1
|
Pan H, Hu W, Zhou C, Jian J, Xu J, Lu C, Quan G, Wu C, Pan X, Peng T. Microneedle-Mediated Treatment of Obesity. Pharmaceutics 2025; 17:248. [PMID: 40006614 PMCID: PMC11859603 DOI: 10.3390/pharmaceutics17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity has become a major public health threat, as it can cause various complications such as diabetes, cardiovascular disease, sleep apnea, cancer, and osteoarthritis. The primary anti-obesity therapies include dietary control, physical exercise, surgical interventions, and drug therapy; however, these treatments often have poor therapeutic efficacy, significant side effects, and unavoidable weight rebound. As a revolutionized transdermal drug delivery system, microneedles (MNs) have been increasingly used to deliver anti-obesity therapeutics to subcutaneous adipose tissue or targeted absorption sites, significantly enhancing anti-obese effects. Nevertheless, there is still a lack of a review to comprehensively summarize the latest progress of MN-mediated treatment of obesity. This review provides an overview of the application of MN technology in obesity, focusing on the delivery of various therapeutics to promote the browning of white adipose tissue (WAT), suppress adipogenesis, and improve metabolic function. In addition, this review presents detailed examples of the integration of MN technology with iontophoresis (INT) or photothermal therapy (PTT) to promote drug penetration into deeper dermis and exert synergistic anti-obese effects. Furthermore, the challenges and prospects of MN technology used for obesity treatment are also discussed, which helps to guide the design and optimization of MNs. Overall, this review provides insight into the development and clinical translation of MN technology for the treatment of obesity.
Collapse
Affiliation(s)
- Huanhuan Pan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chunxian Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Jubo Jian
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Jing Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen 529031, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| |
Collapse
|
2
|
Farina GA, Koth VS, Maito FLDM, Payeras MR, Cherubini K, Salum FG. Adverse effects of deoxycholic acid in submandibular glands, submental, inguinal and subplantar regions: a study in rats. Clin Oral Investig 2022; 26:2575-2585. [PMID: 35088226 DOI: 10.1007/s00784-021-04227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE We aimed to evaluate the effects of the deoxycholic acid (DCA) in the submental and subplantar regions of rats, and to histologically analyze the changes caused in the submandibular glands, soft tissues of the paw, and inguinal adipose tissue. MATERIAL AND METHODS Sixty male Wistar rats were divided into DCA and control (CG) groups. DCA was injected in the submental, inguinal, and subplantar regions, and saline was injected in the CG. The animals were euthanized after 24 h and at 7 and 21 days. RESULTS The DCA group showed edema in the submental region in 24 h and in the paw in all experimental times. In the paw there were also erythema and ulceration in 7 days, and alopecia after 21 days. At 21 days, a few animals also showed erythema and ulceration in paw; however, there was no significant difference from CG. Histological analysis of the paw showed an intense inflammatory process, with a predominance of neutrophils, lymphocytes, and plasma cells in 24 h and 7 days. In the adipose tissue, we observed loss of architecture and inflammatory infiltrate, followed with a lower number of adipose cells, and at 21 days, fibroplasia. In the submandibular glands we observed inflammatory infiltration, loss of tissue architecture, and fibrosis. CONCLUSIONS DCA produces a significant inflammatory process in the structures. It can cause skin ulcerations and, in salivary glands, it causes loss of tissue architecture and fibrosis. CLINICAL RELEVANCE There has been growing increase in the use of DCA for aesthetic purposes by health care providers. Due to the presence of important anatomical structures in the submental region, constant vigilance is required to report new adverse effects.
