1
|
Li D, Zhang W, Fu H, Wang X, Tang Y, Huang C. DL-3- n-butylphthalide attenuates doxorubicin-induced acute cardiotoxicity via Nrf2/HO-1 signaling pathway. Heliyon 2024; 10:e27644. [PMID: 38486757 PMCID: PMC10938138 DOI: 10.1016/j.heliyon.2024.e27644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic drug known to cause dose-dependent myocardial toxicity, which limits its clinical potential. DL-3-n-butylphthalide (NBP), a substance extracted from celery seed species, has a number of pharmacological properties, such as antioxidant, anti-inflammatory, and anti-apoptotic actions. However, whether NBP can protect against DOX-induced acute myocardial toxicity is still unclear. Therefore, this study was designed to investigate the potential protective effects of NBP against DOX-induced acute myocardial injury and its underlying mechanism. By injecting 15 mg/kg of DOX intraperitoneally, eight-week-old male C57BL6 mice suffered an acute myocardial injury. The treatment group of mice received 80 mg/kg NBP by gavage once daily for 14 days. To mimic the cardiotoxicity of DOX, 1uM DOX was administered to H9C2 cells in vitro. In comparison to the DOX group, the results showed that NBP improved cardiac function and decreased serum levels of cTnI, LDH, and CK-MB. Additionally, HE staining demonstrated that NBP attenuated cardiac fibrillar lysis and breakage in DOX-treated mouse hearts. Western blotting assay and immunofluorescence staining suggested that NBP attenuated DOX-induced oxidative stress, apoptosis, and inflammation both in vivo and in vitro. Mechanistically, NBP significantly upregulated the Nrf2/HO-1 signaling pathway, while the Nrf2 inhibitor ML385 prevented NBP from protecting the myocardium from DOX-induced myocardial toxicity in vitro. In conclusion, Our results indicate that NBP alleviates DOX-induced myocardial toxicity by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Dengke Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| |
Collapse
|
2
|
Jiang T, Li S, Xu B, Liu K, Qiu T, Dai H. IKVAV peptide-containing hydrogel decreases fibrous scar after spinal cord injury by inhibiting fibroblast migration and activation. Behav Brain Res 2023; 455:114683. [PMID: 37751807 DOI: 10.1016/j.bbr.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
Fibrous scar is one of the major factors that hinder functional recovery in patients with spinal cord injury (SCI). Studies have shown that the laminin α1 peptide chain ile-les-val-ala-Val (IKVAV) promoted axonal growth and motor function recovery in rats after SCI. However, whether IKVAV could ameliorate SCI via reducing the formation of fibrous scar was not clear. A SCI model was constructed by transecting the rat spinal cord with a scalpel and implanting poly (N-propan-2-ylprop-2-enamide) (PNIPAM)-b-poly (AC-PEG-COOH) (PNPP) or PNIPAM-b-poly (AC-PEG-IKVAV) (PNPP-IKVAV) hydrogel. 14 days later hematoxylin-eosin staining and immunohistochemical staining were used to assess the effect of PNPP-IKVAV on scar formation. The effect of PNPP-IKVAV on endoplasmic reticulum (ER) stress was investigated by immunohistochemical staining. NIH-3T3 cells were used for in vitro scratching experiments and a transforming growth factor 1 (TGF-β1) activation model was constructed to assess the role of PNPP-IKVAV. In this study, PNPP-IKVAV inhibited fibroblast migration and suppressed TGF-β1 activation and ER stress (ERS) to reduce the extracellular matrix secretion by fibroblasts.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Shitong Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Benchang Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Institut WUT-AWU, Wuhan University of Technology, Wuhan 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Institut WUT-AWU, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China.
