1
|
Shiota M, Matsubara N, Kato T, Eto M, Osawa T, Abe T, Shinohara N, Nishimoto K, Yasumizu Y, Tanaka N, Oya M, Fujisawa T, Horasawa S, Nakamura Y, Yoshino T, Nonomura N. Genomic characterization of metastatic patterns in prostate cancer using circulating tumor DNA data from the SCRUM-Japan MONSTAR SCREEN project. THE JOURNAL OF LIQUID BIOPSY 2025; 7:100282. [PMID: 40027233 PMCID: PMC11863810 DOI: 10.1016/j.jlb.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025]
Abstract
Purpose Genomic characterization of the predisposition of tumors to metastasize to specific sites has been performed in a few studies using mainly tissue-derived genomes. This nationwide prospective observational study investigated the association between genomic characteristics using circulating tumor DNA (ctDNA), and the synchronous and metachronous metastasis of tumors to specific target organs in advanced prostate cancer. Methods Patients with advanced prostate cancer undergoing systemic treatment were included. ctDNA was analyzed using the FoundationOne®Liquid CDx assay at enrollment. Associations between genomic characteristics and metastatic status were examined. Results Alterations in the genes MYC, APC, and BRCA2 and the DNA repair, MYC, and WNT pathways were associated with lung and liver metastasis. PTEN gene alterations and PI3K pathway alteration were associated with synchronous lung metastasis. RB1 gene alteration and RAS/RAF/MAPK pathway alteration were associated with synchronous liver metastasis. RB1 and BRCA2 gene alterations predicted metachronous lung metastasis, while TP53 and MYC gene alterations predicted metachronous liver metastasis. Conclusions This study identifies genomic alterations in ctDNA associated with synchronous and metachronous metastases. These findings may be clinically helpful for treating, managing, and monitoring cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takahiro Osawa
- Department of Urology, Graduate School of Medicine Hokkaido University, Japan
| | - Takashige Abe
- Department of Urology, Graduate School of Medicine Hokkaido University, Japan
| | - Nobuo Shinohara
- Department of Urology, Graduate School of Medicine Hokkaido University, Japan
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Japan
| | - Yota Yasumizu
- Department of Urology, Keio University School of Medicine, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Japan
| | - Takao Fujisawa
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Japan
| | - Satoshi Horasawa
- Translational Research Support Office, National Cancer Center Hospital East, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
2
|
Ofner H, Kramer G, Shariat SF, Hassler MR. TP53 Deficiency in the Natural History of Prostate Cancer. Cancers (Basel) 2025; 17:645. [PMID: 40002239 PMCID: PMC11853097 DOI: 10.3390/cancers17040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Prostate cancer remains a leading cause of cancer-related mortality in men, with advanced stages posing significant treatment challenges due to high morbidity and mortality. Among genetic alterations, TP53 mutations are among the most prevalent in cancers and are strongly associated with poor clinical outcomes and therapeutic resistance. This review investigates the role of TP53 mutations in prostate cancer progression, prognosis, and therapeutic development. A comprehensive analysis of preclinical and clinical studies was conducted to elucidate the molecular mechanisms, clinical implications, and potential therapeutic approaches associated with TP53 alterations in prostate cancer. TP53 mutations are highly prevalent in advanced stages, contributing to genomic instability, aggressive tumor phenotypes, and resistance to standard treatments. Emerging evidence supports the utility of liquid biopsy techniques, such as circulating tumor DNA analysis, for detecting TP53 mutations, providing prognostic value and facilitating early intervention strategies. Novel therapeutic approaches targeting TP53 have shown promise in preclinical settings, but their clinical efficacy requires further validation. Overall, TP53 mutations represent a critical biomarker for disease progression and therapeutic response in prostate cancer. Advances in detection methods and targeted therapies hold significant potential to improve outcomes for patients with TP53-mutated prostate cancer. Further research is essential to integrate TP53-based strategies into routine clinical practice.
Collapse
Affiliation(s)
- Heidemarie Ofner
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (G.K.); (S.F.S.)
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (G.K.); (S.F.S.)
| | - Shahrokh F. Shariat
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (G.K.); (S.F.S.)
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Urology, Second Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
- Department of Urology, Weill Cornell Medical College, New York, NY 10065, USA
- Karl Landsteiner Institute of Urology and Andrology, 1090 Vienna, Austria
| | - Melanie R. Hassler
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (G.K.); (S.F.S.)
| |
Collapse
|
3
|
Tao H, Wu F, Li R, Du X, Zhu Y, Dong L, Pan J, Dong B, Xue W. Efficacy and Predictive Factors Analysis of Androgen Deprivation Plus Novel Hormone Therapy as Neoadjuvant Treatment for High-Risk Prostate Cancer. Prostate 2025; 85:198-206. [PMID: 39488849 DOI: 10.1002/pros.24817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND This investigation explored the clinical features, pathological outcomes, and biochemical recurrence (BCR) duration among high-risk prostate cancer (HRPC) patients who have undergone neoadjuvant therapy (NAT) in combination with radical prostatectomy (RP) and pelvic lymph node dissection (PLND). Additionally, we identified prognostic indicators that discern pathological complete response (pCR) or minimal residual disease (MRD) and BCR. METHODS In total, we examined 76 HRPC patients, who received NAT with either androgen deprivation therapy (ADT) plus apalutamide or ADT plus abiraterone, with subsequent RP and PLND. We conducted a genetic evaluation of patients receiving neoadjuvant apalutamide. Additionally, patient pathological outcomes, circulating prostate-specific antigen (PSA) response rates, and BCR duration were analyzed. Lastly, we employed uni- and multivariate analyses to screen for prognostic factors that govern pCR or MRD and BCR duration. RESULTS Patient median age and median PSA at presentation were 69 years (IQR: 66-73), and 47.6 ng/mL (IQR: 24.1-105.75), respectively. We observed marked changes in pCR or MRD rates between the two cohorts. In particular, the ADT plus apalutamide cohort (51.5%) exhibited enhanced rates relative to the ADT plus abiraterone cohort (25.6%) (p = 0.03). The median BCR duration was substantially prolonged among neoadjuvant apalutamide cohort relative to the neoadjuvant abiraterone cohort (261 days vs. 76 days, p = 0.04). Using multivariate analysis, we revealed that the postintervention pre-RP PSA content (≤ 0.1 ng/mL vs. > 0.1 ng/mL) remained a substantial stand-alone indicator of pCR or MRD (odds ratio: 10.712, 95% CI: 2.725-42.105, p < 0.001). Furthermore, supplemental analyses revealed that the ADT plus apalutamide cohort exhibited an augmented serum response rate, which, in turn, reduced the post-intervention pre-RP PSA content. Based on our genetic profiling of the neoadjuvant apalutamide cohort demonstrated high-frequency deleterious changes in the AR axis (30.3%), followed by TP53 mutations (15.15%). Patients with defective AR axis experienced a remarkably shorter median BCR duration relative to patients with other or no genetic alterations (52.5 days vs. 286 and 336 days, respectively, p < 0.0001). Furthermore, using multivariate analysis, we demonstrated that achieving pCR or MRD (hazard ratio [HR]: 0.170, 95% CI: 0.061-0.477, p < 0.001) and presence of defective AR signaling (HR: 11.193, 95% CI: 3.499-35.806, p < 0.001) were strong stand-alone indicators of BCR. CONCLUSIONS Herein, we demonstrated the superior performance of ADT plus apalutamide in achieving pCR or MRD and in extending BCR duration among HRPC patients. Post-intervention pre-RP PSA content as well as genetic shifts, especially in the AR axis, are critical indicators of patient pathological and clinical outcomes. These findings highlight the significance of genetic testing and PSA content monitoring in treating HRPC patients.