Collapse
Affiliation(s)
- Gabriela Alacarini Farina
- Oral Medicine Division, Pontifical Catholic University of Rio Grande Do Sul-PUCRS, Porto Alegre, Brazil
| | - Valesca Sander Koth
- Oral Medicine Division, Pontifical Catholic University of Rio Grande Do Sul-PUCRS, Porto Alegre, Brazil
| | - Fábio Luiz Dal Moro Maito
- Oral Pathology Division, Pontifical Catholic University of Rio Grande Do Sul-PUCRS, Porto Alegre, Brazil
| | - Márcia Rodrigues Payeras
- Oral Pathology Division, Pontifical Catholic University of Rio Grande Do Sul-PUCRS, Porto Alegre, Brazil
| | - Karen Cherubini
- Oral Medicine Division, Pontifical Catholic University of Rio Grande Do Sul-PUCRS, Porto Alegre, Brazil
| | - Fernanda Gonçalves Salum
- Oral Medicine Division, Pontifical Catholic University of Rio Grande Do Sul-PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Muskat A, Pirtle M, Kost Y, McLellan BN, Shinoda K. The Role of Fat Reducing Agents on Adipocyte Death and Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:841889. [PMID: 35399925 PMCID: PMC8988282 DOI: 10.3389/fendo.2022.841889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
Deoxycholic Acid (DCA), which is an FDA-approved compound for the reduction of submental fat, has evolved through an unanticipated and surprising sequence of events. Initially, it was used as a solvent for Phosphatidylcholine (PDC), which was thought to promote lipolysis, but it was later proven to be the bioactive component of the formula and is currently widely used as Kybella. It has also been used off-label to treat other types of fat deposits like lipomas, HIV lipodystrophy, and excess orbital fat. Despite widespread clinical use, there has been no consensus clarifying the mechanisms of DCA and PDC alone or in combination. Furthermore, despite PDC's removal from the FDA-approved formula, some studies do suggest it plays an important role in fat reduction. To provide some clarity, we conducted a PubMed search and reviewed 41 articles using a comprehensive list of terms in three main categories, using the AND operator: 1) Phosphatidylcholines 2) Deoxycholic Acid, and 3) Lipoma. We isolated articles that studied PDC, DCA, and a PDC/DCA compound using cell biology, molecular and genetic techniques. We divided relevant articles into those that studied these components using histologic techniques and those that utilized specific cell death and lipolysis measurement techniques. Most morphologic studies indicated that PDC/DCA, DCA, and PDC, all induce some type of cell death with accompanying inflammation and fibrosis. Most morphologic studies also suggest that PDC/DCA and DCA alone are non-selective for adipocytes. Biochemical studies describing PDC and DCA alone indicate that DCA acts as a detergent and rapidly induces necrosis while PDC induces TNF-α release, apoptosis, and subsequent enzymatic lipolysis after at least 24 hours. Additional papers have suggested a synergistic effect between the two compounds. Our review integrates the findings of this growing body of literature into a proposed mechanism of fat reduction and provides direction for further studies.
Collapse
Affiliation(s)
- Ahava Muskat
- Department of Medicine, Division of Dermatology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan Pirtle
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yana Kost
- Department of Medicine, Division of Dermatology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Beth N. McLellan
- Department of Medicine, Division of Dermatology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Endocrinology & Diabetes, Albert Einstein College of Medicine, Bronx, NY, United States
- Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, United States
- *Correspondence: Kosaku Shinoda,
| |
Collapse
|
4
|
Lee H, Kim MH, Jin SC, Choi LY, Nam YK, Yang WM. LIPOSA pharmacopuncture, a new herbal formula, affects localized adiposity by regulating lipid metabolism in vivo. Exp Ther Med 2021; 22:1290. [PMID: 34630645 PMCID: PMC8461519 DOI: 10.3892/etm.2021.10725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 12/01/2022] Open
Abstract
Localized adiposity is a serious aesthetic problem and a well-known health risk factor. There is a growing interest in minimally invasive treatment options for excessive fat accumulation, such as pharmacopuncture. LIPOSA is a newly developed pharmacopuncture formula from three natural herbs: The tuber of Pinellia ternata (Thunb.) Breitenb., the whole plant of Taraxacum platycarpum Dahlst. and the root of Astragalus membranaceus Bunge. The present study investigated the effects of pharmacopuncture treatment with LIPOSA on localized adiposity. Male C57BL/6J mice were fed high fat diet for 8 weeks to induce obesity. Then, 100 µl LIPOSA was injected into the left-side inguinal fat pad at various concentrations, including 13.35, 26.7 and 53.4 mg/ml. Normal saline was injected into the right-side inguinal fat pad of each mouse as a control. The treatment was performed three times per week for 2 weeks. The weight and histological changes were analyzed in the inguinal fat pad of the obese mice. The expression levels of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), autophagy-related gene (ATG)5, ATG7 and LC3-II, as lipophagy-related factors, were evaluated to confirm the lipid-catabolic effects of LIPOSA. LIPOSA pharmacopuncture markedly decreased the weight of the fat tissue and the size of the adipocytes in the inguinal region of the mouse models of obesity in a dose-dependent manner. The expression levels of ATGL, HSL, ATG5, ATG7 and LC3-II were significantly increased by the LIPOSA treatments. In addition, LIPOSA pharmacopuncture was found to decrease the expression levels of ACC, PPAR-γ and PEPCK. The results indicated that subcutaneous injection of LIPOSA can degrade local fat and induce lipophagic and lipase activation effects. In addition, lipid metabolism related to fat accumulation was regulated by the LIPOSA treatment. The present study suggests that LIPOSA pharmacopuncture can be a non-surgical alternative in the treatment of localized adiposity.