| |
Collapse
|
3
|
Wang A, Jia B, Zhang X, Huo X, Chen J, Gui L, Cai Y, Guo Z, Han Y, Peng Z, Jing P, Chen Y, Liu Y, Yang Y, Wang F, Sun Z, Li T, Sun H, Yuan H, Shao H, Gao L, Zhang P, Wang F, Cao X, Shi W, Li C, Yang J, Zhang H, Wang F, Deng J, Liu Y, Deng W, Song C, Chen H, He L, Zhao H, Li X, Yang H, Zhou Z, Wang Y, Miao Z. Efficacy and Safety of Butylphthalide in Patients With Acute Ischemic Stroke: A Randomized Clinical Trial. JAMA Neurol 2023; 80:851-859. [PMID: 37358859 PMCID: PMC10294018 DOI: 10.1001/jamaneurol.2023.1871] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/07/2023] [Indexed: 06/27/2023]
Abstract
Importance DL-3-n-butylphthalide (NBP) is a drug for treating acute ischemic stroke and may play a neuroprotective role by acting on multiple active targets. The efficacy of NBP in patients with acute ischemic stroke receiving reperfusion therapy remains unknown. Objective To assess the efficacy and safety of NBP in patients with acute ischemic stroke receiving reperfusion therapy of intravenous thrombolysis and/or endovascular treatment. Design, Setting, and Participants This multicenter, double-blind, placebo-controlled, parallel randomized clinical trial was conducted in 59 centers in China with 90-day follow-up. Of 1236 patients with acute ischemic stroke, 1216 patients 18 years and older diagnosed with acute ischemic stroke with a National Institutes of Health Stroke Scale score ranging from 4 to 25 who could start the trial drug within 6 hours from symptom onset and received either intravenous recombinant tissue plasminogen activator (rt-PA) or endovascular treatment or intravenous rt-PA bridging to endovascular treatment were enrolled, after excluding 20 patients who declined to participate or did not meet eligibility criteria. Data were collected from July 1, 2018, to May 22, 2022. Interventions Within 6 hours after symptom onset, patients were randomized to receive NBP or placebo in a 1:1 ratio. Main Outcomes and Measures The primary efficacy outcome was the proportion of patients with a favorable outcome based on 90-day modified Rankin Scale score (a global stroke disability scale ranging from 0 [no symptoms or completely recovered] to 6 [death]) thresholds of 0 to 2 points, depending on baseline stroke severity. Results Of 1216 enrolled patients, 827 (68.0%) were men, and the median (IQR) age was 66 (56-72) years. A total of 607 were randomly assigned to the butylphthalide group and 609 to the placebo group. A favorable functional outcome at 90 days occurred in 344 patients (56.7%) in the butylphthalide group and 268 patients (44.0%) in the placebo group (odds ratio, 1.70; 95% CI, 1.35-2.14; P < .001). Serious adverse events within 90 days occurred in 61 patients (10.1%) in the butylphthalide group and 73 patients (12.0%) in the placebo group. Conclusions and Relevance Among patients with acute ischemic stroke receiving intravenous thrombolysis and/or endovascular treatment, NBP was associated with a higher proportion of patients achieving a favorable functional outcome at 90 days compared with placebo. Trial Registration ClinicalTrials.gov Identifier: NCT03539445.
Collapse
Affiliation(s)
- Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baixue Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuelei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaochuan Huo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianhuang Chen
- Department of Neurology, Liuyang Jili Hospital, Hunan, China
| | - Liqiang Gui
- Department of Interventional Neuroradiology, Langfang Changzheng Hospital, Hebei, China
| | - Yefeng Cai
- Department of Neurology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangdong, China
| | - Zaiyu Guo
- Department of Neurosurgery, Tianjin TEDA Hospital, Tianjin, China
| | - Yuqing Han
- Department of Neurology, Tianjin Xiqing Hospital, Tianjin, China
| | - Zhaolong Peng
- Department of Neurosurgery, Nanyang Nanshi Hospital, Henan, China
| | - Ping Jing
- Department of Neurology, Central Hospital of Wuhan, Hubei, China
| | - Yongjun Chen
- Department of Neurology, University of South China Affiliated Nanhua Hospital, Huna, China
| | - Yan Liu
- Department of Neurology, Jingjiang People's Hospital, Jiangsu, China
| | - Yong Yang
- Department of Neurology, Jilin Qianwei Hospital, Jilin, China
| | - Fengyun Wang
- Department of Neurology, Liaocheng Brain Hospital, Shandong, China
| | - Zengqiang Sun
- Department of Neurology, Zibo Municipal Hospital, Shandong, China
| | - Tong Li
- Department of Neurology, The Second People's Hospital of Nanning, Guangxi, China
| | - Hongxia Sun
- Department of Neurology, Jilin Province People's Hospital, Jilin, China
| | - Haicheng Yuan
- Department of Neurology, Qingdao Central Hospital, Shandong, China
| | - Hongmin Shao
- Department of Neurology, Tangshan Fengrun District People's Hospital, Tangshan, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Peipei Zhang
- Department of Neurology, People's Hospital of Nanpi, Hebei, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, China
| | - Xiangyang Cao
- Department of Neurology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Jiangsu, China
| | - Wanchao Shi
- Department of Neurosurgery, Peking University BinHai Hospital, Tianjin, China