Collapse
Affiliation(s)
- Hanyang Tao
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Li
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Jiang C, Hong Z, Liu S, Hong Z, Dai B. Roles of CDK12 mutations in PCa development and treatment. Biochim Biophys Acta Rev Cancer 2025; 1880:189247. [PMID: 39681197 DOI: 10.1016/j.bbcan.2024.189247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men, and cyclin-dependent kinase 12 (CDK12) is emerging as a novel star player in the PCa tumorigenesis and progression to castration-resistant prostate cancer (CRPC). In PCa, CDK12 alterations are mostly loss-of-function mutations featuring intronic polyadenylation (IPA), focal tandem duplications (FTDs), and R-loops formation and transcription-replication conflicts (TRCs). The occurrence of IPA can result in homologous recombination deficiency (HRD) and androgen receptor (AR) variation. FTDs induce neoantigens and increase the expression of the AR, MYC, and other hotspot- associated genes. R-loops lead to TRCs and influence various cellular processes, including gene expression and genome stability. Due to the poor prognosis of CDK12-mutant PCa patients and the mediocre response to classic standard therapies, HRD and increased neoantigen levels have provided clinicians with new insights into alternative systematic treatments for this novel PCa phenotype. In this review, we summarize the roles of CDK12 mutations in PCa and discuss their clinical value, suggesting that CDK12 potentially represents a target for further research and the development of clinical strategies for PCa.
Collapse
Affiliation(s)
- Chenye Jiang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| | - Shiwei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zongyuan Hong
- Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
5
|
Pan J, Wu J, Wang B, Zhu B, Liu X, Gan H, Wei Y, Jin S, Hu X, Wang Q, Song S, Liu C, Ye D, Zhu Y. Interlesional response heterogeneity is associated with the prognosis of abiraterone treatment in metastatic castration-resistant prostate cancer. MED 2024; 5:1475-1484.e3. [PMID: 39151419 DOI: 10.1016/j.medj.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Interlesional response heterogeneity (ILRH) poses challenges to the treatment of metastatic castration-resistant prostate cancer (mCRPC). Currently, there are no prospective clinical trials exploring the prognostic significance of ILRH on paired positron emission tomography/computed tomography (PET/CT) in the context of abiraterone therapy. METHODS In this prospective study, we enrolled patients with mCRPC treated with abiraterone (ClinicalTrials.gov: NCT05188911; ChiCTR.org.cn: ChiCTR2000034708). 68Ga-prostate-specific membrane antigen (PSMA)+18F-fluorodeoxyglucose (FDG) PET/CT and circulating tumor DNA (ctDNA) monitoring were performed at baseline and week 13. Patients were grouped by their early ILRH measurement. The primary endpoint was to evaluate the predictive role of ILRH for conventional progression-free survival (PFS) through the concordance index (C-index) assessment. Conventional PFS was defined as the time from medication to conventional radiographic progression, clinical progression, or death. FINDINGS Ultimately, 33 patients were included with a median follow-up of 28.7 months. Baseline+week 13 PSMA PET/CT revealed that 33.3% of patients showed ILRH. Those patients with hetero-responding disease had significantly different PFS compared to the responding and non-responding groups (hazard ratio: responding group = reference, hetero-responding group = 4.0, non-responding group = 5.8; p < 0.0001). The C-index of ILRH on paired PSMA PET/CT (0.742 vs. 0.660) and FDG PET/CT (0.736 vs. 0.668) for conventional PFS was higher than that of PSA response. In an exploratory analysis, PSMA-/FDG+ lesions at week 13 were identified as a strong surrogate for poor conventional PFS (p = 0.039). CONCLUSIONS ILRH on both baseline+week 13 PSMA and FDG PET/CT strongly associated with conventional PFS. FUNDING This study was funded by the Ministry of Science and Technology of China and Shanghai.
Collapse
Affiliation(s)
- Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Beihe Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qifeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shaoli Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Chang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Baboudjian M, Peyrottes A, Dariane C, Fromont G, Denis JA, Fiard G, Kassab D, Ladoire S, Lehmann-Che J, Ploussard G, Rouprêt M, Barthélémy P, Roubaud G, Lamy PJ. Circulating Biomarkers Predictive of Treatment Response in Patients with Hormone-sensitive or Castration-resistant Metastatic Prostate Cancer: A Systematic Review. Eur Urol Oncol 2024; 7:1228-1245. [PMID: 38824003 DOI: 10.1016/j.euo.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Metastatic prostate cancer (mPCa) harbors genomic alterations that may predict targeted therapy efficacy. These alterations can be identified not only in tissue but also directly in biologic fluids (ie, liquid biopsies), mainly blood. Liquid biopsies may represent a safer and less invasive alternative for monitoring patients treated for mPCa. Current research focuses on the description and validation of novel predictive biomarkers to improve precision medicine in mPCa. Our aim was to systematically review the current evidence on liquid biopsy biomarkers for predicting treatment response in mPCa. METHODS We systematically searched Medline, Web of Science, and evidence-based websites for publications on circulating biomarkers in mPCa between March 2013 and February 2024 for review. Endpoints were: prediction of overall survival, biochemical or radiographic progression-free survival after treatment (chemotherapy, androgen deprivation therapy, androgen receptor pathway inhibitors [ARPIs], immunotherapy, or PARP inhibitors [PARPIs]). For each biomarker, the level of evidence (LOE) for clinical validity was attributed: LOE IA and IB, high level of evidence; LOE IIB and IIC, intermediate level; and LOE IIIC and LOE IV-VD, weak level. KEY FINDINGS AND LIMITATIONS The predictive value of each biomarker for the response to several therapies was evaluated in both metastatic hormone-sensitive (mHSPC) and castration-resistant prostate cancer (mCRPC). In patients with mCRPC, BRCA1/2 or ATM mutations predicted response to ARPIs (LOE IB) and PARPIs (LOE IIB), while AR-V7 transcripts or AR-V7 protein levels in circulating tumor cells (CTCs) predicted response to ARPIs and taxanes (LOE IB). CTC quantification predicted response to cabazitaxel, abiraterone, and radium-223 (LOE IIB), while TP53 alterations predicted response to 177Lu prostate-specific membrane antigen radioligand treatment (LOE IIB). AR copy number in circulating tumor DNA before the first treatment line and before subsequent lines predicted response to docetaxel, cabazitaxel, and ARPIs (LOE IIB). In mHSPC, DNA damage in lymphocytes was predictive of the response to radium-223 (LOE IIB). CONCLUSIONS AND CLINICAL IMPLICATIONS BRCA1/2, ATM, and AR alterations detected in liquid biopsies may help clinicians in management of patients with mPCa. The other circulating biomarkers did not reach the LOE required for routine clinical use and should be validated in prospective independent studies. PATIENT SUMMARY We reviewed studies assessing the value of biomarkers in blood or urine for management of metastatic prostate cancer. The evidence indicates that some biomarkers could help in selecting patients eligible for specific treatments.
