1
|
Almansa-Gómez S, Prieto-Ruiz F, Cansado J, Madrid M. Autophagy Modulation as a Potential Therapeutic Strategy in Osteosarcoma: Current Insights and Future Perspectives. Int J Mol Sci 2023; 24:13827. [PMID: 37762129 PMCID: PMC10531374 DOI: 10.3390/ijms241813827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy, the process that enables the recycling and degradation of cellular components, is essential for homeostasis, which occurs in response to various types of stress. Autophagy plays an important role in the genesis and evolution of osteosarcoma (OS). The conventional treatment of OS has limitations and is not always effective at controlling the disease. Therefore, numerous researchers have analyzed how controlling autophagy could be used as a treatment or strategy to reverse resistance to therapy in OS. They highlight how the inhibition of autophagy improves the efficacy of chemotherapeutic treatments and how the promotion of autophagy could prove positive in OS therapy. The modulation of autophagy can also be directed against OS stem cells, improving treatment efficacy and preventing cancer recurrence. Despite promising findings, future studies are needed to elucidate the molecular mechanisms of autophagy and its relationship to OS, as well as the mechanisms underlying the functioning of autophagic modulators. Careful evaluation is required as autophagy modulation may have adverse effects on normal cells, and the optimization of autophagic modulators for use as drugs in OS is imperative.
Collapse
Affiliation(s)
| | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| |
Collapse
|
2
|
Sinha RA. Autophagy: A Cellular Guardian against Hepatic Lipotoxicity. Genes (Basel) 2023; 14:553. [PMID: 36874473 PMCID: PMC7614268 DOI: 10.3390/genes14030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Lipotoxicity is a phenomenon of lipid-induced cellular injury in nonadipose tissue. Excess of free saturated fatty acids (SFAs) contributes to hepatic injury in nonalcoholic fatty liver disease (NAFLD), which has been growing at an unprecedented rate in recent years. SFAs and their derivatives such as ceramides and membrane phospholipids have been shown to induce intrahepatic oxidative damage and ER stress. Autophagy represents a cellular housekeeping mechanism to counter the perturbation in organelle function and activation of stress signals within the cell. Several aspects of autophagy, including lipid droplet assembly, lipophagy, mitophagy, redox signaling and ER-phagy, play a critical role in mounting a strong defense against lipotoxic lipid species within the hepatic cells. This review provides a succinct overview of our current understanding of autophagy-lipotoxicity interaction and its pharmacological and nonpharmacological modulation in treating NAFLD.
Collapse
Affiliation(s)
- Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
3
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
4
|
Mokhtari Z, Hosseini E, Hekmatdoost A, Haskey N, Gibson DL, Askari G. The effects of fasting diets on nonalcoholic fatty liver disease. Nutr Rev 2022:6809036. [DOI: 10.1093/nutrit/nuac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. There is no confirmed treatment for NAFLD as yet. Recently, fasting regimens and their relationship to NAFLD have drawn a great deal of attention in the literature. We review the current evidence that supports fasting diets as an adjunctive therapeutic strategy for patients with NAFLD and address potential action mechanisms. We reason that the fasting diets might be a promising approach for modulating hepatic steatosis, fibroblast growth factors 19 and 21 signaling, lipophagy, and the metabolic profile.
