1
|
Sibuea S, Ho JK, Pouton CW, Haynes JM. TGFβ3, dibutyryl cAMP and a notch inhibitor modulate phenotype late in stem cell-derived dopaminergic neuron maturation. Front Cell Dev Biol 2023; 11:1111705. [PMID: 36819101 PMCID: PMC9928866 DOI: 10.3389/fcell.2023.1111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The generation of midbrain dopaminergic neurons (mDAs) from pluripotent stem cells (hPSC) holds much promise for both disease modelling studies and as a cell therapy for Parkinson's disease (PD). Generally, dopaminergic neuron differentiation paradigms rely on inhibition of smad signalling for neural induction followed by hedgehog signalling and an elevation of β-catenin to drive dopaminergic differentiation. Post-patterning, differentiating dopaminergic neuron cultures are permitted time for maturation after which the success of these differentiation paradigms is usually defined by expression of tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine. However, during maturation, culture media is often supplemented with additives to promote neuron survival and or promote cell differentiation. These additives include dibutyryl cyclic adenosine monophosphate (dbcAMP), transforming growth factor β3 (TGFβ3) and or the γ-secretase inhibitor (DAPT). While these factors are routinely added to cultures, their impact upon pluripotent stem cell-derived mDA phenotype is largely unclear. In this study, we differentiate pluripotent stem cells toward a dopaminergic phenotype and investigate how the omission of dbcAMP, TGFβ3 or DAPT, late in maturation, affects the regulation of multiple dopaminergic neuron phenotype markers. We now show that the removal of dbcAMP or TGFβ3 significantly and distinctly impacts multiple markers of the mDA phenotype (FOXA2, EN1, EN2, FOXA2, SOX6), while commonly increasing both MSX2 and NEUROD1 and reducing expression of both tyrosine hydroxylase and WNT5A. Removing DAPT significantly impacted MSX2, OTX2, EN1, and KCNJ6. In the absence of any stressful stimuli, we suggest that these culture additives should be viewed as mDA phenotype-modifying, rather than neuroprotective. We also suggest that their addition to cultures is likely to confound the interpretation of both transplantation and disease modelling studies.
Collapse
Affiliation(s)
- Shanti Sibuea
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,National Agency of Drug and Food Control, Jakarta, Indonesia
| | - Joan K. Ho
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,*Correspondence: John M. Haynes,
| |
Collapse
|
2
|
Human stem cells harboring a suicide gene improve the safety and standardisation of neural transplants in Parkinsonian rats. Nat Commun 2021; 12:3275. [PMID: 34045451 PMCID: PMC8160354 DOI: 10.1038/s41467-021-23125-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Despite advancements in human pluripotent stem cells (hPSCs) differentiation protocols to generate appropriate neuronal progenitors suitable for transplantation in Parkinson's disease, resultant grafts contain low proportions of dopamine neurons. Added to this is the tumorigenic risk associated with the potential presence of incompletely patterned, proliferative cells within grafts. Here, we utilised a hPSC line carrying a FailSafeTM suicide gene (thymidine kinase linked to cyclinD1) to selectively ablate proliferative cells in order to improve safety and purity of neural transplantation in a Parkinsonian model. The engineered FailSafeTM hPSCs demonstrated robust ventral midbrain specification in vitro, capable of forming neural grafts upon transplantation. Activation of the suicide gene within weeks after transplantation, by ganciclovir administration, resulted in significantly smaller grafts without affecting the total yield of dopamine neurons, their capacity to innervate the host brain or reverse motor deficits at six months in a rat Parkinsonian model. Within ganciclovir-treated grafts, other neuronal, glial and non-neural populations (including proliferative cells), were significantly reduced-cell types that may pose adverse or unknown influences on graft and host function. These findings demonstrate the capacity of a suicide gene-based system to improve both the standardisation and safety of hPSC-derived grafts in a rat model of Parkinsonism.