| | - Changmao Li
- Department of Neurology, Loudi Central Hospital, Hunan, China
| | - Jianwen Yang
- Department of Interventional Neuroradiology, The People's Hospital of Hunan Province, Hunan, China
| | - Hong Zhang
- Department of Neurology, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Liaoning, China
| | - Feng Wang
- Department of Neurology, Shanghai Seventh People's Hospital, Shanghai, China
| | - Jianzhong Deng
- Department of Neurology, Anyang District Hospital, Henan, China
| | - Yanjie Liu
- Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Weisheng Deng
- Department of Neurology, Meizhou People's Hospital, Guangdong, China
| | - Cunfeng Song
- Department of Interventional Neuroradiology, Liaocheng Third People's Hospital, Shandong, China
| | - Huisheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Liaoning, China
| | - Li He
- Department of Neurology, West China Hospital of Sichuan University, Sichuan, China
| | - Hongdong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Xianfeng Li
- Department of Neurology, The First People’s Hospital of Nanning City, Guangxi, China
| | - Hong Yang
- Department of Neurology, The Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Zhiming Zhou
- Department of Neurology, Yijishan Hospital of Wannan Medical College, Anhui, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongrong Miao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Tang S, Wang K, Qi X. Neuro-protective effects of n-butylphthalide on carbon monoxide poisoning rats by modulating IL-2, AKT and BCL-2. J Toxicol Sci 2023; 48:495-505. [PMID: 37661366 DOI: 10.2131/jts.48.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Acute carbon monoxide poisoning (CO-poisoning) causes neurotoxicity by inducing necrosis, apoptosis, lipid peroxidation, and oxidative stress. DL-3-n-butylphthalide (NBP) is a synthetic compound originally extracted from the seeds of Chinese celery and based on pure l-3-n-butylphthalide. In ischemia/reperfusion, it exerts neuroprotective effects through its anti-apoptotic, anti-necrotic and antioxidant properties, and activation of pro-survival pathways. Our study performed bioinformatic analysis to identify the differential expression genes. CO-poisoning patients' blood was collected to confirm the findings. Male rats were exposed to CO 3000 ppm for 40 min, and NBP (100 mg/kg/day) was continuously injected intraperitoneally immediately after poisoning and for the next 15 days. After NBP treatment, the rats were evaluated by Morris water maze test. At the end of experiments, blood and brain tissues of the rats were collected to evaluate the expression levels of IL-2, AKT and BCL-2. We found that IL-2 was elevated in CO-poisoning patients and animal models. Brain tissue damage in CO-poisoning rats was significantly alleviated after NBP treatment. Furthermore, NBP increased the expression of IL-2, AKT and BCL-2 in rat CO-poisoning model. NBP showed neuroprotective action by increasing IL-2, AKT, and BCL-2 expressions.
Collapse
Affiliation(s)
- Shengtao Tang
- The Second School of Clinical Medicine, Southern Medical University, China
- Department of Neurology, The First People's Hospital of Chenzhou, China
| | - Kunyu Wang
- Department of Neurology, The First Teaching Hospital of Jilin University, China
| | - Xiaokun Qi
- The Second School of Clinical Medicine, Southern Medical University, China
- Department of Neurology, The Sixth Medical Center of the General Hospital of the Chinese People's Liberation Army, China
| |
Collapse
|
5
|
Hu R, Yao C, Li Y, Qu J, Yu S, Han Y, Chen G, Tang J, Wei H. Polystyrene nanoplastics promote CHIP-mediated degradation of tight junction proteins by activating IRE1α/XBP1s pathway in mouse Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114332. [PMID: 36446169 DOI: 10.1016/j.ecoenv.2022.114332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) widely exist in human living environment and enter the body through water, food chain and breathing. Several studies have shown that MPs or NPs disrupt the blood-testis barrier in rodents. However, the molecular mechanism by which MPs and NPs damage the blood-testis barrier remains unclear. In the present study, our aim was to investigate the molecular mechanism of the destruction of blood-testis barrier induced by polystyrene (PS)-NPs. Mice were treated with 50 μg/kg·day PS-NPs by tail vein injection once daily for two consecutive days. The results showed that PS-NPs exposure significantly decreased the levels of tight junction (TJ) proteins ZO-2, occludin and claudin-11 in testis of mice. In vitro, we used TM4 Sertoli cells to explore the underlying mechanism of the decrease in TJ proteins induced by PS-NPs. We found that PS-NPs activated IRE1α and induced its downstream XBP1 splicing, which in turn elevated the expression of the E3 ubiquitin ligase CHIP, then CHIP triggers proteasomal degradation of ZO-2, occludin, and claudin-11 proteins. Our findings suggest that IRE1α/XBP1s/CHIP pathway is a pivotal mechanism of TJ proteins degradation induced by PS-NPs in mouse Sertoli cells. In conclusion, our results reveal that the degradation of TJ proteins is one of the mechanisms of blood-testis barrier destruction caused by acute exposure to PS-NPs.