Collapse
Affiliation(s)
- Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
| | - Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and, Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences with the , Tehran, Iran
| | - Natasha Haskey
- Department of Biology, University of British Columbia—Okanagan Campus are with the , Kelowna, British Columbia, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia—Okanagan Campus are with the , Kelowna, British Columbia, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences with the , Isfahan, Iran
| |
Collapse
|
5
|
Basal Autophagy Is Necessary for A Pharmacologic PPARα Transactivation. Cells 2022; 11:cells11040754. [PMID: 35203398 PMCID: PMC8870620 DOI: 10.3390/cells11040754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is a conserved cellular process of catabolism leading to nutrient recycling upon starvation and maintaining tissue and energy homeostasis. Tissue-specific loss of core-autophagy-related genes often triggers diverse diseases, including cancer, neurodegeneration, inflammatory disease, metabolic disorder, and muscle disease. The nutrient-sensing nuclear receptors peroxisome proliferator-activated receptor α (PPARα) plays a key role in fasting-associated metabolisms such as autophagy, fatty acid oxidation, and ketogenesis. Here we show that autophagy defects impede the transactivation of PPARα. Liver-specific ablation of the Atg7 gene in mice showed reduced expression levels of PPARα target genes in response to its synthetic agonist ligands. Since NRF2, an antioxidant transcription factor, is activated in autophagy-deficient mice due to p62/SQSTM1 accumulation and its subsequent interaction with KEAP1, an E3 ubiquitin ligase. We hypothesize that the nuclear accumulation of NRF2 by autophagy defects blunts the transactivation of PPARα. Consistent with this idea, we find that NRF2 activation is sufficient to inhibit the pharmacologic transactivation of PPARα, which is dependent on the Nrf2 gene. These results reveal an unrecognized requirement of basal autophagy for the transactivation of PPARα by preventing NRF2 from a nuclear translocation and suggest a clinical significance of basal autophagy to expect a pharmacologic efficacy of synthetic PPARα ligands.
Collapse
|
6
|
Kim EY, Lee JM. Transcriptional Control of Trpm6 by the Nuclear Receptor FXR. Int J Mol Sci 2022; 23:ijms23041980. [PMID: 35216094 PMCID: PMC8874704 DOI: 10.3390/ijms23041980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Farnesoid x receptor (FXR) is a nuclear bile acid receptor that belongs to the nuclear receptor superfamily. It plays an essential role in bile acid biosynthesis, lipid and glucose metabolism, liver regeneration, and vertical sleeve gastrectomy. A loss of the FXR gene or dysregulations of FXR-mediated gene expression are associated with the development of progressive familial intrahepatic cholestasis, tumorigenesis, inflammation, and diabetes mellitus. Magnesium ion (Mg2+) is essential for mammalian physiology. Over 600 enzymes are dependent on Mg2+ for their activity. Here, we show that the Trpm6 gene encoding a Mg2+ channel is a direct FXR target gene in the intestinal epithelial cells of mice. FXR expressed in the intestinal epithelial cells is absolutely required for sustaining a basal expression of intestinal Trpm6 that can be robustly induced by the treatment of GW4064, a synthetic FXR agonist. Analysis of FXR ChIP-seq data revealed that intron regions of Trpm6 contain two prominent FXR binding peaks. Among them, the proximal peak from the transcription start site contains a functional inverted repeat 1 (IR1) response element that directly binds to the FXR-RXRα heterodimer. Based on these results, we proposed that an intestinal FXR-TRPM6 axis may link a bile acid signaling to Mg2+ homeostasis.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4826
| |
Collapse
|
7
|
Fiorucci S, Biagioli M, Baldoni M, Ricci P, Sepe V, Zampella A, Distrutti E. The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opin Drug Discov 2021; 16:1193-1208. [PMID: 33849361 DOI: 10.1080/17460441.2021.1916465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The farnesoid-x-receptor (FXR) is a ubiquitously expressed nuclear receptor selectively activated by primary bile acids. AREA COVERED FXR is a validated pharmacological target. Herein, the authors review preclinical and clinical data supporting the development of FXR agonists in the treatment of nonalcoholic fatty liver disease. EXPERT OPINION Development of systemic FXR agonists to treat the metabolic liver disease has been proven challenging because the side effects associated with these agents including increased levels of cholesterol and LDL-c and reduced HDL-c raising concerns over their long-term cardiovascular safety. Additionally, pruritus has emerged as a common, although poorly explained, dose-related side effect with all FXR ligands, but is especially common with OCA. FXR agonists that are currently undergoing phase 2/3 trials are cilofexor, tropifexor, nidufexor and MET409. Some of these agents are currently being developed as combination therapies with other agents including cenicriviroc, a CCR2/CCR5 inhibitor, or firsocostat an acetyl CoA carboxylase inhibitor. Additional investigations are needed to evaluate the beneficial effects of combination of these agents with statins. It is expected that in the coming years, FXR agonists will be developed as a combination therapy to minimize side effects and increase likelihood of success by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Monia Baldoni