Collapse
|
3
|
Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. Int J Mol Sci 2021; 22:ijms22073381. [PMID: 33806103 PMCID: PMC8037675 DOI: 10.3390/ijms22073381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells have the potential to give rise to a new era in Parkinson's disease (PD) research. As a unique source of midbrain dopaminergic (DA) neurons, iPS cells provide unparalleled capabilities for investigating the pathogenesis of PD, the development of novel anti-parkinsonian drugs, and personalized therapy design. Significant progress in developmental biology of midbrain DA neurons laid the foundation for their efficient derivation from iPS cells. The introduction of 3D culture methods to mimic the brain microenvironment further expanded the vast opportunities of iPS cell-based research of the neurodegenerative diseases. However, while the benefits for basic and applied studies provided by iPS cells receive widespread coverage in the current literature, the drawbacks of this model in its current state, and in particular, the aspects of differentiation protocols requiring further refinement are commonly overlooked. This review summarizes the recent data on general and subtype-specific features of midbrain DA neurons and their development. Here, we review the current protocols for derivation of DA neurons from human iPS cells and outline their general weak spots. The associated gaps in the contemporary knowledge are considered and the possible directions for future research that may assist in improving the differentiation conditions and increase the efficiency of using iPS cell-derived neurons for PD drug development are discussed.
Collapse
|
4
|
Kulkeaw K, Tubsuwan A, Tongkrajang N, Whangviboonkij N. Generation of human liver organoids from pluripotent stem cell-derived hepatic endoderms. PeerJ 2020; 8:e9968. [PMID: 33133779 PMCID: PMC7580584 DOI: 10.7717/peerj.9968] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background The use of a personalized liver organoid derived from human-induced pluripotent stem cells (HuiPSCs) is advancing the use of in vitro disease models for the design of specific, effective therapies for individuals. Collecting patient peripheral blood cells for HuiPSC generation is preferable because it is less invasive; however, the capability of blood cell-derived HuiPSCs for hepatic differentiation and liver organoid formation remains uncertain. Moreover, the currently available methods for liver organoid formation require a multistep process of cell differentiation or a combination of hepatic endodermal, endothelial and mesenchymal cells, which is a major hurdle for the application of personalized liver organoids in high-throughput testing of drug toxicity and safety. To demonstrate the capability of blood cell-derived HuiPSCs for liver organoid formation without support from endothelial and mesenchymal cells. Methods The peripheral blood-derived HuiPSCs first differentiated into hepatic endoderm (HE) in two-dimensional (2D) culture on Matrigel-coated plates under hypoxia for 10 days. The HE was then collected and cultured in 3D culture using 50% Matrigel under ambient oxygen. The maturation of hepatocytes was further induced by adding hepatocyte growth medium containing HGF and oncostatin M on top of the 3D culture and incubating the culture for an additional 12–17 days. The function of the liver organoids was assessed using expression analysis of hepatocyte-specific gene and proteins. Albumin (ALB) synthesis, glycogen and lipid storage, and metabolism of indocyanine were evaluated. The spatial distribution of albumin was examined using immunofluorescence and confocal microscopy. Results CD34+ hematopoietic cell-derived HuiPSCs were capable of differentiating into definitive endoderm expressing SOX17 and FOXA2, hepatic endoderm expressing FOXA2, hepatoblasts expressing AFP and hepatocytes expressing ALB. On day 25 of the 2D culture, cells expressed SOX17, FOXA2, AFP and ALB, indicating the presence of cellular heterogeneity. In contrast, the hepatic endoderm spontaneously formed a spherical, hollow structure in a 3D culture of 50% Matrigel, whereas hepatoblasts and hepatocytes could not form. Microscopic observation showed a single layer of polygonal-shaped cells arranged in a 3D structure. The hepatic endoderm-derived organoid synthesis ALB at a higher level than the 2D culture but did not express definitive endoderm-specific SOX17, indicating the greater maturity of the hepatocytes in the liver organoids. Confocal microscopic images and quantitative ELISA confirmed albumin synthesis in the cytoplasm of the liver organoid and its secretion. Overall, 3D culture of the hepatic endoderm is a relatively fast, simple, and less laborious way to generate liver organoids from HuiPSCs that is more physiologically relevant than 2D culture.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alisa Tubsuwan
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nongnat Tongkrajang
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narisara Whangviboonkij