Collapse
Affiliation(s)
- Runzhi Hu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | - Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
6
|
The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells 2022; 11:cells11213339. [PMID: 36359735 PMCID: PMC9658791 DOI: 10.3390/cells11213339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Proteostasis (protein homeostasis) is critical for cellular as well as organismal survival. It is strictly regulated by multiple conserved pathways including the ubiquitin-proteasome system, autophagy, the heat shock response, the integrated stress response, and the unfolded protein response. These overlapping proteostasis maintenance modules respond to various forms of cellular stress as well as organismal injury. While proteostasis restoration and ultimately organism survival is the main evolutionary driver of such a regulation, unresolved disruption of proteostasis may engage pro-apoptotic mediators of those pathways to eliminate defective cells. In this review, we discuss proteostasis contributions to the pathogenesis of traumatic spinal cord injury (SCI). Most published reports focused on the role of proteostasis networks in acute/sub-acute tissue damage post-SCI. Those reports reveal a complex picture with cell type- and/or proteostasis mediator-specific effects on loss of neurons and/or glia that often translate into the corresponding modulation of functional recovery. Effects of proteostasis networks on such phenomena as neuro-repair, post-injury plasticity, as well as systemic manifestations of SCI including dysregulation of the immune system, metabolism or cardiovascular function are currently understudied. However, as potential interventions that target the proteostasis networks are expected to impact many cell types across multiple organ systems that are compromised after SCI, such therapies could produce beneficial effects across the wide spectrum of highly variable human SCI.
Collapse
|
7
|
Deng L, Lv JQ, Sun L. Experimental treatments to attenuate blood spinal cord barrier rupture in rats with traumatic spinal cord injury: A meta-analysis and systematic review. Front Pharmacol 2022; 13:950368. [PMID: 36081932 PMCID: PMC9445199 DOI: 10.3389/fphar.2022.950368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Traumatic spinal cord injury (t-SCI) is a severe injury that has a devastating impact on neurological function. Blood spinal cord barrier (BSCB) destruction following SCI aggravates the primary injury, resulting in a secondary injury. A series of experimental treatments have been proven to alleviate BSCB destruction after t-SCI. Methods: From a screen of 1,189 papers, which were retrieved from Pubmed, Embase, and Web of science, we identified 28 papers which adhered to strict inclusion and exclusion criteria. Evans blue (EB) leakage on the first day post-SCI was selected as the primary result. Secondary outcomes included the expression of tight junction (TJ) proteins and adhesion junction (AJ) proteins in protein immunoblotting. In addition, we measured functional recovery using the Basso, Beattie, Besnahan (BBB) score and we analyzed the relevant mechanisms to explore the similarities between different studies. Result: The forest plot of Evans blue leakage (EB leakage) reduction rate: the pooled effect size of the 28 studies was 0.54, 95% CI: 0.47–0.61, p < 0.01. This indicates that measures to mitigate BSCB damage significantly improved in reducing overall EB leakage. In addition TJ proteins (Occludin, Claudin-5, and ZO-1), AJ proteins (P120 and β-catenin) were significantly upregulated after treatment in all publications. Moreover, BBB scores were significantly improved. Comprehensive studies have shown that in t-SCI, inhibition of matrix metalloproteinases (MMPs) is the most commonly used mechanism to mitigate BSCB damage, followed by endoplasmic reticulum (ER) stress and the Akt pathway. In addition, we found that bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos), which inhibit the TIMP2/MMP signaling pathway, may be the most effective way to alleviate BSCB injury. Conclusion: This study systematically analyzes the experimental treatments and their mechanisms for reducing BSCB injury in the early stage of t-SCI. BMSC-Exos, which inhibit MMP expression, are currently the most effective therapeutic modality for alleviating BSCB damage. In addition, the regulation of MMPs in particular as well as the Akt pathway and the ER stress pathway play important roles in alleviating BSCB injury. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022324794.