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Patrizia Ricci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Angela Zampella
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Eleonora Distrutti
- SC Di Gastroenterologia Ed Epatologia, Azienda Ospedaliera Di Perugia, Perugia, Italy
| |
Collapse
|
8
|
Kim Y, Lee DH, Park SH, Jeon TI, Jung CH. The interplay of microRNAs and transcription factors in autophagy regulation in nonalcoholic fatty liver disease. Exp Mol Med 2021; 53:548-559. [PMID: 33879861 PMCID: PMC8102505 DOI: 10.1038/s12276-021-00611-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The autophagy-lysosomal degradation system has an important role in maintaining liver homeostasis by removing unnecessary intracellular components. Impaired autophagy has been linked to nonalcoholic fatty liver disease (NAFLD), which includes hepatitis, steatosis, fibrosis, and cirrhosis. Thus, gaining an understanding of the mechanisms that regulate autophagy and how autophagy contributes to the development and progression of NAFLD has become the focus of recent studies. Autophagy regulation has been thought to be primarily regulated by cytoplasmic processes; however, recent studies have shown that microRNAs (miRNAs) and transcription factors (TFs) also act as key regulators of autophagy by targeting autophagy-related genes. In this review, we summarize the miRNAs and TFs that regulate the autophagy pathway in NAFLD. We further focus on the transcriptional and posttranscriptional regulation of autophagy and discuss the complex regulatory networks involving these regulators in autophagy. Finally, we highlight the potential of targeting miRNAs and TFs involved in the regulation of autophagy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yumi Kim
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Da-Hye Lee
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - So-Hyun Park
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Tae-Il Jeon
- grid.14005.300000 0001 0356 9399Department of Animal Science, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Hwa Jung
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Lillich FF, Imig JD, Proschak E. Multi-Target Approaches in Metabolic Syndrome. Front Pharmacol 2021; 11:554961. [PMID: 33776749 PMCID: PMC7994619 DOI: 10.3389/fphar.2020.554961] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent disease cluster worldwide. It requires polypharmacological treatment of the single conditions including type II diabetes, hypertension, and dyslipidemia, as well as the associated comorbidities. The complex treatment regimens with various drugs lead to drug-drug interactions and inadequate patient adherence, resulting in poor management of the disease. Multi-target approaches aim at reducing the polypharmacology and improving the efficacy. This review summarizes the medicinal chemistry efforts to develop multi-target ligands for MetS. Different combinations of pharmacological targets in context of in vivo efficacy and future perspective for multi-target drugs in MetS are discussed.
Collapse
Affiliation(s)
- Felix F. Lillich
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt, Germany
| | - John D. Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
11
|
PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166097. [PMID: 33524529 DOI: 10.1016/j.bbadis.2021.166097] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and transcriptional modulators with crucial functions in hepatic and whole-body energy homeostasis. Besides their well-documented roles in lipid and glucose metabolism, emerging evidence also implicate PPARs in the control of other processes such as inflammatory responses. Recent technological advances, such as single-cell RNA sequencing, have allowed to unravel an unexpected complexity in the regulation of PPAR expression, activity and downstream signaling. Here we provide an overview of the latest advances in the study of PPARs in liver physiology, with a specific focus on formerly neglected aspects of PPAR regulation, such as tissular zonation, cellular heterogeneity, circadian rhythms, sexual dimorphism and species-specific features.