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
(+)4-Cholesten-3-one promotes differentiation of neural stem cells into dopaminergic neurons through TET1 and FoxA2. Neurosci Lett 2020; 735:135239. [PMID: 32650052 DOI: 10.1016/j.neulet.2020.135239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023]
Abstract
In this paper, we report the results of treating cells with an effective small molecule, (+)4-cholesten-3-one (PubChem CID: 91477), which can promote neural stem cell(NSC) differentiation into dopaminergic neurons. This study used rat neural stem cells stimulated with two different concentrations (7.8 μM and 78 μM) of (+)4-cholesten-3-one. Cell phenotypic analysis showed that (+)4-cholesten-3-one induced NSC differentiation into dopaminergic neurons, and the level of tyrosine hydroxylase(TH), which is specific for dopaminergic cells, was significantly increased compared with that of the drug-free control group. Furthermore, in this study, we found that this effect may be related to the transcription factor fork-head box a2 (FoxA2) and ten-eleven translocation 1 (TET1). The expression of TET1 and FoxA2 was upregulated after treatment with (+)4-cholesten-3-one. To verify the relationship between (+)4-cholesten-3-one and these genes, we found that the binding rate of TET1 and FoxA2 increased after the application of (+)4-cholesten-3-one, as confirmed by a coimmunoprecipitation (Co-IP) assay. With a small interfering RNA (siRNA) experiment, we found that only when Tet1 and Foxa2 were not silenced was the mRNA level of Th increased after (+)4-cholesten-3-one treatment. Taken together, these data show that (+)4-cholesten-3-one can promote the differentiation of NSCs into dopaminergic neurons by upregulating the expression of TET1 and FoxA2 and by increasing their binding. Thus, (+)4-cholesten-3-one may help address the application of neural stem cell replacement therapy in neurodegenerative diseases.
Collapse
|
6
|
Isolation of LMX1a Ventral Midbrain Progenitors Improves the Safety and Predictability of Human Pluripotent Stem Cell-Derived Neural Transplants in Parkinsonian Disease. J Neurosci 2019; 39:9521-9531. [PMID: 31641054 DOI: 10.1523/jneurosci.1160-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/29/2019] [Accepted: 10/13/2019] [Indexed: 12/23/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are a promising resource for the replacement of degenerated ventral midbrain dopaminergic (vmDA) neurons in Parkinson's disease. Despite recent advances in protocols for the in vitro generation of vmDA neurons, the asynchronous and heterogeneous nature of the differentiations results in transplants of surprisingly low vmDA neuron purity. As the field advances toward the clinic, it will be optimal, if not essential, to remove poorly specified and potentially proliferative cells from donor preparations to ensure safety and predictable efficacy. Here, we use two novel hPSC knock-in reporter lines expressing GFP under the LMX1A and PITX3 promoters, to selectively isolate vm progenitors and DA precursors, respectively. For each cell line, unsorted, GFP+, and GFP- cells were transplanted into male or female Parkinsonian rodents. Only rats receiving unsorted cells, LMX1A-eGFP+, or PITX3-eGFP- cell grafts showed improved motor function over 6 months. Postmortem analysis revealed small grafts from PITX3-eGFP+ cells, suggesting that these DA precursors were not compatible with cell survival and integration. In contrast, LMX1A-eGFP+ grafts were highly enriched for vmDA neurons, and importantly excluded expansive proliferative populations and serotonergic neurons. These LMX1A-eGFP+ progenitor grafts accelerated behavioral recovery and innervated developmentally appropriate forebrain targets, whereas LMX1A-eGFP- cell grafts failed to restore motor deficits, supported by increased fiber growth into nondopaminergic target nuclei. This is the first study to use an hPSC-derived reporter line to purify vm progenitors, resulting in improved safety, predictability of the graft composition, and enhanced motor function.SIGNIFICANCE STATEMENT Clinical trials have shown functional integration of transplanted fetal-derived dopamine progenitors in Parkinson's disease. Human pluripotent stem cell (hPSC)-derived midbrain progenitors are now being tested as an alternative cell source; however, despite current differentiation protocols generating >80% correctly specified cells for implantation, resultant grafts contain a small fraction of dopamine neurons. Cell-sorting approaches, to select for correctly patterned cells before implantation, are being explored yet have been suboptimal to date. This study provides the first evidence of using 2 hPSC reporter lines (LMX1A-GFP and PITX3-GFP) to isolate correctly specified cells for transplantation. We show LMX1A-GFP+, but not PITX3-GFP+, cell grafts are more predictable, with smaller grafts, enriched in dopamine neurons, showing appropriate integration and accelerated functional recovery in Parkinsonian rats.