Collapse
Affiliation(s)
- Michael Baboudjian
- Department of Urology, North Academic Hospital, AP-HM, Marseille, France
| | - Arthur Peyrottes
- Service d'Urologie et de Transplantation Rénale, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France
| | - Charles Dariane
- Department of Urology, European Hospital Georges-Pompidou, University Paris Cité, Paris, France; UMR-S1151, CNRS UMR-S8253 Institut Necker Enfants Malades, Paris, France
| | - Gaëlle Fromont
- INSERM UMR1069, Nutrition Croissance et Cancer, University of Tours, Tours, France; Department of Pathology, CHRU de Tours, Tours, France
| | - Jérôme Alexandre Denis
- INSERM UMR_S938, CRSA, Biologie et Thérapeutiques du Cancer, Saint-Antoine University Hospital, Sorbonne Université, Paris, France; Service de Biochimie Endocrinienne et Oncologique, Oncobiologie Cellulaire et Moléculaire, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Gaëlle Fiard
- Department of Urology, CHU Grenoble Alpes, University of Grenoble Alpes CNRS, Grenoble INP, TIMC, Grenoble, France
| | | | - Sylvain Ladoire
- Department of Medical Oncology, Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France; University of Burgundy-Franche Comté, Dijon, France; INSERM U1231, Dijon, France
| | - Jacqueline Lehmann-Che
- INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie, Université Paris Cité, Paris, France; UF Oncologie Moléculaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, Quint-Fonsegrives, France; Department of Urology, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Morgan Rouprêt
- Department of Urology, University Hospital Pitié-Salpêtrière, Paris, France; Faculty of Medicine, Sorbonne University, Paris, France
| | - Philippe Barthélémy
- Medical Oncology Department, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Pierre-Jean Lamy
- Biopathologie et Génétique des Cancers, Institut Médical d'Analyse Génomique, Imagenome, Inovie, Montpellier, France; Unité de Recherche Clinique, Clinique Beausoleil, Montpellier, France.
| |
Collapse
|
7
|
Jin KM, Bao Q, Zhao TT, Wang HW, Huang LF, Wang K, Xing BC. Comparing baseline VAF in circulating tumor DNA and tumor tissues predicting prognosis of patients with colorectal cancer liver metastases after curative resection. Clin Res Hepatol Gastroenterol 2024; 48:102464. [PMID: 39276854 DOI: 10.1016/j.clinre.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION The prognostic value of baseline variant allele frequency (VAF) in circulating tumor DNA (ctDNA) of colorectal cancer liver metastases (CRLM) patients after curative resection was rarely investigated. METHODS A single-center prospective study was performed to investigate the prognostic impact of baseline VAF in ctDNA and matched tumor tissues of CRLM patients after curative resection between May 2019 and May 2021 by the Illumina NovoSeq 6000 platform. The relationship of the tumor burden score (TBS) and the VAF in ctDNA and matched tumor tissues was evaluated by the Pearson correlation method. The survival curves of recurrence-free survival (RFS) and overall survival (OS) were plotted. Factors associated with RFS were calculated using Cox regression analysis, and an integrated prognostic model using significant baseline variables was proposed. RESULTS There were 121 patients with baseline ctDNA and matched tumor tissues enrolled in the study. A total of 417 mutations spanning 20 genes were identified in baseline tumor tissues of 119/121 (98.3 %) cases. The overall mutations in tumor tissues were completely covered by ctDNA in 52 of 121(43.0 %) patients. Baseline VAF in ctDNA but not in tumor tissues was significantly correlated to TBS of CRLM (R = 0.36, p < 0.001). Significantly longer RFS but not OS was observed in patients with lower VAF in ctDNA compared to those with higher one (p < 0.001 and p = 0.33 respectively). Multivariate Cox regression analysis showed higher VAF in baseline ctDNA was an independent risk factor for RFS. An integrated prognostic model including baseline metastasis location and VAF in ctDNA outperformed the traditional CRS model in predicting RFS. CONCLUSION Baseline VAF in ctDNA but not in tumor tissues influenced RFS of CRLM patients after curative resection.
Collapse
Affiliation(s)
- Ke-Min Jin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatobiliary and Pancreatic Surgery Unit I, Peking University Cancer Hospital & Institute, Haidian District, Beijing, PR China
| | - Quan Bao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatobiliary and Pancreatic Surgery Unit I, Peking University Cancer Hospital & Institute, Haidian District, Beijing, PR China
| | - Ting-Ting Zhao
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, PR China
| | - Hong-Wei Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatobiliary and Pancreatic Surgery Unit I, Peking University Cancer Hospital & Institute, Haidian District, Beijing, PR China
| | - Long-Fei Huang
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, PR China
| | - Kun Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatobiliary and Pancreatic Surgery Unit I, Peking University Cancer Hospital & Institute, Haidian District, Beijing, PR China.
| | - Bao-Cai Xing
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatobiliary and Pancreatic Surgery Unit I, Peking University Cancer Hospital & Institute, Haidian District, Beijing, PR China.
| |
Collapse
|
8
|
Xie J, Guo H, Dong B, Chen W, Jin C, Xu Q, Ding L, Liu W, Dong S, Zhao T, Yu Y, Guo C, Yao X, Peng B, Yang B. Olaparib Combined with Abiraterone versus Olaparib Monotherapy for Patients with Metastatic Castration-resistant Prostate Cancer Progressing after Abiraterone and Harboring DNA Damage Repair Deficiency: A Multicenter Real-world Study. Eur Urol Oncol 2024; 7:1088-1096. [PMID: 38458891 DOI: 10.1016/j.euo.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Olaparib + abiraterone has a combined antitumor effect in metastatic castration-resistant prostate cancer (mCRPC), but the efficacy of this combination in patients with DNA damage repair (DDR)-deficient mCRPC progressing after abiraterone is unknown. Our aim was to compare the efficacy of olaparib + abiraterone versus olaparib monotherapy for patients with DDR-deficient mCRPC progressing after abiraterone. METHODS The study included 86 consecutive patients with DDR-deficient mCRPC progressing after abiraterone: 34 received olaparib + abiraterone, and 52 received olaparib monotherapy. DDR-deficient status was defined as the presence of a DDR gene with a pathogenic or likely pathogenic variant (DDR-PV), or with a variant of unknown significance (DDR-VUS). We assessed progression-free survival (PFS) and overall survival (OS) using the Kaplan-Meier method. Potential factors influencing PFS and OS were compared between the treatment arms using Cox proportional-hazards models. The prostate-specific antigen (PSA) response, the treatment effect across subgroups, and adverse events (AEs) were also evaluated. KEY FINDINGS AND LIMITATIONS Median follow-up was 9 mo. In the overall cohort, median PFS and OS were significantly longer in the combination arm than in the monotherapy arm (PFS: 6.0 vs 3.0 mo; hazard ratio [HR] 0.41, 95% confidence interval [CI] 0.25-0.67; p < 0.01; OS: 25.0 vs 12.0 mo; HR 0.30, 95% CI 0.14-0.67; p < 0.01). PSA responses were significantly higher following combination therapy versus monotherapy. Combination therapy had significantly better efficacy in the DDR-PV and DDR-VUS subgroups, and was an independent predictor of better PFS and OS. AE rates were acceptable. The retrospective nature, small sample size, and short follow-up are limitations. CONCLUSIONS Olaparib + abiraterone resulted in better PFS and OS than olaparib alone for patients with DDR-deficient mCRPC progressing after abiraterone. These results need to be confirmed by a large-scale prospective randomized controlled trial. PATIENT SUMMARY Our study shows that the drug combination of olaparib plus abiraterone improved survival over olaparib alone for patients who have mutations in genes affecting DNA repair and metastatic prostate cancer resistant to hormone therapy. The results provide evidence of a synergistic effect of the two drugs in these patients.
