer, and CiteSpace. Results: We analyzed 518 articles published from 1999 through 2022. In the first decade, the number of articles in this field increased slowly, and there was a marked acceleration in publication frequency after 2010. The United States, China, and England were the main contributors. Yiqin Du was the most prolific author, and among the top 10 prolific writers, Keith R. Martin's work was cited most frequently. Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Cornea published the most articles in this domain. The three most commonly co-cited journals were Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Proceedings of the National Academy of Sciences of the United States of America. The Central South University, the University of Pittsburgh, and the National Institutes of Health National Eye Institute were highly prolific institutions in this research area. Our keywords analysis with VOSviewer suggested directions of future research and yielded the following recent key themes, extracellular vesicles, exosomes, mitochondria, growth factors, oxidative stress, and ocular diseases. Four co-cited references had a citation burst duration until 2022. Conclusion: With improvements in overall quality of life and demographic transitions toward population aging, research and clinical focus on eye care has increased, with glaucoma as a key area of emphasis. This study added to our understanding of the global landscape and Frontier hotspots in this field.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
10
|
Esmaeili M, Mead B. Differentiation of Human Embryonic/Induced-Pluripotent Stem Cells to Retinal Ganglion Cells. Methods Mol Biol 2023; 2708:41-48. [PMID: 37558958 DOI: 10.1007/978-1-0716-3409-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The generation of retinal ganglion cells (RGCs) differentiated from human embryonic stem cell (hESC) or induced-pluripotent stem cells (iPSC) could aid with understanding of human RGC development, neuronal biology, drug discovery, potential cell-based therapies, and gene regulation. Here, we present a protocol for differentiation of hESC to RGCs using a 40-day protocol, significantly shorter than typical retinal organoids while still yielding cells with RGC-enriched markers and show physiological and morphological properties typical of RGCs.
Collapse
Affiliation(s)
- Maryam Esmaeili
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Ben Mead
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
11
|
Nie Z, Wang C, Chen J, Ji Y, Zhang H, Zhao F, Zhou X, Guan MX. Abnormal morphology and function in retinal ganglion cells derived from patients-specific iPSCs generated from individuals with Leber's hereditary optic neuropathy. Hum Mol Genet 2022; 32:231-243. [PMID: 35947995 PMCID: PMC9840204 DOI: 10.1093/hmg/ddac190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 01/19/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease that results from degeneration of retinal ganglion cells (RGC). Mitochondrial ND4 11778G > A mutation, which affects structural components of complex I, is the most prevalent LHON-associated mitochondrial DNA (mtDNA) mutation worldwide. The m.11778G > A mutation is the primary contributor underlying the development of LHON and X-linked PRICKLE3 allele (c.157C > T, p.Arg53Trp) linked to biogenesis of ATPase interacts with m.11778G > A mutation to cause LHON. However, the lack of appropriate cell and animal models of LHON has been significant obstacles for deep elucidation of disease pathophysiology, specifically the tissue-specific effects. Using RGC-like cells differentiated from induced pluripotent stem cells (iPSCs) from members of one Chinese family (asymptomatic subjects carrying only m.11778G > A mutation or PRICKLE3 p.Arg53Trp mutation, symptomatic individuals bearing both m.11778G > A and PRICKLE3 p.Arg53Trp mutations and control lacking these mutations), we demonstrated the deleterious effects of mitochondrial dysfunctions on the morphology and functions of RGCs. Notably, iPSCs bearing only m.11778G > A or p.Arg53Trp mutation exhibited mild defects in differentiation to RGC-like cells. The RGC-like cells carrying only m.11778G > A or p.Arg53Trp mutation displayed mild defects in RGC morphology, including the area of soma and numbers of neurites, electrophysiological properties, ATP contents and apoptosis. Strikingly, those RGC-like cells derived from symptomatic individuals harboring both m.11778G > A and p.Arg53Trp mutations displayed greater defects in the development, morphology and functions than those in cells bearing single mutation. These findings provide new insights into pathophysiology of LHON arising from RGC deficiencies caused by synergy between m.11778G > A and PRICKLE3 p.Arg53Trp mutation.
Collapse
Affiliation(s)
| | | | | | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongxing Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- To whom correspondence should be addressed at: Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China. Tel: 86-571-88206916; Fax: 86-571-88982377;
| |
Collapse
|
12
|
Lechner J, Medina RJ, Lois N, Stitt AW. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 2022; 13:388. [PMID: 35907890 PMCID: PMC9338609 DOI: 10.1186/s13287-022-03073-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in working age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease pathogenesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architecture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of sight-loss. MAIN BODY Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegeneration plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also need to be addressed by new regenerative treatments. Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/stem cells, adipose stem cells, CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered. CONCLUSION Stem cell therapies hold great potential to replace dying cells during early and even late stages of diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell product for individual patients will be crucial for successful treatment.
Collapse
Affiliation(s)
- Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
13
|
Harvey JP, Sladen PE, Yu-Wai-Man P, Cheetham ME. Induced Pluripotent Stem Cells for Inherited Optic Neuropathies-Disease Modeling and Therapeutic Development. J Neuroophthalmol 2022; 42:35-44. [PMID: 34629400 DOI: 10.1097/wno.0000000000001375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inherited optic neuropathies (IONs) cause progressive irreversible visual loss in children and young adults. There are limited disease-modifying treatments, and most patients progress to become severely visually impaired, fulfilling the legal criteria for blind registration. The seminal discovery of the technique for reprogramming somatic nondividing cells into induced pluripotent stem cells (iPSCs) has opened several exciting opportunities in the field of ION research and treatment. EVIDENCE ACQUISITION A systematic review of the literature was conducted with PubMed using the following search terms: autosomal dominant optic atrophy, ADOA, dominant optic atrophy, DOA, Leber hereditary optic neuropathy, LHON, optic atrophy, induced pluripotent stem cell, iPSC, iPSC derived, iPS, stem cell, retinal ganglion cell, and RGC. Clinical trials were identified on the ClinicalTrials.gov website. RESULTS This review article is focused on disease modeling and the therapeutic strategies being explored with iPSC technologies for the 2 most common IONs, namely, dominant optic atrophy and Leber hereditary optic neuropathy. The rationale and translational advances for cell-based and gene-based therapies are explored, as well as opportunities for neuroprotection and drug screening. CONCLUSIONS iPSCs offer an elegant, patient-focused solution to the investigation of the genetic defects and disease mechanisms underpinning IONs. Furthermore, this group of disorders is uniquely amenable to both the disease modeling capability and the therapeutic potential that iPSCs offer. This fast-moving area will remain at the forefront of both basic and translational ION research in the coming years, with the potential to accelerate the development of effective therapies for patients affected with these blinding diseases.