Collapse
|
7
|
Matamoros-Angles A, Gayosso LM, Richaud-Patin Y, di Domenico A, Vergara C, Hervera A, Sousa A, Fernández-Borges N, Consiglio A, Gavín R, López de Maturana R, Ferrer I, López de Munain A, Raya Á, Castilla J, Sánchez-Pernaute R, Del Río JA. iPS Cell Cultures from a Gerstmann-Sträussler-Scheinker Patient with the Y218N PRNP Mutation Recapitulate tau Pathology. Mol Neurobiol 2018; 55:3033-3048. [PMID: 28466265 PMCID: PMC5842509 DOI: 10.1007/s12035-017-0506-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 01/20/2023]
Abstract
Gerstmann-Sträussler-Scheinker (GSS) syndrome is a fatal autosomal dominant neurodegenerative prionopathy clinically characterized by ataxia, spastic paraparesis, extrapyramidal signs and dementia. In some GSS familiar cases carrying point mutations in the PRNP gene, patients also showed comorbid tauopathy leading to mixed pathologies. In this study we developed an induced pluripotent stem (iPS) cell model derived from fibroblasts of a GSS patient harboring the Y218N PRNP mutation, as well as an age-matched healthy control. This particular PRNP mutation is unique with very few described cases. One of the cases presented neurofibrillary degeneration with relevant Tau hyperphosphorylation. Y218N iPS-derived cultures showed relevant astrogliosis, increased phospho-Tau, altered microtubule-associated transport and cell death. However, they failed to generate proteinase K-resistant prion. In this study we set out to test, for the first time, whether iPS cell-derived neurons could be used to investigate the appearance of disease-related phenotypes (i.e, tauopathy) identified in the GSS patient.
Collapse
Affiliation(s)
- Andreu Matamoros-Angles
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Lucía Mayela Gayosso
- Stem cells and neural repair laboratory, Fundación Inbiomed, San Sebastian, Gipuzkoa, Spain
- Proteomics unit (Prion lab), CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Yvonne Richaud-Patin
- Centre de Medicina Regenerativa de Barcelona, c/ Dr. Aiguader 88, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain
| | - Angelique di Domenico
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Dept. Patologia i Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Vergara
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Laboratory of Histology, Neuroanatomy and Neuropathology (CP 620), ULB Neuroscience Institute. Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Amaya Sousa
- Stem cells and neural repair laboratory, Fundación Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - Natalia Fernández-Borges
- Proteomics unit (Prion lab), CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
- CISA-INIA, Center for Animal Health Research, Madrid, Spain
| | - Antonella Consiglio
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Dept. Patologia i Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rosalina Gavín
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | | | - Isidro Ferrer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Dept. Patologia i Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain
| | - Adolfo López de Munain
- Instituto Biodonostia-Hospital Universitario Donostia, San Sebastian, Gipuzkoa, Spain
- Neurosciences Department, University of the Basque Country UPV-EHU, Bilbao, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Sebastian, Gipuzkoa, Spain
| | - Ángel Raya
- Centre de Medicina Regenerativa de Barcelona, c/ Dr. Aiguader 88, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Joaquín Castilla
- Proteomics unit (Prion lab), CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| | - Rosario Sánchez-Pernaute
- Stem cells and neural repair laboratory, Fundación Inbiomed, San Sebastian, Gipuzkoa, Spain.