Collapse
|
8
|
Lu X, Lv C, Zhao Y, Wang Y, Li Y, Ji C, Wang Z, Ye W, Yu S, Bai J, Cai W. TSG-6 released from adipose stem cells-derived small extracellular vesicle protects against spinal cord ischemia reperfusion injury by inhibiting endoplasmic reticulum stress. Stem Cell Res Ther 2022; 13:291. [PMID: 35831906 PMCID: PMC9281104 DOI: 10.1186/s13287-022-02963-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Spinal cord ischemia reperfusion injury (SCIRI) is a complication of aortic aneurysm repair or spinal cord surgery that is associated with permanent neurological deficits. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been shown to be potential therapeutic options for improving motor functions after SCIRI. Due to their easy access and multi-directional differentiation potential, adipose‐derived stem cells (ADSCs) are preferable for this application. However, the effects of ADSC-derived sEVs (ADSC-sEVs) on SCIRI have not been reported. Results We found that ADSC-sEVs inhibited SCIRI-induced neuronal apoptosis, degradation of tight junction proteins and suppressed endoplasmic reticulum (ER) stress. However, in the presence of the ER stress inducer, tunicamycin, its anti-apoptotic and blood–spinal cord barrier (BSCB) protective effects were significantly reversed. We found that ADSC-sEVs contain tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) whose overexpression inhibited ER stress in vivo by modulating the PI3K/AKT pathway. Conclusions ADSC-sEVs inhibit neuronal apoptosis and BSCB disruption in SCIRI by transmitting TSG-6, which suppresses ER stress by modulating the PI3K/AKT pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02963-4.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.,Department of Orthopaedics, Dongtai Hospital Affiliated to Nantong University, Dongtai City, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Yuechao Zhao
- Department of Orthopedic Oncology, Changzheng Hospital, Secondary Military Medical University, Shanghai, China.,Department of Orthopedic, PLA Navy No.905 Hospital, Secondary Military Medical University, Shanghai, China
| | - Yufei Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Haining, Zhejiang, China
| | - Yao Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shunzhi Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, China.
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Jiangsu Province, Nanjing, 211166, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
9
|
Wang X, Jiang C, Zhang Y, Chen Z, Fan H, Zhang Y, Wang Z, Tian F, Li J, Yang H, Hao D. The promoting effects of activated olfactory ensheathing cells on angiogenesis after spinal cord injury through the PI3K/Akt pathway. Cell Biosci 2022; 12:23. [PMID: 35246244 PMCID: PMC8895872 DOI: 10.1186/s13578-022-00765-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the pro-angiogenic potential of olfactory ensheathing cells (OECs) activated by curcumin (CCM) and lipopolysaccharide (LPS) and the possible underlying mechanisms. METHODS Vascular endothelial cells or tissues were cultured and treated with conditioned medium (CM) extracted from activated OECs activated through the addition of LPS and CCM or unactivated controls. Concomitantly, the pro-angiogenic potential of OECs was assessed in vitro by aortic ring sprouting assay, endothelial wound healing assay, CCK-8 assay, and tube formation assay. Subsequently, the OECs were co-cultured with endothelial cells to evaluate their promoting effect on endothelial cell proliferation and migration following a mechanical scratch. Moreover, the spinal cord injury (SCI) model in rats was established, and the number of endothelial cells and vascular structure in the injured area after SCI was observed with OEC transplantation. Finally, the underlying mechanism was investigated by western blot analysis of phosphorylated kinase expression with or without the MK-2206 (Akt-inhibitor). RESULT The present results showed that the activated OECs can effectively promote vascular endothelial cells' proliferation, migration, and vessel-like structure formation. Strikingly, several pro-angiogenic growth factors such as VEGF-A and PDGF-AA, which facilitate vessel formation, were found to be significantly elevated in CM. In addition, the PI3K/Akt signaling pathway was found to be involved in pro-angiogenic events caused by activated OEC CM, displaying higher phosphorylation levels in cells. In contrast, the delivery of MK2206 can effectively abrogate all the positive effects. CONCLUSIONS OECs activated by LPS and CCM have a pro-angiogenic effect and can effectively promote angiogenesis and improve the microenvironment at the injury site when transplanted in the injured spinal cord. This potentiated ability of OECs to provide pro-angiogenic effects is likely mediated through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Hong Fan
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Yuyang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Department of Medicine, Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zhiyuan Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Fang Tian
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Jing Li
- Department of Orthopaedic, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| |
Collapse
|
10
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
11
|
Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021; 14:5713-5737. [PMID: 34764668 PMCID: PMC8576359 DOI: 10.2147/jir.s329864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic injury of the central nervous system, characterized by neurological dysfunction and locomotor disability. Although the underlying pathological mechanism of SCI is complex and remains unclear, the important role of neuroinflammation has been gradually unveiled in recent years. The inflammation process after SCI involves disruption of the blood–spinal cord barrier (BSCB), activation of gliocytes, infiltration of peripheral macrophages, and feedback loops between different cells. Thus, our first aim is to illustrate pathogenesis, related cells and factors of neuroinflammation after SCI in this review. Due to the good bioactivity of natural products derived from plants and medicinal herbs, these widely exist as food, health-care products and drugs in our lives. In the inflammation after SCI, multiple natural products exert satisfactory effects. Therefore, the second aim of this review is to sum up the effects and mechanisms of 25 natural compounds and 7 extracts derived from plants or medicinal herbs on neuroinflammation after SCI. Clarification of the SCI inflammation mechanism and a summary of the related natural products is helpful for in-depth research and drug development.