Collapse
Affiliation(s)
- Haesu Lee
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Boin Bio Convergence Co., Ltd., Seoul 02455, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong Chul Jin
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Kyung Nam
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Boin Bio Convergence Co., Ltd., Seoul 02455, Republic of Korea
| |
Collapse
|
5
|
Kim GW, Chung SH. The beneficial effect of glycerophosphocholine to local fat accumulation: a comparative study with phosphatidylcholine and aminophylline. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:333-339. [PMID: 34187950 PMCID: PMC8255124 DOI: 10.4196/kjpp.2021.25.4.333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022]
Abstract
Injection lipolysis or mesotherapy gained popularity for local fat dissolve as an alternative to surgical liposuction. Phosphatidylcholine (PPC) and aminophylline (AMPL) are commonly used compounds for mesotherapy, but their efficacy and safety as lipolytic agents have been controversial. Glycerophosphocholine (GPC) is a choline precursor structurally similar to PPC, and thus introduced in aesthetics as an alternative for PPC. This study aimed to evaluate the effects of GPC on adipocytes differentiation and lipolysis and compared those effects with PPC and AMPL using in vitro and in vivo models. Adipogenesis in 3T3-L1 was measured by Oil Red O staining. Lipolysis was assessed by measuring the amount of glycerol released in the culture media. To evaluate the lipolytic activity of GPC on a physiological condition, GPC was subcutaneously injected to one side of inguinal fat pads for 3 days. Lipolytic activity of GPC was assessed by hematoxylin and eosin staining in adipose tissue. GPC significantly suppressed adipocyte differentiation of 3T3-L1 in a concentration-dependent manner (22.3% inhibition at 4 mM of GPC compared to control). Moreover, when lipolysis was assessed by glycerol release in 3T3-L1 adipocytes, 6 mM of GPC stimulated glycerol release by two-fold over control. Subcutaneous injection of GPC into the inguinal fat pad of mice significantly reduced the mass of fat pad and the size of adipocytes of injected site, and these effects of GPC were more prominent over PPC and AMPL. Taken together, these results suggest that GPC is the potential therapeutic agent as a local fat reducer.
Collapse
Affiliation(s)
- Go Woon Kim
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Sung Hyun Chung
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
6
|
Impact of A Cargo-Less Liposomal Formulation on Dietary Obesity-Related Metabolic Disorders in Mice. Int J Mol Sci 2020; 21:ijms21207640. [PMID: 33076522 PMCID: PMC7589567 DOI: 10.3390/ijms21207640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Current therapeutic options for obesity often require pharmacological intervention with dietary restrictions. Obesity is associated with underlying inflammation due to increased tissue macrophage infiltration, and recent evidence shows that inflammation can drive obesity, creating a feed forward mechanism. Therefore, targeting obesity-induced macrophage infiltration may be an effective way of treating obesity. Here, we developed cargo-less liposomes (UTS-001) using 1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC (synthetic phosphatidylcholine) as a single-agent to manage weight gain and related glucose disorders due to high fat diet (HFD) consumption in mice. UTS-001 displayed potent immunomodulatory properties, including reducing resident macrophage number in both fat and liver, downregulating liver markers involved in gluconeogenesis, and increasing marker involved in thermogenesis. As a result, UTS-001 significantly enhanced systemic glucose tolerance in vivo and insulin-stimulated cellular glucose uptake in vitro, as well as reducing fat accumulation upon ad libitum HFD consumption in mice. UTS-001 targets tissue residence macrophages to suppress tissue inflammation during HFD-induced obesity, resulting in improved weight control and glucose metabolism. Thus, UTS-001 represents a promising therapeutic strategy for body weight management and glycaemic control.