- Andalusian Initiative for Advanced Therapies, Junta de Andalusia, Seville, Spain.
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2017; 9:1207-1220. [PMID: 28943253 PMCID: PMC5639383 DOI: 10.1016/j.stemcr.2017.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP+ mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP+ cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP+ mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies. Flow cytometric antibody screening identified IAP as a marker for mesDA progenitors IAP+ cells displayed hallmark characteristics of ventral floor plate cells Immunomagnetic IAP sorting led to reproducible and homogeneous cell compositions IAP+ cells generated mature grafts leading to functional recovery in lesioned rats
Collapse
|
9
|
Fedele S, Collo G, Behr K, Bischofberger J, Müller S, Kunath T, Christensen K, Gündner AL, Graf M, Jagasia R, Taylor V. Expansion of human midbrain floor plate progenitors from induced pluripotent stem cells increases dopaminergic neuron differentiation potential. Sci Rep 2017; 7:6036. [PMID: 28729666 PMCID: PMC5519680 DOI: 10.1038/s41598-017-05633-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/31/2017] [Indexed: 11/09/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are invaluable to study developmental processes and disease mechanisms particularly in the brain. hiPSCs can be differentiated into mature and functional dopaminergic (DA) neurons. Having robust protocols for the generation of differentiated DA neurons from pluripotent cells is a prerequisite for the use of hiPSCs to study disease mechanisms, for drug discovery, and eventually for cell replacement therapy. Here, we describe a protocol for generating and expanding large numbers of homogeneous midbrain floor plate progenitors (mFPPs) that retain efficient DA neurogenic potential over multiple passages and can be cryobanked. We demonstrate that expanded mFPPs have increased DA neuron potential and differentiate more efficiently and rapidly than progenitors generated by standard protocols. In addition, this novel method results in increased numbers of DA neurons that in vitro show characteristic electrophysiological properties of nigrostriatal DA neurons, produce high levels of dopamine, and integrate into host mice when grafted in vivo. Thus, we describe a robust method for producing human mesencephalic DA neurons from hiPSCs.
Collapse
Affiliation(s)
- Stefania Fedele
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Ginetta Collo
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.,Department of Molecular and Translational Medicine, Viale Europa 11, 25123, Brescia, Italy
| | - Katharina Behr
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, CH-4056, Basel, Switzerland
| | - Josef Bischofberger
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, CH-4056, Basel, Switzerland
| | - Stephan Müller
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH93JQ, Edinburgh, United Kingdom
| | - Klaus Christensen
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Anna Lisa Gündner
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Martin Graf
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Ravi Jagasia
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.
