1
|
Okpala OE, Rondevaldova J, Osei-Owusu H, Kudera T, Kokoskova T, Kokoska L. Susceptibility of Staphylococcus aureus to Anti-Inflammatory Drugs with a Focus on the Combinatory Effect of Celecoxib with Oxacillin In Vitro. Molecules 2024; 29:3665. [PMID: 39125072 PMCID: PMC11314137 DOI: 10.3390/molecules29153665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Musculoskeletal infections (MIs) are among the most difficult-to-treat staphylococcal diseases due to antibiotic resistance. This has encouraged the development of innovative strategies, such as combination therapy, to combat MI. The aim of this study was to investigate the in vitro antistaphylococcal activity of anti-inflammatory drugs and the combined antimicrobial effect of celecoxib and oxacillin. The minimum inhibitory concentrations (MICs) of 17 anti-inflammatory drugs against standard strains and clinical isolates of S. aureus, including methicillin-resistant strains (MRSAs), were determined using the broth microdilution method. The fractional inhibitory concentration indices (FICIs) were evaluated using checkerboard assays. Celecoxib produced the most potent antistaphylococcal effect against all tested strains (MICs ranging from 32 to 64 mg/L), followed by that of diacerein against MRSA3 and MRSA ATCC 33592 (MIC 64 mg/L). Several synergistic effects were observed against the tested S. aureus strains, including MRSA (FICI ranging from 0.087 to 0.471). The strongest synergistic interaction (FICI 0.087) was against MRSA ATCC 33592 at a celecoxib concentration of 2 mg/L, with a 19-fold oxacillin MIC reduction (from 512 to 26.888 mg/L). This is the first report on the combined antistaphylococcal effect of celecoxib and oxacillin. These findings suggest celecoxib and its combination with oxacillin as perspective agents for research focused on the development of novel therapies for MI caused by S. aureus. This study further indicates that celecoxib could resensitize certain MRSA strains, in some cases, to be susceptible to β-lactams (e.g., oxacillin) that were not previously tested. It is essential to mention that the in vitro concentrations of anti-inflammatory drugs are higher than those typically obtained in patients. Therefore, an alternative option for its administration could be the use of a drug delivery system for the controlled slow release from an implant at the infection site.
Collapse
Affiliation(s)
- Onyedika Emmanuel Okpala
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Hayford Osei-Owusu
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Tomas Kudera
- Drift-Food Research Centre, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic;
| | - Tersia Kokoskova
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic;
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| |
Collapse
|
2
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
The History of Methicillin-Resistant Staphylococcus aureus in Brazil. ACTA ACUST UNITED AC 2020; 2020:1721936. [PMID: 33082892 PMCID: PMC7563066 DOI: 10.1155/2020/1721936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
Since the emergence of MRSA in the 1960s, a gradual increase in infections by resistant bacteria has been observed. Clinical manifestations may vary from brand to critical condition due to host risk factors, as well as pathogen virulence and resistance. The high adaptability and pathogenic profile of MRSA clones contributed to its spread in hospital and community settings. In Brazil, the first MRSA isolates were reported in the late 1980s, and since then different genetic profiles, such as the Brazilian epidemic clone (BEC) and other clones considered a pandemic, became endemic in the Brazilian population. Additionally, Brazil's MRSA clones were shown to be able to transfer genes involved in multidrug resistance and enhanced pathogenic properties. These events contributed to the rise of highly resistant and pathogenic MRSA. In this review, we present the main events which compose the history of MRSA in Brazil, including numbers and locations of isolation, as well as types of staphylococcal cassette chromosome mec (SCCmec) found in the Brazilian territory.