Collapse
|
7
|
An SM, Kim MJ, Seong KY, Jeong JS, Kang HG, Kim SY, Kim DS, Kang DH, Yang SY, An BS. Intracutaneous Delivery of Gelatins Reduces Fat Accumulation in Subcutaneous Adipose Tissue. Toxicol Res 2019; 35:395-402. [PMID: 31636850 PMCID: PMC6791662 DOI: 10.5487/tr.2019.35.4.395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Subcutaneous adipose tissue (SAT) accumulation is a constitutional disorder resulting from metabolic syndrome. Although surgical and non-surgical methods for reducing SAT exist, patients remain non-compliant because of potential adverse effects and cost. In this study, we developed a new minimally-invasive approach to achieve SAT reduction, using a microneedle (MN) patch prepared from gelatin, which is capable of regulating fat metabolism. Four gelatin types were used: three derived from fish (SA-FG, GT-FG 220, and GT-FG 250), and one from swine (SM-PG 280). We applied gelatin-based MN patches five times over 4 weeks to rats with high-fat diet (HD)-induced obesity, and determined the resulting amount of SAT. We also investigated the histological features and determined the expression levels of fat metabolism-associated genes in SAT using hematoxylin and eosin staining and western blotting, respectively. SAT decreased following treatment with all four gelatin MN patches. Smaller adipocytes were observed in the regions treated with SA-FG, GT-FG 250, and SM-PG 280 MNs, demonstrating a decline in fat accumulation. The expression levels of fat metabolism-associated genes in the MN-treated SAT revealed that GT-FG 220 regulates fatty acid synthase (FASN) protein levels. These findings suggest that gelatin MN patches aid in decreasing the quantity of unwanted SAT by altering lipid metabolism and fat deposition.
Collapse
Affiliation(s)
- Sung-Min An
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - Min Jae Kim
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - Hyeon-Gu Kang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - So Young Kim
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - Da Som Kim
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - Da Hee Kang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| | - Beum-Soo An
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
8
|
Elblehi SS, Hafez MH, El-Sayed YS. L-α-Phosphatidylcholine attenuates mercury-induced hepato-renal damage through suppressing oxidative stress and inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9333-9342. [PMID: 30721437 DOI: 10.1007/s11356-019-04395-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The potential ameliorative effects of L-α-phosphatidylcholine (PC) against mercuric chloride (HgCl2)-induced hematological and hepato-renal damage were investigated. Rats were randomly allocated into four groups (n = 12): control, PC (100 mg/kg bwt, intragastrically every other day for 30 consecutive days), HgCl2 (5 mg/kg bwt, intragastrically daily), and PC plus HgCl2. Hematological and hepato-renal dysfunctions were evaluated biochemically and histopathologically. Hepatic and renal oxidative/antioxidative indices were evaluated. The expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-6) was also detected by ELISA. HgCl2 significantly increased serum aminotransferases (ALT, AST), urea, and creatinine levels that are indicative of hepato-renal damage. HgCl2 also induced a significant accumulation of malondialdehyde (+ 195%) with depletion of glutathione (- 43%) levels in the liver and renal tissues. The apparent hepato-renal oxidative damage was associated with obvious organ dysfunction that was confirmed by impairments in the liver and kidney histoarchitecture. Furthermore, HgCl2 significantly attenuated the expression of proinflammatory cytokines named tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Conversely, PC treatment attenuated these effects, which improved the hematological and serum biochemical alternations, reduced the oxidative stress and proinflammatory cytokine levels, and ameliorated the intensity of the histopathological alterations in livers and kidneys of HgCl2-treated rats. It could be concluded that PC displayed potential anti-inflammatory and antioxidant activities against HgCl2-induced hepato-renal damage via suppression of proinflammatory cytokines and declining oxidative stress.