| |
Collapse
|
10
|
Azkona G, López de Maturana R, Del Rio P, Sousa A, Vazquez N, Zubiarrain A, Jimenez-Blasco D, Bolaños JP, Morales B, Auburger G, Arbelo JM, Sánchez-Pernaute R. LRRK2 Expression Is Deregulated in Fibroblasts and Neurons from Parkinson Patients with Mutations in PINK1. Mol Neurobiol 2016; 55:506-516. [PMID: 27975167 PMCID: PMC5808058 DOI: 10.1007/s12035-016-0303-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023]
Abstract
Mutations in PINK1 (PARK6), a serine/threonine kinase involved in mitochondrial homeostasis, are associated with early onset Parkinson’s disease. Fibroblasts from Parkinson’s disease patients with compound heterozygous mutations in exon 7 (c.1488 + 1G > A; c.1252_1488del) showed no apparent signs of mitochondrial impairment. To elucidate changes primarily caused by lack of functional PINK1, we over-expressed wild-type PINK1, which induced a significant downregulation of LRRK2 (PARK8). Indeed, we found that LRRK2 protein basal levels were significantly higher in the mutant PINK1 fibroblasts. To examine the interaction between the two PARK genes in a disease-relevant cell context, we generated induced pluripotent stem cell (iPSC) lines from mutant, carrier and control fibroblasts by lentiviral-mediated re-programming. Efficiency of neural induction and dopamine differentiation using a floor-plate induction protocol was similar in all genotypes. As observed in fibroblasts, PINK1 mutant neurons showed increased LRRK2 expression both at the RNA and protein level and transient over-expression of wild-type PINK1 efficiently downregulated LRRK2 levels. Additionally, we confirmed a dysregulation of LRRK2 expression in fibroblasts from patients with a different homozygous mutation in PINK1 exon 4, c.926G > A (G309D). Thus, our results identify a novel role of PINK1 modulating the levels of LRRK2 in Parkinson’s disease fibroblasts and neurons, suggest a convergent pathway for these PARK genes, and broaden the role of LRRK2 in the pathogenesis of Parkinson’s disease.
Collapse
Affiliation(s)
- Garikoitz Azkona
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, 20009, San Sebastian, Spain.,Animal Model Unit, Inbiomed, San Sebastian, Spain.,Animal Research Facility, Scientific and Technological Centers, University of Barcelona, Barcelona, Spain
| | - Rakel López de Maturana
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, 20009, San Sebastian, Spain
| | - Patricia Del Rio
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, 20009, San Sebastian, Spain
| | - Amaya Sousa
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, 20009, San Sebastian, Spain
| | - Nerea Vazquez
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, 20009, San Sebastian, Spain
| | - Amaia Zubiarrain
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, 20009, San Sebastian, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Blas Morales
- Department of Neurology, University Hospital San Cecilio, Granada, Spain
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - José Matias Arbelo
- Parkinson's and Movement Disorders Unit, Department of Neurology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rosario Sánchez-Pernaute
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, 20009, San Sebastian, Spain. .,Andalusian Initiative for Advanced Therapies, Junta de Andalucia, Sevilla, Spain.
| |
Collapse
|
11
|
López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, Águila J, López de Munain A, Rodríguez M, Sánchez-Pernaute R. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation 2016; 13:295. [PMID: 27863501 PMCID: PMC5116223 DOI: 10.1186/s12974-016-0761-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Background Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to both familial and idiopathic forms of Parkinson’s disease (PD). Neuroinflammation is a key event in neurodegeneration and aging, and there is mounting evidence of LRRK2 involvement in inflammatory pathways. In a previous study, we described an alteration of the inflammatory response in dermal fibroblasts from PD patients expressing the G2019S and R1441G mutations in LRRK2. Methods Taking advantage of cellular reprogramming, we generated induced pluripotent stem cell (iPSC) lines and neurons thereafter, harboring LRRK2G2019S and LRRK2R1441G mutations. We used gene silencing and functional reporter assays to characterize the effect of the mutations. We examined the temporal profile of TNFα-induced changes in proteins of the NF-κB pathway and optimized western blot analysis to capture α-synuclein dynamics. The effects of the mutations and interventions were analyzed by two-way ANOVA tests with respect to corresponding controls. Results LRRK2 silencing decreased α-synuclein protein levels in mutated neurons and modified NF-κB transcriptional targets, such as PTGS2 (COX-2) and TNFAIP3 (A20). We next tested whether NF-κB and α-synuclein pathways converged and found that TNFα modulated α-synuclein levels, although we could not detect an effect of LRRK2 mutations, partly because of the individual variability. Nevertheless, we confirmed NF-κB dysregulation in mutated neurons, as shown by a protracted recovery of IκBα and a clear impairment in p65 nuclear translocation in the LRRK2 mutants. Conclusions Altogether, our results show that LRRK2 mutations affect α-synuclein regulation and impair NF-κB canonical signaling in iPSC-derived neurons. TNFα modulated α-synuclein proteostasis but was not modified by the LRRK2 mutations in this paradigm. These results strengthen the link between LRRK2 and the innate immunity system underscoring the involvement of inflammatory pathways in the neurodegenerative process in PD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0761-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rakel López de Maturana