Collapse
Affiliation(s)
- Joshua Paul Harvey
- UCL Institute of Ophthalmology (JPH, PES, PY-W-M, MC), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, PY-W-M), London, United Kingdom; Department of Clinical Neurosciences (PY-W-M), Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom; and Department of Clinical Neurosciences (PY-W-M), John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
14
|
Risner ML, Pasini S, Chamling X, McGrady NR, Goldberg JL, Zack DJ, Calkins DJ. Intrinsic Morphologic and Physiologic Development of Human Derived Retinal Ganglion Cells In Vitro. Transl Vis Sci Technol 2021; 10:1. [PMID: 34383881 PMCID: PMC8362626 DOI: 10.1167/tvst.10.10.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Human retinal ganglion cells (hRGC) derived from human pluripotent stem cells are promising candidates to model, protect, and replace degenerating RGCs. Here, we examined intrinsic morphologic and physiologic development of hRGCs. Methods We used CRISPR-Cas9 to selectively express tdTomato under the RGC-specific promoter, BRN3B. Human pluripotent stem cells were chemically differentiated into hRGCs and cultured up to 7 weeks. We measured soma area, neurite complexity, synaptic protein, axon-related messenger RNA and protein, and voltage-dependent responses. Results Soma area, neurite complexity, and postsynaptic density protein 95 increased over time. Soma area and neurite complexity increased proportionally week to week, and this relationship was dynamic, strengthening between 2 and 3 weeks and diminishing by 4 weeks. Postsynaptic density 95 localization was dependent on culture duration. After 1 to 2 weeks, postsynaptic density 95 localized within somas but redistributed along neurites after 3 to 4 weeks. Axon initial segment scaffolding protein, Ankyrin G, expression also increased over time, and by 7 weeks, Ankyrin G often localized within putative axons. Voltage-gated inward currents progressively developed, but outward currents matured by 4 weeks. Current-induced spike generation increased over time but limited by depolarization block. Conclusions Human RGCs develop up to 7 weeks after culture. Thus, the state of hRGC maturation should be accounted for in designing models and treatments for optic neuropathies. Translational Relevance We characterized hRGC morphologic and physiologic development towards identifying key time points when hRGCs express mechanisms that may be harnessed to enhance the efficacy of neuroprotective and cell replacement therapies.
Collapse
Affiliation(s)
- Michael L Risner
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Silvia Pasini
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xitiz Chamling
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nolan R McGrady
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Donald J Zack
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
16
|
Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021; 10:cells10061426. [PMID: 34200991 PMCID: PMC8228580 DOI: 10.3390/cells10061426] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the central nervous system, mammalian retinal ganglion cells (RGCs) lack significant regenerative capacity. Glaucoma causes progressive and irreversible vision loss by damaging RGCs and their axons, which compose the optic nerve. To functionally restore vision, lost RGCs must be replaced. Despite tremendous advancements in experimental models of optic neuropathy that have elucidated pathways to induce endogenous RGC neuroprotection and axon regeneration, obstacles to achieving functional visual recovery through exogenous RGC transplantation remain. Key challenges include poor graft survival, low donor neuron localization to the host retina, and inadequate dendritogenesis and synaptogenesis with afferent amacrine and bipolar cells. In this review, we summarize the current state of experimental RGC transplantation, and we propose a set of standard approaches to quantifying and reporting experimental outcomes in order to guide a collective effort to advance the field toward functional RGC replacement and optic nerve regeneration.
Collapse
|
17
|
Peron C, Maresca A, Cavaliere A, Iannielli A, Broccoli V, Carelli V, Di Meo I, Tiranti V. Exploiting hiPSCs in Leber's Hereditary Optic Neuropathy (LHON): Present Achievements and Future Perspectives. Front Neurol 2021; 12:648916. [PMID: 34168607 PMCID: PMC8217617 DOI: 10.3389/fneur.2021.648916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
More than 30 years after discovering Leber's hereditary optic neuropathy (LHON) as the first maternally inherited disease associated with homoplasmic mtDNA mutations, we still struggle to achieve effective therapies. LHON is characterized by selective degeneration of retinal ganglion cells (RGCs) and is the most frequent mitochondrial disease, which leads young people to blindness, in particular males. Despite that causative mutations are present in all tissues, only a specific cell type is affected. Our deep understanding of the pathogenic mechanisms in LHON is hampered by the lack of appropriate models since investigations have been traditionally performed in non-neuronal cells. Effective in-vitro models of LHON are now emerging, casting promise to speed our understanding of pathophysiology and test therapeutic strategies to accelerate translation into clinic. We here review the potentials of these new models and their impact on the future of LHON patients.
Collapse
Affiliation(s)
- Camille Peron
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Andrea Cavaliere
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Iannielli
- San Raffaele Scientific Institute, Milan, Italy.,National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Bologna, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
18
|
Advances in Regeneration of Retinal Ganglion Cells and Optic Nerves. Int J Mol Sci 2021; 22:ijms22094616. [PMID: 33924833 PMCID: PMC8125313 DOI: 10.3390/ijms22094616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma, the second leading cause of blindness worldwide, is an incurable neurodegenerative disorder due to the dysfunction of retinal ganglion cells (RGCs). RGCs function as the only output neurons conveying the detected light information from the retina to the brain, which is a bottleneck of vision formation. RGCs in mammals cannot regenerate if injured, and RGC subtypes differ dramatically in their ability to survive and regenerate after injury. Recently, novel RGC subtypes and markers have been uncovered in succession. Meanwhile, apart from great advances in RGC axon regeneration, some degree of experimental RGC regeneration has been achieved by the in vitro differentiation of embryonic stem cells and induced pluripotent stem cells or in vivo somatic cell reprogramming, which provides insights into the future therapy of myriad neurodegenerative disorders. Further approaches to the combination of different factors will be necessary to develop efficacious future therapeutic strategies to promote ultimate axon and RGC regeneration and functional vision recovery following injury.
Collapse
|
19
|
Hereditary Optic Neuropathies: Induced Pluripotent Stem Cell-Based 2D/3D Approaches. Genes (Basel) 2021; 12:genes12010112. [PMID: 33477675 PMCID: PMC7831942 DOI: 10.3390/genes12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited optic neuropathies share visual impairment due to the degeneration of retinal ganglion cells (RGCs) as the hallmark of the disease. This group of genetic disorders are caused by mutations in nuclear genes or in the mitochondrial DNA (mtDNA). An impaired mitochondrial function is the underlying mechanism of these diseases. Currently, optic neuropathies lack an effective treatment, and the implementation of induced pluripotent stem cell (iPSC) technology would entail a huge step forward. The generation of iPSC-derived RGCs would allow faithfully modeling these disorders, and these RGCs would represent an appealing platform for drug screening as well, paving the way for a proper therapy. Here, we review the ongoing two-dimensional (2D) and three-dimensional (3D) approaches based on iPSCs and their applications, taking into account the more innovative technologies, which include tissue engineering or microfluidics.
Collapse
|
20
|
An alternative approach to produce versatile retinal organoids with accelerated ganglion cell development. Sci Rep 2021; 11:1101. [PMID: 33441707 PMCID: PMC7806597 DOI: 10.1038/s41598-020-79651-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically complex ocular neuropathies, such as glaucoma, are a major cause of visual impairment worldwide. There is a growing need to generate suitable human representative in vitro and in vivo models, as there is no effective treatment available once damage has occured. Retinal organoids are increasingly being used for experimental gene therapy, stem cell replacement therapy and small molecule therapy. There are multiple protocols for the development of retinal organoids available, however, one potential drawback of the current methods is that the organoids can take between 6 weeks and 12 months on average to develop and mature, depending on the specific cell type wanted. Here, we describe and characterise a protocol focused on the generation of retinal ganglion cells within an accelerated four week timeframe without any external small molecules or growth factors. Subsequent long term cultures yield fully differentiated organoids displaying all major retinal cell types. RPE, Horizontal, Amacrine and Photoreceptors cells were generated using external factors to maintain lamination.