Collapse
Affiliation(s)
- Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Mona H Hafez
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhur University, Damanhour, 22511, Egypt.
| |
Collapse
|
9
|
An SM, Seong KY, Yim SG, Hwang YJ, Bae SH, Yang SY, An BS. Intracutaneous delivery of gelatins induces lipolysis and suppresses lipogenesis of adipocytes. Acta Biomater 2018; 67:238-247. [PMID: 29208554 DOI: 10.1016/j.actbio.2017.11.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
Due to growing interest in cosmetics and medical applications, therapeutic medications that reduce the amount of local subcutaneous adipose tissue have potential for obesity treatment. However, conventional methods such as surgical operation are restricted due to risk of complications. Here, we report a simple and effective method for local reduction of subcutaneous adipose tissue (AT) by using microneedle-assisted transdermal delivery of natural polymers. After in vitro screening tests, gelatin was selected as a therapeutic polymer to reduce accumulation of AT. An in vitro study showed that the level of released glycerol as an indicator of lipolysis was elevated in isolated adipocytes after gelatin treatment. In addition, gelatins suppressed expression levels of lipogenesis-associated genes. Following application of gelatin microneedle (GMN) patches to high-fat diet (HD)-induced obese rats, the amount of subcutaneous AT at the site of GMN application was significantly reduced, which was also confirmed by histological analysis and micro-computed tomography scanning. In addition, lipogenesis-associated genes were down-regulated in GMN-treated subcutaneous AT. These findings suggest that GMN patches induce lipolysis and simultaneously inhibit lipogenesis, thereby reducing deposition of subcutaneous AT. This platform using GMNs may provide a new strategy to treat excess subcutaneous AT with minimal complications. STATEMENT OF SIGNIFICANCE: (1) Significance This work reports a new approach for the local reduction of subcutaneous adipose tissue using a dissolving microneedle patch prepared using gelatin to enable suppression of lipogenesis and acceleration of lipolysis in adipocytes. The gelatin microneedle patch exhibited a significant reduction of local subcutaneous fat up to 60% compared to control groups without any change in total weight. (2) Scientific impact This is the first report demonstrating the direct anti-obesity effects of gelatin administrated in a transdermal route and the feasibility of natural polymer therapeutics for regional reduction of subcutaneous fat. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and obesity.
Collapse
Affiliation(s)
- Sung-Min An
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sang-Gu Yim
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Jun Hwang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Seong Hwan Bae
- Department of Plastic and Reconstructive Surgery, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| | - Beum-Soo An
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
10
|
Apoptosis of Adipose-Derived Stem Cells Induced by Liposomal Soybean Phosphatidylcholine Extract. Avicenna J Med Biotechnol 2018; 10:126-133. [PMID: 30090204 PMCID: PMC6064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Recently, Phosphatidylcholine (PC) has been used as an off-label treatment for lipolysis injection, which is associated with inflammatory reaction due to sodium deoxycholate, an emulsifier, so that inflammation as side effect occurs in those patients. Liposome formulation from soybean lipid was thought to be a better and safer alternative. This study aimed to analyze the mechanism of Liposomal Soybean Phosphatidylcholine (LSPC) extract from Indonesian soybeans (containing 26% PC) to induce Adipose-derived Stem Cells (ASCs) death in vitro. METHODS Liposomes were prepared using thin film hydration method followed by a stepwise extrusion process to produce a small amount of 41.0-71.3 nm. Liposomal soybean phosphatidylcholine extract (LSPCE), liposomal purified PC (LPCC), and solution of PC+SD were used for comparison. Annexin V fluorescein Isothiocyanate/Propidium Iodide (FITC/PI) double staining by flow cytometry and also measurement of caspase-3 activity using ELISA were used to quantify the rate of apoptosis. ASCs viability was measured using MTT assay after induction with liposomes. Morphological changes were shown using a phase-contrast, inverted microscope and Transmission-Electron Microscope (TEM). RESULTS The flow cytometry results showed that cells treated with both LSPCE and LPCC showed increase in early apoptosis beginning at 6 hr after incubation, which was confirmed by caspase 3 measurement. MTT assay showed that both LSPCE and LPCC could decrease viability of cells. Cells treated with LSPCE and LPCC showed some rounded cells, which was an early sign of cell death. Cells treated with SD showed extensive membrane damage with necrosis features using TEM. CONCLUSION The results above demonstrated that LSPCE induced apoptosis of ASCs.