Collapse
Affiliation(s)
- Jun Xie
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China
| | - Hanxu Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengqi Jin
- Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Qiufan Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Li Ding
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wujianhong Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengrong Dong
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai, China; Research Institute, GloriousMed Clinical Laboratory, Shanghai, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China; Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China; Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
9
|
Fazekas T, Széles ÁD, Teutsch B, Csizmarik A, Vékony B, Kói T, Ács N, Hegyi P, Hadaschik B, Nyirády P, Szarvas T. Poly (ADP-ribose) Polymerase Inhibitors Have Comparable Efficacy with Platinum Chemotherapy in Patients with BRCA-positive Metastatic Castration-resistant Prostate Cancer. A Systematic Review and Meta-analysis. Eur Urol Oncol 2024; 7:365-375. [PMID: 37722977 DOI: 10.1016/j.euo.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
CONTEXT Testing for mutations in Breast Cancer Gene 1/2 (BRCA) has emerged as a novel decision-making tool for clinicians. Patients with metastatic castration-resistant prostate cancer (mCRPC) harboring pathogenic BRCA mutations can benefit from poly (ADP-ribose) polymerase inhibitor (PARPi) and platinum treatments, whereas the impact of the mutation on sensitivity to cabazitaxel and prostate-specific membrane antigen (PSMA)-ligand therapy is currently unknown. OBJECTIVE To assess the efficacy of PARPi, platinum, cabazitaxel, and PSMA-ligand therapies in BRCA-positive mCRPC. EVIDENCE ACQUISITION Databases were queried in February 2022. We performed data synthesis by using both proportional and individual patient data. For prostate-specific antigen (PSA) response rate (≥50% decrease from baseline [PSA50]) evaluation, we pooled event rates with 95% confidence intervals (CIs). Progression-free (PFS) and overall (OS) survival analyses with individual patient data were performed with the mixed-effect Cox proportional hazard model and single-arm random-effect analysis, providing pooled medians. EVIDENCE SYNTHESIS We included 23 eligible studies with 901 BRCA-positive mCRPC patients. PSA50 response rates for PARPi and platinum were 69% (CI: 53-82%), and 74% (CI: 49-90%), respectively. Analyses of OS data showed no difference between PARPi and platinum treatments (hazard ratio: 0.86; CI: 0.49-1.52; p = 0.6). The single-arm OS and PFS analyses revealed similarities among different PARPis; pooled PFS and OS medians were 9.7 mo (CI: 8.1-12.5) and 17.4 mo (CI: 12.7-20.1), respectively. CONCLUSIONS Our data revealed that different PARPis were similarly effective in terms of PFS and OS. Moreover, we found that PARPi and platinum therapy were comparable in terms of PSA50 response rate and OS, highlighting that platinum is a valid treatment option for BRCA-positive mCRPC patients. However, prospective interventional studies comparing these agents are essential to provide a higher level of evidence. PATIENT SUMMARY In this report, we found that different poly (ADP-ribose) polymerase inhibitors had similar efficacy, and platinum was a valid treatment option in BRCA-positive metastatic castration-resistant prostate cancer patients.
Collapse
Affiliation(s)
- Tamás Fazekas
- Department of Urology, Semmelweis University, Budapest, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám D Széles
- Department of Urology, Semmelweis University, Budapest, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Bálint Vékony
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Nándor Ács
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary; Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| |
Collapse
|
10
|
Zhang H, Zhou Y, Feng Y, Hou W, Chen Y, Xing Z, Zhang Y, Wei Q, Yin Y, Guo J, Hu H. Cyclin-dependent kinase 12 deficiency reprogrammes cellular metabolism to alleviate ferroptosis potential and promote the progression of castration-resistant prostate cancer. Clin Transl Med 2024; 14:e1678. [PMID: 38736108 PMCID: PMC11089090 DOI: 10.1002/ctm2.1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.
Collapse
Affiliation(s)
- Haozhe Zhang
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yi Zhou
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yating Feng
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Wenli Hou
- Department of UrologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yafei Chen
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Zengzhen Xing
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yifan Zhang
- Department of UrologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Qiang Wei
- Department of UrologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yu Yin
- Department of PathologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ju Guo
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Hailiang Hu
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
- Key University Laboratory of Metabolism and Health of GuangdongSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
11
|
Shiota M, Matsubara N, Kato T, Eto M, Osawa T, Abe T, Shinohara N, Nishimoto K, Yasumizu Y, Tanaka N, Oya M, Fujisawa T, Horasawa S, Nakamura Y, Yoshino T, Nonomura N. Genomic profiling and clinical utility of circulating tumor DNA in metastatic prostate cancer: SCRUM-Japan MONSTAR SCREEN project. BJC REPORTS 2024; 2:28. [PMID: 39516321 PMCID: PMC11523993 DOI: 10.1038/s44276-024-00049-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) testing has emerged as a novel tool for cancer precision medicine. This study investigated the genomic profiling and clinical utility of ctDNA in metastatic prostate cancer. METHODS This is a nation-wide prospective observational study. Patients treated with systemic treatment for metastatic castration-sensitive prostate cancer (mCSPC) and metastatic castration-resistant prostate cancer (mCRPC) were included. ctDNA was analyzed using FoundationOne Liquid®CDx at enrollment. In a subset of patients, ctDNA after disease progression and tissue prior to the initiation of treatment were examined using FoundationOne Liquid®CDx and FoundationOne®CDx, respectively. RESULTS The frequency of AR alterations and homologous recombination repair (HRR) defect was higher in mCRPC compared with mCSPC. Tumor mutational burden was correlated between tissue and ctDNA at pre-treatment, as well as ctDNA between at pre-treatment and at post-treatment. Patients with HRR defect were associated with shorter time to castration resistance in androgen deprivation therapy/combined androgen blockade, but not in androgen receptor pathway inhibitor, compared with patients without HRR defect in mCSPC. Time to treatment failure in patients with AR amplification or AR mutation was shorter compared with patients without AR alterations in mCRPC. CONCLUSIONS This study revealed valuable findings for the clinical care of metastatic prostate cancer. Especially, predictive factors such as HRR defect in mCSPC should be validated in the future.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan.
| | - Nobuaki Matsubara
- Department Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
| | - Takahiro Osawa
- Department of Urology, Graduate School of Medicine Hokkaido University, Hokkaido, Japan
| | - Takashige Abe
- Department of Urology, Graduate School of Medicine Hokkaido University, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Urology, Graduate School of Medicine Hokkaido University, Hokkaido, Japan
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yota Yasumizu
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takao Fujisawa
- Department Head and Neck Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Satoshi Horasawa
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Japan
| |
Collapse
|
12
|
Ditonno F, Bianchi A, Malandra S, Porcaro AB, Fantinel E, Negrelli R, Ferro M, Milella M, Brunelli M, Autorino R, Cerruto MA, Veccia A, Antonelli A. PARP Inhibitors in Metastatic Prostate Cancer: A Comprehensive Systematic Review and Meta-analysis of Existing Evidence. Clin Genitourin Cancer 2024; 22:402-412.e17. [PMID: 38281877 DOI: 10.1016/j.clgc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) represent an option in selected cases of metastatic castration-resistant prostate cancer (mCRPC). The aim of the present systematic review and meta-analysis is to evaluate the efficacy and safety of approved (Olaparib, Rucaparib) and investigational (Talazoparib, Niraparib, Veliparib) PARPi in mCRPC patients. Three databases were queried for studies analyzing oncological outcomes and adverse events of mCRPC patients receiving PARPi. Primary outcome was a PSA decline ≥ 50% from baseline. Secondary outcomes were objective response rate, progression-free survival (PFS), radiological PFS, overall survival (OS), conversion of circulating tumor cell count, and time to PSA progression. The number and rate of any grade adverse events (AEs), grade ≥ 3 AEs, and most common grade ≥ 3 AEs were registered. A subanalysis of outcomes per mutation type, prospective trials, and studies adopting combination therapies was performed. Overall, 31 studies were included in this systematic review, 28 of which are available for meta-analysis. The most frequently investigated drug was Olaparib. The most frequent mutation was BRCA2. A PSA decline rate of 43% (95% CI 0.32-0.54) was observed in the overall population. Mean OS was 15.9 (95% CI 12.9-19.0) months. In BRCA2 patients, PSA decline rate was 66% (95% CI 0.57-0.7) and OS 23.4 months (95% CI 22.8-24.1). Half of the patients suffered from grade 3 and 4 AEs (0.50 [95% CI 0.39-0.60]). Most common AEs were hematological, the most frequent being anemia (21.5%). PARP inhibitors represent a viable option for mCRPC patients. Current evidence suggests an increased effectiveness in homologous recombination repair (HRR) gene mutation carriers, especially BRCA2.