Collapse
|
21
|
Rabesandratana O, Chaffiol A, Mialot A, Slembrouck-Brec A, Joffrois C, Nanteau C, Rodrigues A, Gagliardi G, Reichman S, Sahel JA, Chédotal A, Duebel J, Goureau O, Orieux G. Generation of a Transplantable Population of Human iPSC-Derived Retinal Ganglion Cells. Front Cell Dev Biol 2020; 8:585675. [PMID: 33195235 PMCID: PMC7652757 DOI: 10.3389/fcell.2020.585675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
Optic neuropathies are a major cause of visual impairment due to retinal ganglion cell (RGC) degeneration. Human induced-pluripotent stem cells (iPSCs) represent a powerful tool for studying both human RGC development and RGC-related pathological mechanisms. Because RGC loss can be massive before the diagnosis of visual impairment, cell replacement is one of the most encouraging strategies. The present work describes the generation of functional RGCs from iPSCs based on innovative 3D/2D stepwise differentiation protocol. We demonstrate that targeting the cell surface marker THY1 is an effective strategy to select transplantable RGCs. By generating a fluorescent GFP reporter iPSC line to follow transplanted cells, we provide evidence that THY1-positive RGCs injected into the vitreous of mice with optic neuropathy can survive up to 1 month, intermingled with the host RGC layer. These data support the usefulness of iPSC-derived RGC exploration as a potential future therapeutic strategy for optic nerve regeneration.
Collapse
Affiliation(s)
| | - Antoine Chaffiol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Antoine Mialot
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Corentin Joffrois
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Céline Nanteau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Amélie Rodrigues
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Jens Duebel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Gael Orieux
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
22
|
Pereiro X, Miltner AM, La Torre A, Vecino E. Effects of Adult Müller Cells and Their Conditioned Media on the Survival of Stem Cell-Derived Retinal Ganglion Cells. Cells 2020; 9:E1759. [PMID: 32708020 PMCID: PMC7465792 DOI: 10.3390/cells9081759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Retinal neurons, particularly retinal ganglion cells (RGCs), are susceptible to the degenerative damage caused by different inherited conditions and environmental insults, leading to irreversible vision loss and, ultimately, blindness. Numerous strategies are being tested in different models of degeneration to restore vision and, in recent years, stem cell technologies have offered novel avenues to obtain donor cells for replacement therapies. To date, stem cell-based transplantation in the retina has been attempted as treatment for photoreceptor degeneration, but the same tools could potentially be applied to other retinal cell types, including RGCs. However, RGC-like cells are not an abundant cell type in stem cell-derived cultures and, often, these cells degenerate over time in vitro. To overcome this limitation, we have taken advantage of the neuroprotective properties of Müller glia (one of the main glial cell types in the retina) and we have examined whether Müller glia and the factors they secrete could promote RGC-like cell survival in organoid cultures. Accordingly, stem cell-derived RGC-like cells were co-cultured with adult Müller cells or Müller cell-conditioned media was added to the cultures. Remarkably, RGC-like cell survival was substantially enhanced in both culture conditions, and we also observed a significant increase in their neurite length. Interestingly, Atoh7, a transcription factor required for RGC development, was up-regulated in stem cell-derived organoids exposed to conditioned media, suggesting that Müller cells may also enhance the survival of retinal progenitors and/or postmitotic precursor cells. In conclusion, Müller cells and the factors they release promote organoid-derived RGC-like cell survival, neuritogenesis, and possibly neuronal maturation.
Collapse
Affiliation(s)
- Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain;
| | - Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; (A.M.M.); (A.L.T.)
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; (A.M.M.); (A.L.T.)
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain;
| |
Collapse
|
23
|
Dual SMAD inhibition and Wnt inhibition enable efficient and reproducible differentiations of induced pluripotent stem cells into retinal ganglion cells. Sci Rep 2020; 10:11828. [PMID: 32678240 PMCID: PMC7366935 DOI: 10.1038/s41598-020-68811-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a group of progressive optic neuropathies that share common biological and clinical characteristics including irreversible changes to the optic nerve and visual field loss caused by the death of retinal ganglion cells (RGCs). The loss of RGCs manifests as characteristic cupping or optic nerve degeneration, resulting in visual field loss in patients with Glaucoma. Published studies on in vitro RGC differentiation from stem cells utilized classical RGC signaling pathways mimicking retinal development in vivo. Although many strategies allowed for the generation of RGCs, increased variability between experiments and lower yield hampered the cross comparison between individual lines and between experiments. To address this critical need, we developed a reproducible chemically defined in vitro methodology for generating retinal progenitor cell (RPC) populations from iPSCs, that are efficiently directed towards RGC lineage. Using this method, we reproducibly differentiated iPSCs into RGCs with greater than 80% purity, without any genetic modifications. We used small molecules and peptide modulators to inhibit BMP, TGF-β (SMAD), and canonical Wnt pathways that reduced variability between iPSC lines and yielded functional and mature iPSC-RGCs. Using CD90.2 antibody and Magnetic Activated Cell Sorter (MACS) technique, we successfully purified Thy-1 positive RGCs with nearly 95% purity.
Collapse
|
24
|
Hua ZQ, Liu H, Wang N, Jin ZB. Towards stem cell-based neuronal regeneration for glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 257:99-118. [PMID: 32988476 DOI: 10.1016/bs.pbr.2020.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glaucoma is a neurodegenerative disease as a leading cause of global blindness. Retinal ganglion cell (RGC) apoptosis and optic nerve damage are the main pathological changes. Patients have elevated intraocular pressure and progressive visual field loss. Unfortunately, current treatments for glaucoma merely stay at delaying the disease progression. As a promising treatment, stem cell-based neuronal regeneration therapy holds potential for glaucoma, thereby great efforts have been paid on it. RGC regeneration and transplantation are key approaches for the future treatment of glaucoma. A line of studies have shown that a variety of cells can be used to regenerate RGCs, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In this review, we overview the current progress on the regeneration of pluripotent stem cell-derived RGCs and outlook the perspective and challenges in this field.
Collapse
Affiliation(s)
- Zi-Qi Hua
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Liu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
25
|
Behtaj S, Öchsner A, Anissimov YG, Rybachuk M. Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Eng Regen Med 2020; 17:253-269. [PMID: 32390117 PMCID: PMC7260329 DOI: 10.1007/s13770-020-00254-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement. METHODS In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area. RESULTS Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies. CONCLUSION The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Collapse
Affiliation(s)
- Sanaz Behtaj
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- Department of Cell and Molecular Biology, Cell Science Research Centre, Royan Institute for Biotechnology, Isfahan, Iran
| | - Andreas Öchsner
- Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Kanalstrasse 33, 73728, Esslingen, Germany
| | - Yuri G Anissimov
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Parklands Drive, Southport, QLD, 4222, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maksym Rybachuk
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
26
|
Artero-Castro A, Rodriguez-Jimenez FJ, Jendelova P, VanderWall KB, Meyer JS, Erceg S. Glaucoma as a Neurodegenerative Disease Caused by Intrinsic Vulnerability Factors. Prog Neurobiol 2020; 193:101817. [PMID: 32360241 DOI: 10.1016/j.pneurobio.2020.101817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 01/08/2023]
Abstract
Glaucoma, one of the most common causes of blindness in developing countries today, involves a progressive loss of neural cells in the optic nerve that leads to progressive, irreversible vision loss. Increased intraocular pressure (IOP) presents as a major risk factor for glaucoma, although there exist cases of glaucoma patients with normal IOP that exhibit damage to retinal ganglion cells (RGCs) and the optic nerve. However, treatment approaches have maintained their focus on modifying IOP due to a lack of other modifiable risks factors. Traditional concepts in glaucoma involve the neuronal environment and external effects as a source of causative factors; however, studies have yet to investigate whether the molecular profile of RGCs in glaucoma patients makes them more vulnerable and/or susceptible to external damage. Our hypothesis states that molecular changes at the whole cell, gene expression, and electrophysiological level of the neurons can contribute to their degeneration. Herein, we briefly describe different types of glaucoma and any similarities to different molecular and cellular features of neurodegeneration. To test our hypothesis, we describe human induced pluripotent stem cells (hiPSCs) as a reliable cellular tool to model neurodegenerative aspects of glaucoma to reveal the multiple pathological molecular mechanisms underlying disease development.