Collapse
|
4
|
Muñoz-Gallego I, Mancheño M, Pérez-Montarelo D, Viedma E, Chaves F, Lora-Tamayo J. Staphylococcus aureus native arthritis over 10 years. Med Mal Infect 2020; 50:257-262. [PMID: 32057526 DOI: 10.1016/j.medmal.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/25/2018] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
|
5
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
6
|
Helito CP, Teixeira PRL, de Oliveira PR, de Carvalho VC, Pécora JR, Camanho GL, Demange MK, Lima ALM. Septic arthritis of the knee: clinical and laboratory comparison of groups with different etiologies. Clinics (Sao Paulo) 2016; 71:715-719. [PMID: 28076516 PMCID: PMC5175290 DOI: 10.6061/clinics/2016(12)07] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/08/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES: To clinically and epidemiologically characterize a population diagnosed with and treated for septic arthritis of the knee, to evaluate the treatment results and to analyze the differences between patients with positive and negative culture results, patients with Gram-positive and Gram-negative bacterial isolates and patients with S. aureus- and non-S. aureus-related infections. METHODS: One hundred and five patients with septic knee arthritis were included in this study. The clinical and epidemiological data were evaluated. Statistical analysis was performed to compare patients with and without an isolated causative agent, patients with Gram-positive and Gram-negative pathogens and patients with S. aureus-related and non S. aureus-related infections. RESULTS: Causative agents were isolated in 81 patients. Gram-positive bacteria were isolated in 65 patients and Gram-negative bacteria were isolated in 16 patients. The most commonly isolated bacterium was S. aureus. Comparing cases with an isolated pathogen to cases without an isolated pathogen, no differences between the studied variables were found except for the longer hospital stays of patients in whom an etiological agent was identified. When comparing Gram-positive bacteria with Gram-negative bacteria, patients with Gram-positive-related infections exhibited higher leukocyte counts. Patients with S. aureus-related infections were more frequently associated with healthcare-related environmental encounters. CONCLUSION: S. aureus is the most common pathogen of septic knee arthritis. Major differences were not observed between infections with isolated and non-isolated pathogens and between infections with Gram-positive and Gram-negative bacteria. S. aureus infections were more likely to be associated with a prior healthcare environment exposure.
Collapse
Affiliation(s)
- Camilo Partezani Helito
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Ortopedia e Traumatologia, Divisão de Cirurgia do Joelho, São Paulo/, SP, Brazil
- E-mail:
| | - Paulo Renan Lima Teixeira
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Ortopedia e Traumatologia, Divisão de Cirurgia do Joelho, São Paulo/, SP, Brazil
| | - Priscila Rosalba de Oliveira
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Ortopedia e Traumatologia, Divisão de Doenças Infecciosas, São Paulo/, SP, Brazil
| | - Vladimir Cordeiro de Carvalho
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Ortopedia e Traumatologia, Divisão de Doenças Infecciosas, São Paulo/, SP, Brazil
| | - José Ricardo Pécora
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Ortopedia e Traumatologia, Divisão de Cirurgia do Joelho, São Paulo/, SP, Brazil
| | - Gilberto Luis Camanho
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Ortopedia e Traumatologia, Divisão de Cirurgia do Joelho, São Paulo/, SP, Brazil
| | - Marco Kawamura Demange
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Ortopedia e Traumatologia, Divisão de Cirurgia do Joelho, São Paulo/, SP, Brazil
| | - Ana Lucia Munhoz Lima
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Ortopedia e Traumatologia, Divisão de Doenças Infecciosas, São Paulo/, SP, Brazil
| |
Collapse
|
7
|
Septic arthritis in immunocompetent and immunosuppressed hosts. Best Pract Res Clin Rheumatol 2015; 29:275-89. [PMID: 26362744 DOI: 10.1016/j.berh.2015.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022]
Abstract
Septic arthritis has long been considered an orthopedic emergency. Historically, Neisseria gonorrhoeae and Staphylococcus aureus have been the most common causes of septic arthritis worldwide but in the modern era of biological therapy and extensive use of prosthetic joint replacements, the spectrum of microbiological causes of septic arthritis has widened considerably. There are also new approaches to diagnosis but therapy remains a challenge, with a need for careful consideration of a combined medical and surgical approach in most cases.
Collapse
|