Collapse
Affiliation(s)
- Francesco Ditonno
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy; Department of Urology, Rush University, Chicago, IL, USA
| | - Alberto Bianchi
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| | - Sarah Malandra
- Department of Surgery, Dentistry, Pediatrics and Ginecology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| | - Antonio Benito Porcaro
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| | - Emanuela Fantinel
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Riccardo Negrelli
- Department of Radiology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy
| | | | - Maria Angela Cerruto
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| | - Alessandro Veccia
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy.
| | - Alessandro Antonelli
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| |
Collapse
|
13
|
Yang B, Zhao T, Dong B, Chen W, Yang G, Xie J, Guo C, Wang R, Wang H, Huang L, Peng B, Xue W, Yao X. Circulating tumor DNA and tissue complementarily detect genomic alterations in metastatic hormone-sensitive prostate cancer. iScience 2024; 27:108931. [PMID: 38327772 PMCID: PMC10847732 DOI: 10.1016/j.isci.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
The clinical utility of circulating tumor DNA (ctDNA) in hormone-sensitive prostate cancer (HSPC) remains inadequately elucidated. This study presents the largest real-world cohort to conduct a concordance analysis between ctDNA and tissue-based genomic profiling in HSPC patients. The findings reveal diminished ctDNA abundance in cases with low tumor burden and demonstrate an increased concordance rate between ctDNA and tissue along with the progression of disease burden. Notably, a substantial number of exclusive genomic alterations (GAs) were identified either in ctDNA or tissue in high-volume metastatic disease. Integrating tissue and ctDNA analysis identified specific gene alterations (BRCA1, BRCA2, CDK12, TP53, PTEN, or RB1) associated with a shorter time to the progression to castration-resistant prostate cancer (CRPC), with an escalated CRPC risk correlated with cumulative GAs. This multicenter, real-world investigation underscores the complementary role of ctDNA and tissue in detecting clinically pertinent GAs, highlighting their potential integration into clinical practice for advanced prostate cancer management.
Collapse
Affiliation(s)
- Bin Yang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Tingting Zhao
- Department of Urology, the Shanghai Tenth People’s Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanjie Yang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jun Xie
- Department of Urology, Shanghai Clinical College, Anhui Medical University, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Hong Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Longfei Huang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Fazekas T, Széles ÁD, Teutsch B, Csizmarik A, Vékony B, Váradi A, Kói T, Lang Z, Ács N, Kopa Z, Hegyi P, Hadaschik B, Grünwald V, Nyirády P, Szarvas T. Therapeutic sensitivity to standard treatments in BRCA positive metastatic castration-resistant prostate cancer patients-a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2023; 26:665-672. [PMID: 36509931 PMCID: PMC10638083 DOI: 10.1038/s41391-022-00626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent oncology guidelines recommend BRCA1/2 testing for a wide range of prostate cancer (PCa) patients. In addition, PARP inhibitors are available for mutation-positive metastatic castration-resistant PCa (mCRPC) patients following prior treatment with abiraterone, enzalutamide or docetaxel. However, the question of which of these standard treatments is the most effective for BRCA1/2 positive mCRPC patients remains to be answered. The aim of this meta-analysis was to assess the efficacy of abiraterone, enzalutamide and docetaxel in BRCA1/2 mutation-positive mCRPC patients in terms of PSA-response (PSA50), progression-free survival (PFS) and overall survival (OS). METHODS As no interventional trials are available on this topic, we performed the data synthesis of BRCA1/2 positive mCRPC patients by using both proportional and individual patient data. For PSA50 evaluation, we pooled event rates with 95% confidence intervals (CI), while for time-to-event (PFS, OS) analyses we used individual patient data with random effect Cox regression calculations. RESULTS Our meta-analysis included 16 eligible studies with 348 BRCA1/2 positive mCRPC patients. In the first treatment line, response rates for abiraterone, enzalutamide and docetaxel were 52% (CI: 25-79%), 64% (CI: 43-80%) and 55% (CI: 36-73%), respectively. Analyses of individual patient data revealed a PFS (HR: 0.47, CI: 0.26-0.83, p = 0.010) but no OS (HR: 1.41, CI: 0.82-2.42, p = 0.210) benefit for enzalutamide compared to abiraterone-treated patients. CONCLUSIONS Our PSA50 analyses revealed that all the three first-line treatments have therapeutic effect in BRCA1/2 positive mCRPC; although, based on the results of PSA50 and PFS analyses, BRCA positive mCRPC patients might better respond to enzalutamide treatment. However, molecular marker-driven interventional studies directly comparing these agents are crucial for providing higher-level evidence.
Collapse
Affiliation(s)
- Tamás Fazekas
- Department of Urology, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám D Széles
- Department of Urology, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Bálint Vékony
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Alex Váradi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsolt Lang
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Nándor Ács
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Zsolt Kopa
- Department of Urology, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary.
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| |
Collapse
|
15
|
Wang R, Xu Q, Guo H, Yang G, Zhang J, Wang H, Xu T, Guo C, Yuan J, He Y, Zhang X, Fu H, Xu G, Zhao B, Xie J, Zhao T, Huang L, Zhang J, Peng B, Yao X, Yang B. Concordance and Clinical Significance of Genomic Alterations in Progressive Tumor Tissue and Matched Circulating Tumor DNA in Aggressive-variant Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:2221-2232. [PMID: 37877742 PMCID: PMC10624154 DOI: 10.1158/2767-9764.crc-23-0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
Sequencing of circulating tumor DNA (ctDNA) is a minimally invasive approach to reveal the genomic alterations of cancer; however, its comparison with sequencing of tumor tissue has not been well documented in real-world patients with aggressive-variant prostate cancer (AVPC). Concordance of genomic alterations was assessed between progressive tumor tissue and matched ctDNA by next-generation sequencing for 63 patients with AVPC. Associations of genomic alterations with progression-free survival (PFS) and overall survival (OS) were investigated using Kaplan-Meier and Cox regression analyses. A total of 161 somatic mutations (SMs) and 84 copy-number variants (CNVs) were detected in tumors, of which 97 were also found in ctDNA, giving concordance of 39.6% (97/245) across all SMs and CNVs, 49.7% for SMs only and 20.2% for CNVs only. Across all patients with AVPC, chemotherapy was associated with significantly longer median PFS (6 vs. 0.75 months, P = 0.001) and OS (11 vs. 8 months, P < 0.001) than next-generation hormonal therapy (NHT). Among types of chemotherapy, additional platinum-based chemotherapy was associated with significantly longer median PFS and OS than docetaxel only in patients with TP53, RB1, or PTEN alterations, and in those with ctDNA% ≥ 13.5%. The concordance analysis first provides evidence for combining the sequencing of ctDNA and tumor tissue in real-world patients with AVPC. Chemotherapy is associated with significantly better survival than NHT, and the benefit of additional platinum-based chemotherapy may depend on the presence of alterations in TP53, RB1, or PTEN and on a sufficiently high proportion of ctDNA in patients with AVPC. SIGNIFICANCE AVPC is a highly malignant and heterogeneous disease. Sequencing of ctDNA is a minimally invasive approach to reveal genomic alterations. On the basis of the current real-world study, we found ctDNA does not fully recapitulate the landscape of genomic alterations from progressive tumor tissue in AVPC. We also revealed AVPC can benefit from chemotherapy, especially platinum-based regimens. TP53/RB1/PTEN alterations in ctDNA or tumor tissue could be biomarkers for platinum-based chemotherapy in this setting.