Collapse
Affiliation(s)
- Ana Artero-Castro
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", Valencia, Spain.
| | | | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Department of Neuroregeneration, Prague, Czech Republic.
| | - Kirstin B VanderWall
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", Valencia, Spain; National Stem Cell Bank-Valencia Node, Platform for Proteomics, Genotyping and Cell Lines, PRB3,ISCIII, Research Center "Principe Felipe", Valencia, Spain; Institute of Experimental Medicine, Czech Academy of Sciences, Department of Neuroregeneration, Prague, Czech Republic.
| |
Collapse
|
27
|
Stem Cell Transplantation Therapy for Retinal Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:127-139. [PMID: 33105499 DOI: 10.1007/978-981-15-4370-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past decade, progress in the research on human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) has provided the solid basis to derive retinal pigment epithelium, photoreceptors, and ganglion cells from hESCs/iPSCs for transplantation therapy of retinal degenerative diseases (RDD). Recently, the iPSC-derived retinal pigment epithelium cells have achieved efficacy in treating patients with age-related macular degeneration (AMD). However, there is still much work to be done about the differentiation of hESCs/iPSCs into clinically required retinal cells and improvement in the methods to deliver the cells into the retina of patients. Here we will review the research advances in stem cell transplantation in animal studies and clinical trials as well as propose the challenges for improving the clinical efficacy and safety of hESCs/iPSCs-derived retinal neural cells in treating retinal degenerative diseases.
Collapse
|
28
|
Gokoffski KK, Jia X, Shvarts D, Xia G, Zhao M. Physiologic Electrical Fields Direct Retinal Ganglion Cell Axon Growth In Vitro. Invest Ophthalmol Vis Sci 2019; 60:3659-3668. [PMID: 31469406 PMCID: PMC6716951 DOI: 10.1167/iovs.18-25118] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose The purpose of this study was to characterize the ability of applied electrical fields (EFs) to direct retinal ganglion cell (RGC) axon growth as well as to assess whether Rho GTPases play a role in translating electrical cues to directional cues. Methods Full-thickness, early postnatal mouse retina was cultured in electrotaxis chambers and exposed to EFs of varying strengths (50–200 mV/mm). The direction of RGC axon growth was quantified from time-lapsed videos. The rate of axon growth and responsiveness to changes in EF polarity were also assessed. The effect of toxin B, a broad-spectrum inhibitor of Rho GTPase signaling, and Z62954982, a selective inhibitor of Rac1, on EF-directed growth was determined. Results In the absence of an EF, RGC axons demonstrated indiscriminate directional growth from the explant edge. Retinal cultures exposed to an EF of 100 and 200 mV/mm showed markedly asymmetric growth, with 74.2% and 81.2% of axons oriented toward the cathode, respectively (P < 0.001). RGC axons responded to acute changes in EF polarity by redirecting their growth toward the “new” cathode. This galvanotropic effect was partially neutralized by toxin B and Rac1 inhibitor Z62954982. Conclusions RGC axons exhibit cathode-directed growth in the presence of an EF. This effect is mediated in part by the Rho GTPase signaling cascade.
Collapse
Affiliation(s)
- Kimberly K Gokoffski
- Roski Eye Institute, University of Southern California, Los Angeles, California, United States.,Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento, California, United States
| | - Xingyuan Jia
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Sacramento, California, United States
| | - Daniel Shvarts
- Roski Eye Institute, University of Southern California, Los Angeles, California, United States
| | - Guohua Xia
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States
| | - Min Zhao
- Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento, California, United States.,Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Sacramento, California, United States
| |
Collapse
|
29
|
Therapeutic Strategies for Attenuation of Retinal Ganglion Cell Injury in Optic Neuropathies: Concepts in Translational Research and Therapeutic Implications. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8397521. [PMID: 31828134 PMCID: PMC6885158 DOI: 10.1155/2019/8397521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the central and irreversible endpoint of optic neuropathies. Current management of optic neuropathies and glaucoma focuses on intraocular pressure-lowering treatment which is insufficient. As such, patients are effectively condemned to irreversible visual impairment. This review summarizes experimental treatments targeting RGCs over the last decade. In particular, we examine the various treatment modalities and determine their viability and limitations in translation to clinical practice. Experimental RGC treatment can be divided into (1) cell replacement therapy, (2) neuroprotection, and (3) gene therapy. For cell replacement therapy, difficulties remain in successfully integrating transplanted RGCs from various sources into the complex neural network of the human retina. However, there is significant potential for achieving full visual restoration with this technique. Neuroprotective strategies, in the form of pharmacological agents, nutritional supplementation, and neurotrophic factors, are viable strategies with encouraging results from preliminary noncomparative interventional case series. It is important to note, however, that most published studies are focused on glaucoma, with few treating optic neuropathies of other etiologies. Gene therapy, through the use of viral vectors, has shown promising results in clinical trials, particularly for diseases with specific genetic mutations like Leber's hereditary optic neuropathy. This treatment technique can be further extended to nonhereditary diseases, through transfer of genes promoting cell survival and neuroprotection. Crucially though, for gene therapy, teratogenicity remains a significant issue in translation to clinical practice.
Collapse
|
30
|
Ohlemacher SK, Langer KB, Fligor CM, Feder EM, Edler MC, Meyer JS. Advances in the Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:121-140. [PMID: 31654388 DOI: 10.1007/978-3-030-28471-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cell (hPSC) technology has revolutionized the field of biology through the unprecedented ability to study the differentiation of human cells in vitro. In the past decade, hPSCs have been applied to study development, model disease, develop drugs, and devise cell replacement therapies for numerous biological systems. Of particular interest is the application of this technology to study and treat optic neuropathies such as glaucoma. Retinal ganglion cells (RGCs) are the primary cell type affected in these diseases, and once lost, they are unable to regenerate in adulthood. This necessitates the development of strategies to study the mechanisms of degeneration as well as develop translational therapeutic approaches to treat early- and late-stage disease progression. Numerous protocols have been established to derive RGCs from hPSCs, with the ability to generate large populations of human RGCs for translational applications. In this review, the key applications of hPSCs within the retinal field are described, including the use of these cells as developmental models, disease models, drug development, and finally, cell replacement therapies. In greater detail, the current report focuses on the differentiation of hPSC-derived RGCs and the many unique characteristics associated with these cells in vitro including their genetic identifiers, their electrophysiological activity, and their morphological maturation. Also described is the current progress in the use of patient-specific hPSCs to study optic neuropathies affecting RGCs, with emphasis on the use of these RGCs for studying disease mechanisms and pathogenesis, drug screening, and cell replacement therapies in future studies.