Collapse
|
12
|
Carino A, Marchianò S, Biagioli M, Scarpelli P, Bordoni M, Di Giorgio C, Roselli R, Fiorucci C, Monti MC, Distrutti E, Zampella A, Fiorucci S. The bile acid activated receptors GPBAR1 and FXR exert antagonistic effects on autophagy. FASEB J 2021; 35:e21271. [PMID: 33368684 DOI: 10.1096/fj.202001386r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/03/2025]
Abstract
Autophagy is a highly conserved catabolic process activated by fasting and caloric restriction. FXR, a receptor for primary bile acids, reverses the activity of cAMP-response element binding protein (CREB) on autophagy-related genes (Atg)s and terminates autophagy in the fed state. GPBAR1, a receptor for secondary bile acids, exerts its genomic effects via cAMP-CREB pathway. By genetic and pharmacological approaches, we have obtained evidence that GPBAR1 functions as a positive modulator of autophagy in liver and white adipose tissue (WAT) in fasting. Mechanistically, we found that Gpbar1-/- mice lack the expression of Cyp2c70 a gene essential for generation of muricholic acids which are FXR antagonists, and have an FXR-biased bile acid pool. Because FXR represses autophagy, Gpbar1-/- mice show a defective regulation of autophagy in fasting. BAR501, a selective GPBAR1 agonist, induces autophagy in fed mice. Defective regulation of autophagy in Gpbar1-/- could be reversed by FXR antagonism, while repression of autophagy by feeding was partially abrogated by FXR gene ablation, and FXR activation repressed Atgs in the fast state. BAR501 reversed the negative regulatory effects of feeding and FXR agonism on autophagy and promoted the recruitment of CREB to a CRE on the LC3 promoter. In mice exposed to chronic high caloric intake, GPBAR1 agonism ameliorated insulin sensitivity and induced Atgs expression in the liver and WAT. In summary, GPBAR1 is required for positive regulation of autophagy in fasting and its ligands reverse the repressive effects exerted on liver and WAT autophagy flow by FXR in fed.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Martina Bordoni
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Cristina Di Giorgio
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Chiara Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Tsai MS, Lee HM, Huang SC, Sun CK, Chiu TC, Chen PH, Lin YC, Hung TM, Lee PH, Kao YH. Nerve growth factor induced farnesoid X receptor upregulation modulates autophagy flux and protects hepatocytes in cholestatic livers. Arch Biochem Biophys 2020; 682:108281. [PMID: 32001246 DOI: 10.1016/j.abb.2020.108281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Upregulation of nerve growth factor (NGF) in parenchymal hepatocytes has been shown to exert hepatoprotective function during cholestatic liver injury. However, the modulatory role of NGF in regulation of liver autophagy remains unclear. This study aimed to scrutinize the regulatory role of NGF in hepatic expression of farnesoid X receptor (FXR), a bile acid (BA)-activated nuclear receptor, and to determine its cytoprotective effect on BA-induced autophagy and cytotoxicity. Livers of human hepatolithiasis and bile duct ligation (BDL)-induced mouse cholestasis were used for histopathological and molecular detection. The regulatory roles of NGF in autophagy flux and FXR expression, as well as its hepatoprotection against BA cytotoxicity were examined in cultured hepatocytes. FXR downregulation in human hepatolithiasis livers showed positive correlation with hepatic NGF levels. NGF administration upregulated hepatic FXR levels, while neutralization of NGF decreased FXR expression in BDL-induced cholestatic mouse livers. In vitro studies demonstrated that NGF upregulated FXR expression, increased cellular LC3 levels, and exerted hepatoprotective effect in cultured primary rat hepatocytes. Conversely, autophagy inhibition abrogated NGF-driven cytoprotection under BA exposure, suggesting involvement of NGF-modulated auophagy flux. Although FXR agonistic GW4064 stimulation did not affect auophagic LC3 levels, FXR activity inhibition significantly potentiated BA-induced cytotoxicity and increased cellular p62/SQSTM1 and Rab7 protein in SK-Hep1 hepatocytes. Moreover, FXR gene silencing abolished the protective effect of NGF under BA exposure. These findings support that NGF modulates autophagy flux via FXR upregulation and protects hepatocytes against BA-induced cytotoxicity. NGF/FXR axis is a novel therapeutic target for treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Ming-Shian Tsai
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Body Health and Beauty Center, Jiann-Ren Hospital, Kaohsiung, Taiwan
| | - Hui-Ming Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Shih-Che Huang
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | | | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Tzu-Min Hung