Collapse
Affiliation(s)
- Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Qiufan Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Hanxu Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Guanjie Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Jun Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Hong Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Jing Yuan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yanyan He
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaoying Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Hongliang Fu
- Department of Nuclear Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Guang Xu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Binghui Zhao
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Jun Xie
- Department of Urology, Shanghai Clinical College, Anhui Medical University, Shanghai, P.R. China
| | - Tingting Zhao
- Research Institute, GloriousMed Clinical Laboratory, Shanghai, P.R. China
| | - Longfei Huang
- Research Institute, GloriousMed Clinical Laboratory, Shanghai, P.R. China
| | - Jiansheng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
- Department of Urology, Shanghai Clinical College, Anhui Medical University, Shanghai, P.R. China
- Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
- Department of Urology, Shanghai Clinical College, Anhui Medical University, Shanghai, P.R. China
- Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
- Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
16
|
Wei Y, Zhang T, Wang B, Pan J, Jin S, Fang B, Gu W, Qin X, Dai B, Lin G, Gan H, Wu J, Ye D, Zhu Y. Prospective clinical sequencing of 1016 Chinese prostate cancer patients: uncovering genomic characterization and race disparity. Mol Oncol 2023; 17:2183-2199. [PMID: 37584393 PMCID: PMC10552897 DOI: 10.1002/1878-0261.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
Although there is a well-known disparity in prostate cancer (PC) incidence and mortality between Chinese and Western patients, the underlying genomic differences have been investigated only sparsely. This clinicogenomic study was conducted to reveal the genomic mutations contributing to the PC disparity across ethnicities and investigate the mutational profile of Chinese PC patients. A total of 1016 Chinese PC patients were prospectively enrolled and subjected to targeted sequencing, resulting in usable sequencing data for 41 genes from 859 patients. Genomic data retrieved from The Cancer Genome Atlas (TCGA; locoregional PC), Memorial Sloan Kettering Cancer Center [MSKCC; metastatic castration-sensitive PC (mCSPC)], and Stand Up To Cancer [SU2C; metastatic castration-resistant PC (mCRPC)] cohorts were used as comparators representing Western men. Genomic mutations were analyzed using an integrated bioinformatic strategy. A comparison of the disease stages revealed that mutations in tumor protein 53 (TP53), androgen receptor (AR), forkhead box A1 (FOXA1), and genes involved in the cell cycle pathway were enriched in mCRPC. Mutations in adenomatous polyposis coli (APC) gene were found to be more prevalent in patients with visceral metastasis. Genomic differences between Western and Chinese men were mainly observed in castration-sensitive PC, with tumors from Chinese men having more FOXA1 (11.4% vs. 4.2%) but fewer TP53 (4.8% vs. 13%) mutations in locoregional PC and harboring fewer TP53 (11% vs. 29.2%), phosphatase and tensin homolog (PTEN; 2.5% vs. 10.3%), and APC (1.7% vs. 7.4%) mutations in the mCSPC stage than those of Western men. Patients of both ethnicities with mCRPC had similar mutational spectra. Furthermore, FOXA1 class-2 was less common than FOXA1 class-1 and showed no enrichment in metastasis, contrary to the findings in the Western cohort. Our study provides a valuable resource for a better understanding of PC in China and reveals the genomic alterations associated with PC disparity across races.
Collapse
Affiliation(s)
- Yu Wei
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Tingwei Zhang
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Beihe Wang
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Jian Pan
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Shengming Jin
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Bangwei Fang
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Weijie Gu
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Xiaojian Qin
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Bo Dai
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Guowen Lin
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Hualei Gan
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterChina
| | - Junlong Wu
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| | - Yao Zhu
- Department of UrologyFudan University Shanghai Cancer CenterChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteChina
| |
Collapse
|
17
|
Domrazek K, Pawłowski K, Jurka P. Usefulness of BRCA and ctDNA as Prostate Cancer Biomarkers: A Meta-Analysis. Cancers (Basel) 2023; 15:3452. [PMID: 37444562 DOI: 10.3390/cancers15133452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer represents the most common male urologic neoplasia. Tissue biopsies are the gold standard in oncology for diagnosing prostate cancer. We conducted a study to find the most reliable and noninvasive diagnostic tool. We performed a systematic review and meta-analysis of two biomarkers which we believe are the most interesting: BRCA (BRCA1 and 2) and ctDNA. Our systematic research yielded 248 articles. Forty-five duplicates were first excluded and, upon further examination, a further 203 articles were excluded on the basis of the inclusion and exclusion criteria, leaving 25 articles. A statistical analysis of the obtained data has been performed. With a collective calculation, BRCA1 was expressed in 2.74% of all cases from 24,212 patients examined and BRCA2 in 1.96% of cases from 20,480 patients. In a total calculation using ctDNA, it was observed that 89% of cases from 1198 patients exhibited high expression of circulating tumor DNA. To date, no ideal PCa biomarker has been found. Although BRCA1 and BRCA2 work well for breast and ovarian cancers, they do not seem to be reliable for prostate cancer. ctDNA seems to be a much better biomarker; however, there are few studies in this area. Further studies need to be performed.
Collapse
Affiliation(s)
- Kinga Domrazek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Karol Pawłowski
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Piotr Jurka
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
18
|
Du X, Fei X, Wang J, Dong Y, Fan L, Yang B, Chen W, Gong Y, Xia B, Zhu H, Wu F, Wang Y, Dong L, Zhu Y, Pan J, Yao X, Dong B. Early serial circulating tumor DNA sequencing predicts the efficacy of chemohormonal therapy in patients with metastatic hormone-sensitive prostate cancer. Transl Oncol 2023; 34:101701. [PMID: 37247504 DOI: 10.1016/j.tranon.2023.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Chemohormonal therapy is a standard treatment for metastatic hormone-sensitive prostate cancer (mHSPC); however, there are no biomarkers to guide clinical decisions regarding therapeutic options. We aimed to evaluate the clinical utility of serial circulating tumor DNA (ctDNA) sequencing in early prediction of the efficacy of chemohormonal therapy in patients with mHSPC. We conducted a retrospective observational study of 66 patients with mHSPC receiving chemohormonal therapy who underwent serial targeted gene-panel ctDNA sequencing. Peripheral blood samples were collected before treatment and after one cycle of chemotherapy. Kaplan-Meier and log-rank analyses were used to analyze the association between ctDNA status and disease progression-free survival. Serial changes in the ctDNA fraction and genetic alterations were also observed. After one cycle of chemotherapy, 23 (34.8%) patients displayed elevated ctDNA levels, whereas the other patients (65.2%, n = 43) did not. The median time to castration resistance in the group with reduced ctDNA levels was significantly longer than that in the group with increased ctDNA levels (17.70 vs. 8.43 months [mo], p < 0.001). Interestingly, patients with de novo alterations in homologous recombination pathway genes after treatment experienced a shorter time to castration resistance than that experienced by the remaining patients (8.02 vs. 13.20 mo, p = 0.011). The increased ctDNA levels or de novo alterations detected in homologous recombination pathway genes are a harbinger of disease progression. Early serial ctDNA sequencing could aid clinicians in making accurate treatment decisions.