Collapse
Affiliation(s)
- Sarah K Ohlemacher
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kirstin B Langer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Elyse M Feder
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael C Edler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA. .,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA. .,Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Hsu CC, Chien KH, Yarmishyn AA, Buddhakosai W, Wu WJ, Lin TC, Chiou SH, Chen JT, Peng CH, Hwang DK, Chen SJ, Chang YL. Modulation of osmotic stress-induced TRPV1 expression rescues human iPSC-derived retinal ganglion cells through PKA. Stem Cell Res Ther 2019; 10:284. [PMID: 31547874 PMCID: PMC6755708 DOI: 10.1186/s13287-019-1363-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/25/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Background Transient receptor potential vanilloid 1 (TRPV1), recognized as a hyperosmolarity sensor, is a crucial ion channel involved in the pathogenesis of neural and glial signaling. Recently, TRPV1 was determined to play a role in retinal physiology and visual transmission. In this study, we sought to clarify the role of TRPV1 and the downstream pathway in the osmotic stress-related retina ganglion cell (RGC) damage. Methods First, we modified the RGC differentiation protocol to obtain a homogeneous RGC population from human induced pluripotent stem cells (hiPSCs). Subsequently, we induced high osmotic pressure in the hiPSC-derived RGCs by administering NaCl solution and observed the behavior of the TRPV1 channel and its downstream cascade. Results We obtained a purified RGC population from the heterogeneous retina cell population using our modified method. Our findings revealed that TRPV1 was activated after 24 h of NaCl treatment. Upregulation of TRPV1 was noted with autophagy and apoptosis induction. Downstream protein expression analysis indicated increased phosphorylation of CREB and downregulated brain-derived neurotrophic factor (BDNF). However, hyperosmolarity-mediated defective morphological change and apoptosis of RGCs, CREB phosphorylation, and BDNF downregulation were abrogated after concomitant treatment with the PKA inhibitor H89. Conclusion Collectively, our study results indicated that the TRPV1–PKA pathway contributed to cellular response under high levels of osmolarity stress; furthermore, the PKA inhibitor had a protective effect on RGCs exposed to this stress. Therefore, our findings may assist in the treatment of eye diseases involving RGC damage.
Collapse
Affiliation(s)
- Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Ke-Hung Chien
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan
| | - Aliaksandr A Yarmishyn
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Waradee Buddhakosai
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Wen-Ju Wu
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shih-Hwa Chiou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital and Fu-Jen Catholic University, Taipei, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan. .,Department of Pharmacy, Taipei Veterans General Hospital; Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
32
|
Yang YP, Nguyen PNN, Lin TC, Yarmishyn AA, Chen WS, Hwang DK, Chiou GY, Lin TW, Chien CS, Tsai CY, Chiou SH, Chen SJ, Peng CH, Hsu CC. Glutamate Stimulation Dysregulates AMPA Receptors-Induced Signal Transduction Pathway in Leber's Inherited Optic Neuropathy Patient-Specific hiPSC-Derived Retinal Ganglion Cells. Cells 2019; 8:cells8060625. [PMID: 31234430 PMCID: PMC6627514 DOI: 10.3390/cells8060625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial genetic disorder, Leber’s hereditary optic neuropathy (LHON), is caused by a mutation in MT-ND4 gene, encoding NADH dehydrogenase subunit 4. It leads to the progressive death of retinal ganglion cells (RGCs) and causes visual impairment or even blindness. However, the precise mechanisms of LHON disease penetrance and progression are not completely elucidated. Human-induced pluripotent stem cells (hiPSCs) offer unique opportunities to investigate disease-relevant phenotypes and regulatory mechanisms underlying LHON pathogenesis at the cellular level. In this study, we successfully generated RGCs by differentiation of LHON patient-specific hiPSCs. We modified the protocol of differentiation to obtain a more enriched population of single-cell RGCs for LHON study. Based on assessing morphology, expression of specific markers and electrophysiological activity, we found that LHON-specific hiPSC-derived were more defective in comparison with normal wild-type RGCs. Based on our previous study, whereby by using microarray analysis we identified that the components of glutamatergic synapse signaling pathway were significantly downregulated in LHON-specific RGCs, we focused our study on glutamate-associated α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. We found that the protein expression levels of the subunits of the AMPA receptor, GluR1 and GluR2, and their associated scaffold proteins were decreased in LHON-RGCs. By performing the co-immunoprecipitation assay, we found several differences in the efficiencies of interaction between AMPA subunits and scaffold proteins between normal and LHON-specific RGCs.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Phan Nguyen Nhi Nguyen
- Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan.
| | - Tai-Chi Lin
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wun-Syuan Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - De-Kuang Hwang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ching-Yao Tsai
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei City Hospital, Taipei 103, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
- Genomic Research Center, Academia Sinica, Taipei 115, Taiwan.
| | - Shih-Jen Chen
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- Department of Ophthalmology, Fu-Jen Catholic University, Taipei 242, Taiwan.
| | - Chih-Chien Hsu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| |
Collapse
|
33
|
Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9. Genes (Basel) 2019; 10:genes10040278. [PMID: 30959774 PMCID: PMC6523438 DOI: 10.3390/genes10040278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Enhanced S-cone syndrome (ESCS) is caused by recessive mutations in the photoreceptor cell transcription factor NR2E3. Loss of NR2E3 is characterized by repression of rod photoreceptor cell gene expression, over-expansion of the S-cone photoreceptor cell population, and varying degrees of M- and L-cone photoreceptor cell development. In this study, we developed a CRISPR-based homology-directed repair strategy and corrected two different disease-causing NR2E3 mutations in patient-derived induced pluripotent stem cells (iPSCs) generated from two affected individuals. In addition, one patient’s iPSCs were differentiated into retinal cells and NR2E3 transcription was evaluated in CRISPR corrected and uncorrected clones. The patient’s c.119-2A>C mutation caused the inclusion of a portion of intron 1, the creation of a frame shift, and generation of a premature stop codon. In summary, we used a single set of CRISPR reagents to correct different mutations in iPSCs generated from two individuals with ESCS. In doing so we demonstrate the advantage of using retinal cells derived from affected patients over artificial in vitro model systems when attempting to demonstrate pathophysiologic mechanisms of specific mutations.