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Li P, Zhu L, Yang X, Li W, Sun X, Yi B, Zhu S. Farnesoid X receptor interacts with cAMP response element binding protein to modulate glucagon-like peptide-1 (7-36) amide secretion by intestinal L cell. J Cell Physiol 2019; 234:12839-12846. [PMID: 30536761 DOI: 10.1002/jcp.27940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
Type II diabetes is a complex, chronic, and progressive disease. Glucagon-like peptide-1 (7-36) amide (GLP-1) is a gut hormone released from the L cells which stimulate insulin secretion and promotes insulin gene expression and β-cell growth and differentiation. Elevated levels of hormones secreted by L cells are an essential reason for diabetes improvement. GLP-1 secretion has been reported to be regulated by farnesoid X receptor (FXR), a transcriptional sensor for bile acids which also acts on glucose metabolism. Herein, we attempted to evaluate the effect of FXR on GLP-1 secretion in mouse enteroendocrine L cell line, namely STC-1, and to investigate the underlying mechanism. FXR inversely regulated GLP-1 secretion in STC-1. A total of 24 nonredundant human proteins were shown to be related to FXR by BioGRID; KEGG pathway analysis revealed that FXR was related to glucagon signaling pathway, particularly with the transcriptional activators CREB, PGC1α, Sirt1, and CBP. CREB could positively regulate GLP-1 secretion in STC-1 cells. FXR combined with CREB to inhibit its transcriptional activity, thus inhibiting proprotein convertase subtilisin/kexin type 1 protein level and GLP-1 secretion. In the present study, we demonstrated a negative regulation of GLP-1 secretion by FXR in L cell line, STC-1; FXR exerts its function in L cells through interacting with CREB, a crucial transcriptional regulator of cAMP-CREB signaling pathway, to inhibit its transcriptional activity. Targeting FXR to rescue GLP-1 secretion may be a promising strategy for type II diabetes.
Collapse
Affiliation(s)
- Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangwu Yang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Yi
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Waskowicz LR, Zhou J, Landau DJ, Brooks ED, Lim A, Yavarow ZA, Kudo T, Zhang H, Wu Y, Grant S, Young SP, Huat BB, Yen PM, Koeberl DD. Bezafibrate induces autophagy and improves hepatic lipid metabolism in glycogen storage disease type Ia. Hum Mol Genet 2019; 28:143-154. [PMID: 30256948 DOI: 10.1093/hmg/ddy343] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Glucose-6-phosphatase α (G6Pase) deficiency, also known as von Gierke's Disease or Glycogen storage disease type Ia (GSD Ia), is characterized by decreased ability of the liver to convert glucose-6-phosphate to glucose leading to glycogen accumulation and hepatosteatosis. Long-term complications of GSD Ia include hepatic adenomas and carcinomas, in association with the suppression of autophagy in the liver. The G6pc-/- mouse and canine models for GSD Ia were treated with the pan-peroxisomal proliferator-activated receptor agonist, bezafibrate, to determine the drug's effect on liver metabolism and function. Hepatic glycogen and triglyceride concentrations were measured and western blotting was performed to investigate pathways affected by the treatment. Bezafibrate decreased liver triglyceride and glycogen concentrations and partially reversed the autophagy defect previously demonstrated in GSD Ia models. Changes in medium-chain acyl-CoA dehydrogenase expression and acylcarnintine flux suggested that fatty acid oxidation was increased and fatty acid synthase expression associated with lipogenesis was decreased in G6pc-/- mice treated with bezafibrate. In summary, bezafibrate induced autophagy in the liver while increasing fatty acid oxidation and decreasing lipogenesis in G6pc-/- mice. It represents a potential therapy for glycogen overload and hepatosteatosis associated with GSD Ia, with beneficial effects that have implications for non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Lauren R Waskowicz
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Dustin J Landau
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth D Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.,Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA
| | - Andrea Lim
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Zollie A Yavarow
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Tsubasa Kudo
- Faculty of Medicine, Tohoku University, Sendai, Japan
| | - Haoyue Zhang
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stuart Grant
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sarah P Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Bay Boon Huat