Collapse
Affiliation(s)
- Xinxing Du
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochen Fei
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhao Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liancheng Fan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiming Gong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Binbin Xia
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanjing Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqing Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Pan J, Zhao J, Ni X, Zhu B, Hu X, Wang Q, Wei Y, Zhang T, Gan H, Wang B, Wu J, Song S, Liu C, Ye D, Zhu Y. Heterogeneity of [ 68Ga]Ga-PSMA-11 PET/CT in metastatic castration-resistant prostate cancer: genomic characteristics and association with abiraterone response. Eur J Nucl Med Mol Imaging 2023; 50:1822-1832. [PMID: 36719427 DOI: 10.1007/s00259-023-06123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE The aim of this study was to evaluate the impact of the spatial heterogeneity of prostate-specific membrane antigen (PSMA) uptake on circulating tumor DNA (ctDNA) characteristics and the response rate to new hormonal agent (NHA) treatment. METHODS This retrospective study included 153 patients with metastatic castration-resistant prostate cancer (mCRPC) who underwent gallium-68 [68 Ga]Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) and ctDNA sequencing with a less than 2-week interval. SUVhetero was defined as the variance of SUVmean for each PSMA-positive lesion. SUVmax-mean was obtained by subtracting the SUVmax by the SUVmean. Patients receiving abiraterone treatment after [68 Ga]Ga-PSMA-11 PET/CT and ctDNA sequencing and with complete follow-up record were included into prostate-specific antigen (PSA) response rate analysis. PSA response was defined as a reduction of greater than 50% from baseline. RESULTS The ctDNA detection rate was 65% (100/153). Higher SUVhetero value contributed to higher ctDNA% (Spearman's rho = 0.278, p < 0.002). A total of 60 patients were included in PSA response rate analysis. The median follow-up was 19.3 (IQR 16.2-23.2) months. Compare to patients with higher SUVhetero value, patients with NA SUVhetero had a higher PSA response rate (52% vs. 90%, p = 0.036). A higher SUVmax-mean value was strongly correlated with higher SUVhetero (Spearman's rho = 0.833, p < 0.0001). Patients with higher SUVmax-mean value also had a higher PSA response rate compared to patients with lower SUVmax-mean value (83.3% vs. 53.3%, p = 0.024). An external cohort confirmed baseline SUVmax-mean value was associated with enzalutamide treatment response rate. Patients with alterations in AR, DNA damage repair pathway, TP53, AR-associated pathway, cell cycle pathway, or WNT pathway had higher SUVmax-mean value compared to those without (p < 0.05). CONCLUSION Spatial heterogeneity of the PSMA uptake was associated with ctDNA characteristics and response rate to NHA treatment.
Collapse
Affiliation(s)
- Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinou Zhao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xudong Ni
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoxin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qifeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Beihe Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shaoli Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Chang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Zhu H, Ding Y, Huang H, Lin Q, Chen W, Yu Z. Prognostic value of genomic mutations in metastatic prostate cancer. Heliyon 2023; 9:e13827. [PMID: 36895385 PMCID: PMC9988500 DOI: 10.1016/j.heliyon.2023.e13827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Metastatic prostate cancer (mPC) has a poor prognosis, and new treatment strategies are currently being offered for patients in clinical practice, but mPC is still incurable. A considerable proportion of patients with mPC harbor homologous recombination repair (HRR) mutations, which may be more sensitive to poly (ADP-ribose) polymerase inhibitors (PARPis). We retrospectively included genomic and clinical data from 147 patients with mPC from a single clinical center, with a total of 102 circulating tumor DNA (ctDNA) samples and 60 tissue samples. The frequency of genomic mutations was analyzed and compared with that in Western cohorts. Cox analysis was used to assess progression-free survival (PFS) and prognostic factors related to prostate-specific antigen (PSA) after standard systemic therapy for mPC. The most frequently mutated gene in the HRR pathway was CDK12 (18.3%), followed by ATM (13.7%) and BRCA2 (13.0%). The remaining common ones were TP53 (31.3%), PTEN (12.2%), and PIK3CA (11.5%). The frequency of BRCA2 mutation was close to that of the SU2C-PCF cohort (13.3%), but the frequency of CDK12, ATM, and PIK3CA mutations was significantly higher than that in the SU2C-PCF cohort: 4.7%, 7.3%, and 5.3%, respectively. CDK12 mutation were less responsive to androgen receptor signaling inhibitors (ARSIs), docetaxel, and PARPi. BRCA2 mutation helps predict PARPi efficacy. Additionally, androgen receptor (AR)-amplified patients do not respond well to ARSIs, and PTEN mutation are associated with poorer docetaxel response. These findings support the genetic profiling of patients with mPC after diagnosis to guide treatment stratification to customize personalized treatment.
Collapse
Affiliation(s)
- Honghui Zhu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Yi Ding
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Qi Lin
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
21
|
He W, Xiao Y, Yan S, Zhu Y, Ren S. Cell-free DNA in the management of prostate cancer: Current status and future prospective. Asian J Urol 2022. [PMID: 37538150 PMCID: PMC10394290 DOI: 10.1016/j.ajur.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective With the escalating prevalence of prostate cancer (PCa) in China, there is an urgent demand for novel diagnostic and therapeutic approaches. Extensive investigations have been conducted on the clinical implementation of circulating free DNA (cfDNA) in PCa. This review aims to provide a comprehensive overview of the present state of cfDNA as a biomarker for PCa and to examine its merits and obstacles for future clinical utilization. Methods Relevant peer-reviewed manuscripts on cfDNA as a PCa marker were evaluated by PubMed search (2010-2022) to evaluate the roles of cfDNA in PCa diagnosis, prognosis, and prediction, respectively. Results cfDNA is primarily released from cells undergoing necrosis and apoptosis, allowing for non-invasive insight into the genomic, transcriptomic, and epigenomic alterations within various PCa disease states. Next-generation sequencing, among other detection methods, enables the assessment of cfDNA abundance, mutation status, fragment characteristics, and epigenetic modifications. Multidimensional analysis based on cfDNA can facilitate early detection of PCa, risk stratification, and treatment monitoring. However, standardization of cfDNA detection methods is still required to expedite its clinical application. Conclusion cfDNA provides a non-invasive, rapid, and repeatable means of acquiring multidimensional information from PCa patients, which can aid in guiding clinical decisions and enhancing patient management. Overcoming the application barriers of cfDNA necessitates increased data sharing and international collaboration.