Collapse
|
34
|
Lee J, Choi SH, Kim YB, Jun I, Sung JJ, Lee DR, Kim YI, Cho MS, Byeon SH, Kim DS, Kim DW. Defined Conditions for Differentiation of Functional Retinal Ganglion Cells From Human Pluripotent Stem Cells. Invest Ophthalmol Vis Sci 2019; 59:3531-3542. [PMID: 30025074 DOI: 10.1167/iovs.17-23439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We aimed to establish an efficient method for retinal ganglion cell (RGC) differentiation from human pluripotent stem cells (hPSCs) using defined factors. Methods To define the contribution of specific signal pathways to RGC development and optimize the differentiation of hPSCs toward RGCs, we examined RGC differentiation in three stages: (1) eye field progenitors expressing the eye field transcription factors (EFTFs), (2) RGC progenitors expressing MATH5, and (3) RGCs expressing BRN3B and ISLET1. By monitoring the condition that elicited the highest yield of cells expressing stage-specific markers, we determined the optimal concentrations and combinations of signaling pathways required for efficient generation of RGCs from hPSCs. Results Precise modulation of signaling pathways, including Wnt, insulin growth factor-1, and fibroblast growth factor, in combination with mechanical isolation of neural rosette cell clusters significantly enriched RX and PAX6 double-positive eye field progenitors from hPSCs by day 12. Furthermore, Notch signal inhibition facilitated differentiation into MATH5-positive progenitors at 90% efficiency by day 20, and these cells further differentiated to BRN3B and ISLET1 double-positive RGCs at 45% efficiency by day 40. RGCs differentiated via this method were functional as exemplified by their ability to generate action potentials, express microfilament components on neuronal processes, and exhibit axonal transportation of mitochondria. Conclusions This protocol offers highly defined culture conditions for RGC differentiation from hPSCs and in vitro disease model and cell source for transplantation for diseases related to RGCs.
Collapse
Affiliation(s)
- Junwon Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Hwi Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Ikhyun Jun
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Jea Sung
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongjin R Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | | | - Suk Ho Byeon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Brain Korea 21 Plus Project for Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
VanderWall KB, Vij R, Ohlemacher SK, Sridhar A, Fligor CM, Feder EM, Edler MC, Baucum AJ, Cummins TR, Meyer JS. Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2019; 12:201-212. [PMID: 30639213 PMCID: PMC6373493 DOI: 10.1016/j.stemcr.2018.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation. Thus, efforts of the current study examined the functional maturation of hPSC-derived RGCs, including the ability of astrocytes to modulate this developmental timeline. Morphological and functional properties of RGCs were found to increase over time, with astrocytes significantly accelerating the functional maturation of hPSC-derived RGCs. The results of this study clearly demonstrate the functional and morphological maturation of RGCs in vitro, including the effects of astrocytes on the maturation of hPSC-derived RGCs.
Collapse
Affiliation(s)
- Kirstin B VanderWall
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Ridhima Vij
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Sarah K Ohlemacher
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Akshayalakshmi Sridhar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Elyse M Feder
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Michael C Edler
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Anthony J Baucum
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Theodore R Cummins
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Jason S Meyer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, Indianapolis IN 46202, USA; Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis IN 46202, USA.
| |
Collapse
|
36
|
Ji SL, Tang SB. Differentiation of retinal ganglion cells from induced pluripotent stem cells: a review. Int J Ophthalmol 2019; 12:152-160. [PMID: 30662854 DOI: 10.18240/ijo.2019.01.22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/06/2018] [Indexed: 01/06/2023] Open
Abstract
Glaucoma is a common optic neuropathy that is characterized by the progressive degeneration of axons and the loss of retinal ganglion cells (RGCs). Glaucoma is one of the leading causes of irreversible blindness worldwide. Current glaucoma treatments only slow the progression of RGCs loss. Induced pluripotent stem cells (iPSCs) are capable of differentiating into all three germ layer cell lineages. iPSCs can be patient-specific, making iPSC-derived RGCs a promising candidate for cell replacement. In this review, we focus on discussing the detailed approaches used to differentiate iPSCs into RGCs.
Collapse
Affiliation(s)
- Shang-Li Ji
- Aier Eye Institute, Changsha 410015, Hunan Province, China
| | - Shi-Bo Tang
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan Province, China
| |
Collapse
|
37
|
Miltner AM, Torre AL. Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev Dyn 2019; 248:118-128. [PMID: 30242792 PMCID: PMC7141838 DOI: 10.1002/dvdy.24672] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The neurons of the retina can be affected by a wide variety of inherited or environmental degenerations that can lead to vision loss and even blindness. Retinal ganglion cell (RGC) degeneration is the hallmark of glaucoma and other optic neuropathies that affect millions of people worldwide. Numerous strategies are being trialed to replace lost neurons in different degeneration models, and in recent years, stem cell technologies have opened promising avenues to obtain donor cells for retinal repair. Stem cell-based transplantation has been most frequently used for the replacement of rod photoreceptors, but the same tools could potentially be used for other retinal cell types, including RGCs. However, RGCs are not abundant in stem cell-derived cultures, and in contrast to the short-distance wiring of photoreceptors, RGC axons take a long and intricate journey to connect with numerous brain nuclei. Hence, a number of challenges still remain, such as the ability to scale up the production of RGCs and a reliable and functional integration into the adult diseased retina upon transplantation. In this review, we discuss the recent advancements in the development of replacement therapies for RGC degenerations and the challenges that we need to overcome before these technologies can be applied to the clinic. Developmental Dynamics 248:118-128, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| |
Collapse
|
38
|
Hunt NC, Hallam D, Chichagova V, Steel DH, Lako M. The Application of Biomaterials to Tissue Engineering Neural Retina and Retinal Pigment Epithelium. Adv Healthc Mater 2018; 7:e1800226. [PMID: 30175520 DOI: 10.1002/adhm.201800226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/16/2018] [Indexed: 12/21/2022]
Abstract
The prevalence of degenerative retinal disease is ever increasing as life expectancy rises globally. The human retina fails to regenerate and the use of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) to engineer retinal tissue is of particular interest due to the limited availability of suitable allogeneic or autologous tissue. Retinal tissue and its development are well characterized, which have resulted in robust assays to assess the development of tissue-engineered retina. Retinal tissue can be generated in vitro from hESCs and hiPSCs without biomaterial scaffolds, but despite advancements, protocols remain slow, expensive, and fail to result in mature functional tissue. Several recent studies have demonstrated the potential of biomaterial scaffolds to enhance generation of hESC/hiPSC-derived retinal tissue, including synthetic polymers, silk, alginate, hyaluronic acid, and extracellular matrix molecules. This review outlines the advances that have been made toward tissue-engineered neural retina and retinal pigment epithelium (RPE) for clinical application in recent years, including the success of clinical trials involving transplantation of cells and tissue to promote retinal repair; and the evidence from in vitro and animal studies that biomaterials can enhance development and integration of retinal tissue.
Collapse
Affiliation(s)
- Nicola C. Hunt
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Dean Hallam
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Valeria Chichagova
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
- Biomedicine WestInternational Centre for LifeTimes SquareNewcastle upon Tyne NE1 4EP UK
| | - David H. Steel
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Majlinda Lako
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| |
Collapse
|
39
|
Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 2018; 69:38-56. [PMID: 30419340 DOI: 10.1016/j.preteyeres.2018.11.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases, such as age-related macular degeneration (AMD), Stargardt's disease, retinitis pigmentosa (RP) and glaucoma. These diseases are all characterized by the degeneration of one or two retinal cell types that cannot regenerate spontaneously in humans. Aberrant retinal pigment epithelial (RPE) cells can be observed through optical coherence tomography (OCT) in AMD patients. In RP patients, the morphological and functional abnormalities of RPE and photoreceptor layers are caused by a genetic abnormality. Stargardt's disease or juvenile macular degeneration, which is characterized by the loss of the RPE and photoreceptors in the macular area, causes central vision loss at an early age. Loss of retinal ganglion cells (RGCs) can be observed in patients with glaucoma. Once the retinal cell degeneration is triggered, no treatments can reverse it. Transplantation-based approaches have been proposed as a universal therapy to target patients with various concomitant diseases. Both the replacement of dead cells and neuroprotection are strategies used to rescue visual function in animal models of retinal degeneration. Diverse retinal cell types derived from pluripotent stem cells, including RPE cells, photoreceptors, RGCs and even retinal organoids with a layered structure, provide unlimited cell sources for transplantation. In addition, mesenchymal stem cells (MSCs) are multifunctional and protect degenerating retinal cells. The aim of this review is to summarize current findings from preclinical and clinical studies. We begin with a brief introduction to retinal degenerative diseases and cell death in diverse diseases, followed by methods for retinal cell generation. Preclinical and clinical studies are discussed, and future concerns about efficacy, safety and immunorejection are also addressed.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China.