Collapse
|
11
|
Kwan HY, Wu J, Su T, Chao XJ, Yu H, Liu B, Fu X, Tse AKW, Chan CL, Fong WF, Yu ZL. Schisandrin B regulates lipid metabolism in subcutaneous adipocytes. Sci Rep 2017; 7:10266. [PMID: 28860616 PMCID: PMC5579161 DOI: 10.1038/s41598-017-10385-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023] Open
Abstract
Subcutaneous adipocytes in obese subjects have a lower sensitivity to catecholamine-induced lipolysis and a higher sensitivity to insulin anti-lipolytic effects compared to adipocytes in other adipose depots. Therefore, increasing lipolysis in subcutaneous adipocytes coupled with enhanced fatty acid oxidation may be an anti-obesity strategy. Schisandrin B (Sch B) is one of the most abundant active dibenzocyclooctadiene derivatives found in the fruit of Schisandra chinensis which is a commonly prescribed Chinese medicinal herb. We found that Sch B reduced glycerolipid contents in 3T3-L1 adipocytes and subcutaneous adipocytes dissected from DIO mice. Sch B also activated hormone sensitive lipase (HSL) and increased lipolysis in these adipocyte in a protein kinase A-dependent manner. Interestingly, Sch B increased fatty acid oxidation gene expressions in these adipocytes, implying an increase in fatty acid oxidation after treatment. In in vivo model, we found that Sch B increased HSL phosphorylation, reduced glycerolipid levels and increased fatty acid oxidation gene expressions in the subcutaneous adipocytes in the DIO mice. More importantly, Sch B significantly reduced the subcutaneous adipocyte sizes, subcutaneous adipose tissue mass and body weight of the mice. Our study provides scientific evidence to suggest a potential therapeutic function of Sch B or Schisandra chinensis seed containing Sch B in reducing obesity.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Jiahui Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tao Su
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Juan Chao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hua Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Chinese Medicine Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | | | - Chi Leung Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wang Fun Fong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
12
|
Histopathological and ultra-structural characterization of local neuromuscular damage induced by repeated phosphatidylcholine/deoxycholate injection. ACTA ACUST UNITED AC 2016; 68:39-46. [DOI: 10.1016/j.etp.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/13/2023]
|
13
|
Na JY, Song K, Kim S, Kwon J. Hepatoprotective effect of phosphatidylcholine against carbon tetrachloride liver damage in mice. Biochem Biophys Res Commun 2015; 460:308-13. [DOI: 10.1016/j.bbrc.2015.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
|
14
|
Rhee SM, You HJ, Han SK. Injectable tissue-engineered soft tissue for tissue augmentation. J Korean Med Sci 2014; 29 Suppl 3:S170-5. [PMID: 25473206 PMCID: PMC4248002 DOI: 10.3346/jkms.2014.29.s3.s170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/06/2014] [Indexed: 01/31/2023] Open
Abstract
Soft tissue augmentation is a process of implanting tissues or materials to treat wrinkles or soft tissue defects in the body. Over the years, various materials have evolved to correct soft tissue defects, including a number of tissues and polymers. Autogenous dermis, autogenous fat, autogenous dermis-fat, allogenic dermis, synthetic implants, and fillers have been widely accepted for soft tissue augmentations. Tissue engineering technology has also been introduced and opened a new venue of opportunities in this field. In particular, a long-lasting filler consisting of hyaluronic acid filler and living human mesenchymal cells called "injectable tissue-engineered soft tissue" has been created and applied clinically, as this strategy has many advantages over conventional methods. Fibroblasts and adipose-derived stromal vascular fraction cells can be clinically used as injectable tissue-engineered soft tissue at present. In this review, information on the soft tissue augmentation method using the injectable tissue-engineered soft tissue is provided.