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Valérie Lang
- Laboratory of Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Amaia Zubiarrain
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Amaya Sousa
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Nerea Vázquez
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Ana Gorostidi
- Genomics Platform and Neuroscience Area, Biodonostia Research Institute, San Sebastian, Spain
| | - Julio Águila
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain
| | - Adolfo López de Munain
- Neurology Department, Donostia Universitary Hospital, Neuroscience Area, Instituto Biodonostia, San Sebastián, Spain.,Center for Biomedical Research Network in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Department of Neurosciences, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Manuel Rodríguez
- Laboratory of Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Rosario Sánchez-Pernaute
- Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain.
| |
Collapse
|
12
|
Li M, Zou Y, Lu Q, Tang N, Heng A, Islam I, Tong HJ, Dawe GS, Cao T. Efficient derivation of dopaminergic neurons from SOX1⁻ floor plate cells under defined culture conditions. J Biomed Sci 2016; 23:34. [PMID: 26956435 PMCID: PMC4782356 DOI: 10.1186/s12929-016-0251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/25/2016] [Indexed: 12/03/2022] Open
Abstract
Background Parkinson’s disease (PD) is a severe neurodegenerative disease associated with loss of dopaminergic neurons. Derivation of dopaminergic neurons from human embryonic stem cells (hESCs) could provide new therapeutic options for PD therapy. Dopaminergic neurons are derived from SOX− floor plate (FP) cells during embryonic development in many species and in human cell culture in vitro. Early treatment with sonic hedgehog (Shh) has been reported to efficiently convert hESCs into FP lineages. Methods In this study, we attempted to utilize a Shh-free approach in deriving SOX1− FP cells from hESCs in vitro. Neuroectoderm conversion from hESCs was achieved with dual inhibition of the BMP4 (LDN193189) and TGF-β signaling pathways (SB431542) for 24 h under defined culture conditions. Results Following a further 5 days of treatment with LDN193189 or LDN193189 + SB431542, SOX1− FP cells constituted 70–80 % of the entire cell population. Upon treatment with Shh and FGF8, the SOX1− FP cells were efficiently converted to functional Nurr1+ and TH+ dopaminergic cells (patterning), which constituted more than 98 % of the entire cell population. However, when the same growth factors were applied to SOX1+ cells, only less than 4 % of the cells became Nurr1+, indicating that patterning was effective only if SOX1 expression was down-regulated. After transplanting the Nurr1+ and TH+ cells into a hemiparkinsonian rat model, significant improvements were observed in amphetamine induced ipslateral rotations, apomorphine induced contra-lateral rotations and Rota rod motor tests over a duration of 8 weeks. Conclusions Our findings thus provide a convenient approach to FP development and functional dopaminergic neuron derivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0251-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingming Li
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Yu Zou
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Qiqi Lu
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Ning Tang
- Department of Pharmacology, Yong Loo Lin School of Medicine, The National University of Singapore, Kent Ridge, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), The National University of Singapore, Kent Ridge, Singapore
| | - Alexis Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Intekhab Islam
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Huei Jinn Tong
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, The National University of Singapore, Kent Ridge, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), The National University of Singapore, Kent Ridge, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), Kent Ridge, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore. .,Tissue Engineering Program, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore. .,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), Kent Ridge, Singapore.
| |
Collapse
|