| | - Mei-Ling Gao
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Wen-Li Deng
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Kun-Chao Wu
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
40
|
Fligor CM, Langer KB, Sridhar A, Ren Y, Shields PK, Edler MC, Ohlemacher SK, Sluch VM, Zack DJ, Zhang C, Suter DM, Meyer JS. Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells. Sci Rep 2018; 8:14520. [PMID: 30266927 PMCID: PMC6162218 DOI: 10.1038/s41598-018-32871-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Retinal organoids are three-dimensional structures derived from human pluripotent stem cells (hPSCs) which recapitulate the spatial and temporal differentiation of the retina, serving as effective in vitro models of retinal development. However, a lack of emphasis has been placed upon the development and organization of retinal ganglion cells (RGCs) within retinal organoids. Thus, initial efforts were made to characterize RGC differentiation throughout early stages of organoid development, with a clearly defined RGC layer developing in a temporally-appropriate manner expressing a complement of RGC-associated markers. Beyond studies of RGC development, retinal organoids may also prove useful for cellular replacement in which extensive axonal outgrowth is necessary to reach post-synaptic targets. Organoid-derived RGCs could help to elucidate factors promoting axonal outgrowth, thereby identifying approaches to circumvent a formidable obstacle to RGC replacement. As such, additional efforts demonstrated significant enhancement of neurite outgrowth through modulation of both substrate composition and growth factor signaling. Additionally, organoid-derived RGCs exhibited diverse phenotypes, extending elaborate growth cones and expressing numerous guidance receptors. Collectively, these results establish retinal organoids as a valuable tool for studies of RGC development, and demonstrate the utility of organoid-derived RGCs as an effective platform to study factors influencing neurite outgrowth from organoid-derived RGCs.
Collapse
Affiliation(s)
- Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kirstin B Langer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Akshayalakshmi Sridhar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Priya K Shields
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Michael C Edler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Sarah K Ohlemacher
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Valentin M Sluch
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Donald J Zack
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21287, USA
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
41
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
42
|
Chuang JH, Yarmishyn AA, Hwang DK, Hsu CC, Wang ML, Yang YP, Chien KH, Chiou SH, Peng CH, Chen SJ. Expression profiling of cell-intrinsic regulators in the process of differentiation of human iPSCs into retinal lineages. Stem Cell Res Ther 2018; 9:140. [PMID: 29751772 PMCID: PMC5948821 DOI: 10.1186/s13287-018-0848-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Differentiation of human induced pluripotent stem cells (hiPSCs) into retinal lineages offers great potential for medical application. Therefore, it is of crucial importance to know the key intrinsic regulators of differentiation and the specific biomarker signatures of cell lineages. METHODS In this study, we used microarrays to analyze transcriptomes of terminally differentiated retinal ganglion cell (RGC) and retinal pigment epithelium (RPE) lineages, as well as intermediate retinal progenitor cells of optic vesicles (OVs) derived from hiPSCs. In our analysis, we specifically focused on the classes of transcripts that encode intrinsic regulators of gene expression: the transcription factors (TFs) and epigenetic chromatin state regulators. We applied two criteria for the selection of potentially important regulators and markers: firstly, the magnitude of fold-change of upregulation; secondly, the contrasted pattern of differential expression between OV, RGC and RPE lineages. RESULTS We found that among the most highly overexpressed TF-encoding genes in the OV/RGC lineage were three members of the Collier/Olfactory-1/Early B-cell family: EBF1, EBF2 and EBF3. Knockdown of EBF1 led to significant impairment of differentiation of hiPSCs into RGCs. EBF1 was shown to act upstream of ISL1 and BRN3A, the well-characterized regulators of RGC lineage specification. TF-encoding genes DLX1, DLX2 and INSM1 were the most highly overexpressed genes in the OVs, indicating their important role in the early stages of retinal differentiation. Along with MITF, the two paralogs, BHLHE41 and BHLHE40, were the most robust TF markers of RPE cells. The markedly contrasted expression of ACTL6B, encoding the component of chromatin remodeling complex SWI/SNF, discriminated hiPSC-derived OV/RGC and RPE lineages. CONCLUSIONS We identified novel, potentially important intrinsic regulators of RGC and RPE cell lineage specification in the process of differentiation from hiPSCs. We demonstrated the crucial role played by EBF1 in differentiation of RGCs. We identified intrinsic regulator biomarker signatures of these two retinal cell types that can be applied with high confidence to confirm the cell lineage identities.
Collapse
Affiliation(s)
- Jen-Hua Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chien Hsu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ke-Hung Chien
- Department of Ophthalmology, Tri-Service General Hospital & National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hsien Peng
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital and Fu Jen Catholic University, Taipei, Taiwan.
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Ophthalmology, Tri-Service General Hospital & National Defense Medical Center, Taipei, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
43
|
Langer KB, Ohlemacher SK, Phillips MJ, Fligor CM, Jiang P, Gamm DM, Meyer JS. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 10:1282-1293. [PMID: 29576537 PMCID: PMC5998302 DOI: 10.1016/j.stemcr.2018.02.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/01/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs) and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs. Unique transcriptional profiles demonstrate diversity among hPSC-derived RGCs Numerous RGC subtypes characterized from hPSC-derived RGCs Molecular markers identified for RGC subtypes through single-cell RNA-seq analysis
Collapse
Affiliation(s)
- Kirstin B Langer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sarah K Ohlemacher
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, WI 53705, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
44
|
The use of induced pluripotent stem cells for studying and treating optic neuropathies. Curr Opin Organ Transplant 2017; 21:484-9. [PMID: 27517502 DOI: 10.1097/mot.0000000000000348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The present review aims to provide an update of applications of induced pluripotent stem cells (iPSCs) for disease modeling, cell/gene therapy, and drug screening for optic neuropathies. RECENT FINDINGS Degeneration of retinal ganglion cells (RGCs) is a characteristic of optic neuropathies. Human iPSCs can serve as a model to investigate disease pathology and potential repair mechanisms. In recent years, significant progress has been made in generating RGCs from iPSCs. Various groups have reported the potential of iPSCs for modeling optic neuropathies, such as glaucoma. The literature also highlights the potential to use iPSC-derived cells for high-throughput drug and toxicity screening. SUMMARY The present review summarizes current work in the field of iPSCs in optic neuropathies. Future studies to characterize iPSC-derived RGCs in a more in-depth manner will help expand the use of iPSCs to model and treat optic neuropathic diseases. Furthermore, iPSC modeling can be used in drug development by offering a new avenue to test novel therapeutic drugs for optic neuropathies.