Collapse
|
22
|
Pan J, Zhao J, Ni X, Gan H, Wei Y, Wu J, Zhang T, Wang Q, Freedland SJ, Wang B, Song S, Ye D, Liu C, Zhu Y. The prevalence and prognosis of next-generation therapeutic targets in metastatic castration-resistant prostate cancer. Mol Oncol 2022; 16:4011-4022. [PMID: 36209367 PMCID: PMC9718110 DOI: 10.1002/1878-0261.13320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
The success of the PROfound, IPATential150, and TheraP trials promoted the transition from sequential treatment to therapeutic targets (TTs)-guided precision treatment in metastatic castration-resistant prostate cancer (mCRPC). The objective of this study was to evaluate the prevalence and prognostic value of TTs from these three trials. All included Chinese mCRPC patients underwent circulating tumor DNA (ctDNA) sequencing, PTEN status assessment, and dual-tracer [68 Ga-prostate-specific membrane antigen (PSMA) and 18 F-fluorodexyglucose (FDG)] positron emission tomography/computed tomography (PET/CT). Previous treatment with cabazitaxel, Lu-PSMA or olaparib was unallowed. Patients with known significant sarcomatoid or spindle cell or neuroendocrine small cell components were also excluded. TTs were defined as positive as follows: (a) high PSMA and no PSMA-/FDG+ disease on dual-tracer PET/CT scans; (b) defects in homologous recombination repair (HRR) genes in ctDNA; and (c) loss of PTEN immunohistochemistry staining in tumor tissue. The prevalence and prognostic value on progression-free survival (PFS) of TTs were evaluated. A total of 106 consecutive mCRPC patients were included. The prevalence of positive PET/CT, HRR defect, and PTEN loss was 30%, 29% and 16%, respectively. Sixty-three patients had at least one TT. Metastatic volume (odds ratio = 5.0; P = 0.017) was the only independent factor of positive TT in multivariate analysis. Seventy-four patients received abiraterone after TT screening. Patients with positive PET/CT (P = 0.011) and HRR defect (P = 0.002) had a significantly shorter PFS after receiving abiraterone than patients with negative TTs. However, PTEN status was unrelated to PFS, which may be due to a less number of patients with PTEN loss (P = 0.952). Overall, patients with any positive TTs had a significantly shorter PFS after abiraterone than patients with negative TTs (P = 0.009). Nearly 60% of Chinese patients with mCRPC who had a poor prognosis on abiraterone were candidates for precision treatments based on the specific criteria of TTs.
Collapse
Affiliation(s)
- Jian Pan
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jinou Zhao
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xudong Ni
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hualei Gan
- Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu Wei
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Junlong Wu
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Tingwei Zhang
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qifeng Wang
- Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Stephen J. Freedland
- Department of Nuclear MedicineFudan University Shanghai Cancer CenterChina,Department of Surgery, Division of Urology and Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCAUSA,Urology Section, Department of SurgeryVeterans Affairs Medical CenterDurhamNCUSA
| | - Beihe Wang
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shaoli Song
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterChina
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Chang Liu
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterChina
| | - Yao Zhu
- Department of UrologyFudan University Shanghai Cancer CenterChina,Shanghai Genitourinary Cancer InstituteChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
23
|
Shiota M, Akamatsu S, Tsukahara S, Nagakawa S, Matsumoto T, Eto M. Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer 2022; 29:R143-R155. [PMID: 35900853 DOI: 10.1530/erc-22-0140] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Hormonal therapies including androgen deprivation therapy and androgen receptor (AR) pathway inhibitors such as abiraterone and enzalutamide have been widely used to treat advanced prostate cancer. However, treatment resistance emerges after hormonal manipulation in most prostate cancers, and it is attributable to a number of mechanisms, including AR amplification and overexpression, AR mutations, the expression of constitutively active AR variants, intra-tumor androgen synthesis, and promiscuous AR activation by other factors. Although various AR mutations have been reported in prostate cancer, specific AR mutations (L702H, W742L/C, H875Y, F877L, and T878A/S) were frequently identified after treatment resistance emerged. Intriguingly, these hot spot mutations were also revealed to change the binding affinity of ligands including steroids and antiandrogens and potentially result in altered responses to AR pathway inhibitors. Currently, precision medicine utilizing genetic and genomic data to choose suitable treatment for the patient is becoming to play an increasingly important role in clinical practice for prostate cancer management. Since clinical data between AR mutations and the efficacy of AR pathway inhibitors are accumulating, monitoring the AR mutation status is a promising approach for providing precision medicine in prostate cancer, which would be implemented through the development of clinically available testing modalities for AR mutations using liquid biopsy. However, there are few reviews on clinical significance of AR hot spot mutations in prostate cancer. Then, this review summarized the clinical landscape of AR mutations and discussed their potential implication for clinical utilization.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Liu J, Dong L, Zhu Y, Dong B, Sha J, Zhu HH, Pan J, Xue W. Prostate cancer treatment - China's perspective. Cancer Lett 2022; 550:215927. [PMID: 36162714 DOI: 10.1016/j.canlet.2022.215927] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) incidence and mortality have rapidly increased in China. Notably, unique epidemiological characteristics of PCa are found in the Chinese PCa population, including a low but rising incidence and an inferior but improving disease prognosis. Consequently, the current treatment landscape of PCa in China demonstrates distinct features. Establishing a more thorough understanding of the characteristics of Chinese patients may help provide novel insights into potential treatment strategies for PCa patients. Herein, we review the epidemiological status and differences in treatment modalities of Chinese PCa patients. In addition, we discuss the underlying socioeconomic and biological factors that contribute to such diversity and further propose directions for future efforts in optimizing the PCa treatment in China.
Collapse
Affiliation(s)
- Jiazhou Liu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jianjun Sha
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Helen He Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
25
|
Jiang J, Ding Y, Lu J, Chen Y, Chen Y, Zhao W, Chen W, Kong M, Li C, Teng X, Zhou Q, Xu N, Zhou D, Zhou Z, Wang H, Teng L. Integrative analysis reveals a clinicogenomic landscape associated with liver metastasis and poor prognosis in hepatoid adenocarcinoma of the stomach. Int J Biol Sci 2022; 18:5554-5574. [PMID: 36147475 PMCID: PMC9461653 DOI: 10.7150/ijbs.71449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatoid adenocarcinoma of the stomach (HAS) is a rare subtype of gastric cancer (GC) that histologically resembles hepatocellular carcinoma (HCC). Despite its low incidence, HAS had a poor 5-year survival rate. Currently, the linkages between clinicopathological and genomic features of HAS and its therapeutic targets remain largely unknown. Herein, we enrolled 90 HAS patients and 270 stage-matched non-HAS patients from our institution for comparing clinicopathological features. We found that HAS had worse overall survival and were more prone to develop liver metastasis than non-HAS in our cohort, which was validated via meta-analysis. By comparing whole-exome sequencing data of HAS (n=30), non-HAS (n=63), and HCC (n=355, The Cancer Genome Atlas), we identified a genomic landscape associated with unfavorable clinical features in HAS, which contained frequent somatic mutations and widespread copy number variations. Notably, signaling pathways regulating pluripotency of stem cells affected by frequent genomic alterations might contribute to liver metastasis and poor prognosis in HAS patients. Furthermore, HAS developed abundant multiclonal architecture associated with liver metastasis. Encouragingly, target analysis suggested that HAS patients might potentially benefit from anti-ERBB2 or anti-PD-1 therapy. Taken together, this study systematically demonstrated a high risk of liver metastasis and poor prognosis in HAS, provided a clinicogenomic landscape underlying these unfavorable clinical features, and identified potential therapeutic targets, laying the foundations for developing precise diagnosis and therapy in this rare but lethal disease.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyi Zhao
- Institute of Drug Metabolism & Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenfan Chen
- Institute of Drug Metabolism & Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengzhi Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism & Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Dong B, Yang B, Chen W, Du X, Fan L, Yao X, Xue W. Olaparib for Chinese metastatic castration-resistant prostate cancer: A real-world study of efficacy and gene predictive analysis. Med Oncol 2022; 39:96. [DOI: 10.1007/s12032-022-01648-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
|