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore.,Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Kang HR, Waskowicz L, Seifts AM, Landau DJ, Young SP, Koeberl DD. Bezafibrate Enhances AAV Vector-Mediated Genome Editing in Glycogen Storage Disease Type Ia. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:265-273. [PMID: 30859111 PMCID: PMC6395830 DOI: 10.1016/j.omtm.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 01/06/2023]
Abstract
Glycogen storage disease type Ia (GSD Ia) is a rare inherited disease caused by mutations in the glucose-6-phosphatase (G6Pase) catalytic subunit gene (G6PC). Absence of G6Pase causes life-threatening hypoglycemia and long-term complications because of the accumulations of metabolic intermediates. Bezafibrate, a pan-peroxisome proliferator-activated receptor (PPAR) agonist, was administered in the context of genome editing with a zinc-finger nuclease-containing vector (AAV-ZFN) and a G6Pase donor vector (AAV-RoG6P). Bezafibrate treatment increased survival and decreased liver size (liver/body mass, p < 0.05) in combination with genome editing. Blood glucose has higher (p < 0.05) after 4 h of fasting, and liver glycogen accumulation (p < 0.05) was lower in association with higher G6Pase activity (p < 0.05). Furthermore, bezafibrate-treated mice had increased numbers of G6PC transgenes (p < 0.05) and higher ZFN activity (p < 0.01) in the liver compared with controls. PPAR-α expression was increased and PPAR-γ expression was decreased in bezafibrate-treated mice. Therefore, bezafibrate improved hepatocellular abnormalities and increased the transduction efficiency of AAV vector-mediated genome editing in liver, whereas higher expression of G6Pase corrected molecular signaling in GSD Ia. Taken together, bezafibrate shows promise as a drug for increasing AAV vector-mediated genome editing.
Collapse
Affiliation(s)
- Hye-Ri Kang
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Lauren Waskowicz
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrea M. Seifts
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Dustin J. Landau
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah P. Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding author: Dwight D. Koeberl, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Box 103856, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Massafra V, Pellicciari R, Gioiello A, van Mil SW. Progress and challenges of selective Farnesoid X Receptor modulation. Pharmacol Ther 2018; 191:162-177. [DOI: 10.1016/j.pharmthera.2018.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Feng L, Yuen YL, Xu J, Liu X, Chan MYC, Wang K, Fong WP, Cheung WT, Lee SST. Identification and characterization of a novel PPARα-regulated and 7α-hydroxyl bile acid-preferring cytosolic sulfotransferase mL-STL (Sult2a8). J Lipid Res 2017; 58:1114-1131. [PMID: 28442498 DOI: 10.1194/jlr.m074302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/19/2017] [Indexed: 12/25/2022] Open
Abstract
PPARα has been known to play a pivotal role in orchestrating lipid, glucose, and amino acid metabolism via transcriptional regulation of its target gene expression during energy deprivation. Recent evidence has also suggested that PPARα is involved in bile acid metabolism, but how PPARα modulates the homeostasis of bile acids during fasting is still not clear. In a mechanistic study aiming to dissect the spectrum of PPARα target genes involved in metabolic response to fasting, we identified a novel mouse gene (herein named mL-STL for mouse liver-sulfotransferase-like) that shared extensive homology with the Sult2a subfamily of a superfamily of cytosolic sulfotransferases, implying its potential function in sulfonation. The mL-STL gene expressed predominantly in liver in fed state, but PPARα was required to sustain its expression during fasting, suggesting a critical role of PPARα in regulating the mL-STL-mediated sulfonation during fasting. Functional studies using recombinant His-tagged mL-STL protein revealed its narrow sulfonating activities toward 7α-hydroxyl primary bile acids, including cholic acid, chenodeoxycholic acid, and α-muricholic acid, and thus suggesting that mL-STL may be the major hepatic bile acid sulfonating enzyme in mice. Together, these studies identified a novel PPARα-dependent gene and uncovered a new role of PPARα as being an essential regulator in bile acid biotransformation via sulfonation during fasting.
Collapse
Affiliation(s)
- Lu Feng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Yee-Lok Yuen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Jian Xu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Xing Liu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Martin Yan-Chun Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Kai Wang
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Wing-Ping Fong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Wing-Tai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Susanna Sau-Tuen Lee
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|