Collapse
|
45
|
Sluch VM, Chamling X, Liu MM, Berlinicke CA, Cheng J, Mitchell KL, Welsbie DS, Zack DJ. Enhanced Stem Cell Differentiation and Immunopurification of Genome Engineered Human Retinal Ganglion Cells. Stem Cells Transl Med 2017; 6:1972-1986. [PMID: 29024560 PMCID: PMC6430043 DOI: 10.1002/sctm.17-0059] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells have the potential to promote biological studies and accelerate drug discovery efforts by making possible direct experimentation on a variety of human cell types of interest. However, stem cell cultures are generally heterogeneous and efficient differentiation and purification protocols are often lacking. Here, we describe the generation of clustered regularly‐interspaced short palindromic repeats(CRISPR)‐Cas9 engineered reporter knock‐in embryonic stem cell lines in which tdTomato and a unique cell‐surface protein, THY1.2, are expressed under the control of the retinal ganglion cell (RGC)‐enriched gene BRN3B. Using these reporter cell lines, we greatly improved adherent stem cell differentiation to the RGC lineage by optimizing a novel combination of small molecules and established an anti‐THY1.2‐based protocol that allows for large‐scale RGC immunopurification. RNA‐sequencing confirmed the similarity of the stem cell‐derived RGCs to their endogenous human counterparts. Additionally, we developed an in vitro axonal injury model suitable for studying signaling pathways and mechanisms of human RGC cell death and for high‐throughput screening for neuroprotective compounds. Using this system in combination with RNAi‐based knockdown, we show that knockdown of dual leucine kinase (DLK) promotes survival of human RGCs, expanding to the human system prior reports that DLK inhibition is neuroprotective for murine RGCs. These improvements will facilitate the development and use of large‐scale experimental paradigms that require numbers of pure RGCs that were not previously obtainable. Stem Cells Translational Medicine2017;6:1972–1986
Collapse
Affiliation(s)
- Valentin M Sluch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa M Liu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine L Mitchell
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Derek S Welsbie
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Shiley Eye Institute, University of California, San Diego, La Jolla, California, USA
| | - Donald J Zack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Stem cells in regenerative medicine - from laboratory to clinical application - the eye. Cent Eur J Immunol 2017; 42:173-180. [PMID: 28860936 PMCID: PMC5573891 DOI: 10.5114/ceji.2017.69360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/25/2016] [Indexed: 12/18/2022] Open
Abstract
Stem cells are currently one of the most researched and explored subject in science. They consstitue a very promising part of regenerative medicine and have many potential clinical applications. Harnessing their ability to replicate and differentiate into many cell types can enable successful treatment of diseases that were incurable until now. There are numerous types of stem cells (e.g. ESCs, FSCs, ASCs, iPSCs) and many different methods of deriving and cultivating them in order to obtain viable material. The eye is one of the most interesting targets for stem cell therapies. In this article we summarise different aspects of stem cells, discussing their characteristics, sources and methods of culture. We also demonstrate the most recent clinical applications in ophthalmology based on an extensive current literature review. Tissue engineering techniques developed for corneal limbal stem cell deficiency, age-related macular degeneration (AMD) and glaucoma are among those presented. Both laboratory and clinical aspects of stem cells are discussed.
Collapse
|
47
|
Abstract
Purpose of review Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye. Recent findings Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo. Summary While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.
Collapse
|
48
|
Chao JR, Lamba DA, Klesert TR, Torre AL, Hoshino A, Taylor RJ, Jayabalu A, Engel AL, Khuu TH, Wang RK, Neitz M, Neitz J, Reh TA. Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Transl Vis Sci Technol 2017; 6:4. [PMID: 28516002 PMCID: PMC5433804 DOI: 10.1167/tvst.6.3.4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/21/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Previous studies have demonstrated the ability of retinal cells derived from human embryonic stem cells (hESCs) to survive, integrate into the host retina, and mediate light responses in murine mouse models. Our aim is to determine whether these cells can also survive and integrate into the retina of a nonhuman primate, Saimiri sciureus, following transplantation into the subretinal space. METHODS hESCs were differentiated toward retinal neuronal fates using our previously published technique and cultured for 60 to 70 days. Differentiated cells were further treated with 20 μM N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) for a period of 5 days immediately prior to subretinal transplantation. Differentiated cells were labeled with a lentivirus expressing GFP. One million cells (10,000 cells/μL) were injected into the submacular space into a squirrel monkey eye, using an ab externo technique. RESULTS RetCam imaging demonstrated the presence and survival of human donor cells 3 months after transplantation in the S. sciureus eye. Injected cells consolidated in the temporal macula. GFP+ axonal projections were observed to emanate from the central consolidation of cells at 1 month, with some projecting into the optic nerve by 3 months after transplantation. CONCLUSIONS Human ES cell-derived retinal neurons injected into the submacular space of a squirrel monkey survive at least 3 months postinjection without immunosuppression. Some donor cells appeared to integrate into the host inner retina, and numerous donor axonal projections were noted throughout, with some projecting into the optic nerve. TRANSLATIONAL RELEVANCE These data illustrate the feasibility of hESC-derived retinal cell replacement in the nonhuman primate eye.
Collapse
Affiliation(s)
- Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Deepak A Lamba
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Todd R Klesert
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Vitreoretinal Associates of Washington, Seattle, WA, USA
| | - Anna La Torre
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Akina Hoshino
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Russell J Taylor
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,University of Wisconsin, Madison, WI, USA
| | - Anu Jayabalu
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,Universal Cells, Inc., Seattle, WA, USA
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Thomas H Khuu
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Zhao C, Wang Q, Temple S. Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells. Development 2017; 144:1368-1381. [PMID: 28400433 PMCID: PMC5399657 DOI: 10.1242/dev.133108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinal degenerative diseases are the leading causes of blindness worldwide. Replacing lost retinal cells via stem cell-based therapies is an exciting, rapidly advancing area of translational research that has already entered the clinic. Here, we review the status of these clinical efforts for several significant retinal diseases, describe the challenges involved and discuss how basic developmental studies have contributed to and are needed to advance clinical goals.
Collapse
Affiliation(s)
- Cuiping Zhao
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Qingjie Wang
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| |
Collapse
|
50
|
Sweeney NT, James KN, Nistorica A, Lorig-Roach RM, Feldheim DA. Expression of transcription factors divides retinal ganglion cells into distinct classes. J Comp Neurol 2017; 527:225-235. [PMID: 28078709 DOI: 10.1002/cne.24172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs) are tasked with transmitting all light information from the eye to the retinal recipient areas of the brain. RGCs can be classified into many different types by morphology, gene expression, axonal projections, and functional responses to different light stimuli. Ultimately, these classification systems should be unified into an all-encompassing taxonomy. Toward that end, we show here that nearly all RGCs express either Islet-2 (Isl2), Tbr2, or a combination of Satb1 and Satb2. We present gene expression data supporting the hypothesis that Satb1 and Satb2 are expressed in ON-OFF direction-selective (DS) RGCs, complementing our previous work demonstrating that RGCs that express Isl2 and Tbr2 are non-DS and non-image-forming, respectively. Expression of these transcription factors emerges at distinct embryonic ages and only in postmitotic cells. Finally, we demonstrate that these transcription factor-defined RGC classes are born throughout RGC genesis.
Collapse
Affiliation(s)
- Neal T Sweeney
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Kiely N James
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Andreea Nistorica
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Ryan M Lorig-Roach
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - David A Feldheim
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|