Collapse
Affiliation(s)
- Sung-Mi Rhee
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| | - Hi-Jin You
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| | - Seung-Kyu Han
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
McDiarmid J, Ruiz JB, Lee D, Lippert S, Hartisch C, Havlickova B. Results from a pooled analysis of two European, randomized, placebo-controlled, phase 3 studies of ATX-101 for the pharmacologic reduction of excess submental fat. Aesthetic Plast Surg 2014; 38:849-60. [PMID: 24984785 PMCID: PMC4175004 DOI: 10.1007/s00266-014-0364-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022]
Abstract
BACKGROUND The injectable adipocytolytic drug ATX-101 is the first nonsurgical treatment for the reduction of submental fat (SMF) to undergo comprehensive clinical evaluation. This study aimed to confirm the efficacy and safety of ATX-101 for SMF reduction through a post hoc pooled analysis of two large phase 3 studies. METHODS Patients with unwanted SMF were randomized to receive 1 or 2 mg/cm(2) of ATX-101 or a placebo injected into their SMF during a maximum of four treatment sessions spaced approximately 28 days apart, with a 12-week follow-up period. The proportions of patients with reductions in SMF of one point or more on the Clinician-Reported SMF Rating Scale (CR-SMFRS) and the proportions of patients satisfied with the appearance of their face and chin [Subject Self-Rating Scale (SSRS) score ≥4] were reported overall and in subgroups. Other efficacy measures included improvements in the Patient-Reported SMF Rating Scale (PR-SMFRS), calliper measurements of SMF thickness, and assessment of skin laxity [Skin Laxity Rating Scale (SLRS)]. Adverse events and laboratory test results were recorded. RESULTS Significantly greater proportions of the patients had improvements in clinician-reported measures (≥1-point improvement in CR-SMFRS: 58.8 and 63.8 % of the patients who received ATX-101 1 and 2 mg/cm(2), respectively, and 28.6 % of the placebo recipients; p < 0.001 for both ATX-101 doses vs. placebo) and patient-reported measures (≥1-point improvement in PR-SMFRS: 60.0 and 63.1 % of the patients who received ATX-101 1 and 2 mg/cm(2), respectively, vs. 34.3 % of the placebo recipients; p < 0.001 for both), analyzed alone or in combination, with ATX-101 versus placebo. These improvements correlated moderately with patient satisfaction regarding face and chin appearance (SSRS score ≥4: 60.8 and 65.4 % of the patients who received ATX-101 1 and 2 mg/cm(2), respectively, vs. 29.0 % of the placebo recipients; p < 0.001 for both). In this study, ATX-101 was effective irrespective of gender, age, or body mass index. Reduction in SMF with ATX-101 was confirmed by calliper measurements (p < 0.001 for both doses vs. placebo) and generally did not lead to worsening of skin laxity (SLRS improved or was unchanged: 91.3 and 90.5 % of the patients who received ATX-101 1 and 2 mg/cm(2), respectively, and 91.6 % of the placebo recipients). Adverse events were mostly transient, mild to moderate in intensity, and localized to the treatment area. CONCLUSION The findings show ATX-101 to be an effective and well-tolerated pharmacologic treatment for SMF reduction.
Collapse
Affiliation(s)
| | | | - Daniel Lee
- KYTHERA Biopharmaceuticals, Inc., Calabasas, CA USA
| | - Susanne Lippert
- Global Clinical Development Dermatology, Bayer HealthCare, Sellerstrasse 31, 13353 Berlin, Germany
| | - Claudia Hartisch
- Global Clinical Development Dermatology, Bayer HealthCare, Sellerstrasse 31, 13353 Berlin, Germany
| | - Blanka Havlickova
- Global Clinical Development Dermatology, Bayer HealthCare, Sellerstrasse 31, 13353 Berlin, Germany
| |
Collapse
|
16
|
Chung SJ, Lee CH, Lee HS, Kim ST, Sohn UD, Park ES, Bang JS, Lee JH, Chung YH, Jeong JH. The role of phosphatidylcholine and deoxycholic acid in inflammation. Life Sci 2014; 108:88-93. [DOI: 10.1016/j.lfs.2014.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 01/08/2023]
|