Collapse
Affiliation(s)
- Xue Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| |
Collapse
|
12
|
Zhou C, Hu S, Botchway BOA, Zhang Y, Liu X. Valproic Acid: A Potential Therapeutic for Spinal Cord Injury. Cell Mol Neurobiol 2021; 41:1441-1452. [PMID: 32725456 PMCID: PMC11448682 DOI: 10.1007/s10571-020-00929-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The lack of an effective pharmaceutical agent for spinal cord injury (SCI) is a current problematic situation for clinicians, as the rate of motor vehicle accidents among young adults is on the rise. SCI contributes to the high disability rate. Presently, evidences detailing the precise pathological mechanisms in SCI are limited, compounding to the unavailability of an effective treatment method. Surgery, though not a complete curative method, is useful in managing some of the associated symptoms of secondary SCI. Autophagy and inflammation are contributive factors to both exacerbation and improvement of SCI. The mammalian target of rapamycin (mTOR) signaling pathway is a key player in the regulation of inflammatory response and autophagy. Valproic acid (VPA), a clinically used antiepileptic drug, has been suggested to improve neurological conditions, including SCI. This report reviewed the correlation between mTOR and autophagy, as well as autophagy's role and the therapeutic effects of VPA in SCI. VPA regulates autophagy by potentially inhibiting mTORC1, a complex of mTOR, while also hindering inflammatory response. Conclusively, an effective treatment for SCI could lie in the timely regulation of mTOR signaling pathway, and VPA could be the potential drug that improves SCI owing to its propensity to regulate the mTOR signaling pathway.
Collapse
Affiliation(s)
- Conghui Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Songfeng Hu
- Department of Orthopedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang Province, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
13
|
Gao J, Khang M, Liao Z, Detloff M, Lee JS. Therapeutic targets and nanomaterial-based therapies for mitigation of secondary injury after spinal cord injury. Nanomedicine (Lond) 2021; 16:2013-2028. [PMID: 34402308 PMCID: PMC8411395 DOI: 10.2217/nnm-2021-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) and the resulting neurological trauma commonly result in complete or incomplete neurological dysfunction and there are few effective treatments for primary SCI. However, the following secondary SCI, including the changes of microvasculature, inflammatory response and oxidative stress around the injury site, may provide promising therapeutic targets. The advances of nanomaterials hold promise for delivering therapeutics to alleviate secondary SCI and promote functional recovery. In this review, we highlight recent achievements of nanomaterial-based therapy, specifically targeting blood-spinal cord barrier disruption, mitigation of the inflammatory response and lightening of oxidative stress after spinal cord injury.
Collapse
Affiliation(s)
- Jun Gao
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Minkyung Khang
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| | - Zhen Liao
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| | - Megan Detloff
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA 19129, USA
| | - Jeoung Soo Lee
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
14
|
Zheng B, Jin Y, Mi S, Xu W, Yang X, Hong Z, Wang Z. Dl-3-n-butylphthalide Attenuates Spinal Cord Injury via Regulation of MMPs and Junction Proteins in Mice. Neurochem Res 2021; 46:2297-2306. [PMID: 34086144 DOI: 10.1007/s11064-021-03361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
As a serious trauma of the neurological system, spinal cord injury (SCI) results in permanent disability, gives rise to immediate vascular damage and a wide range of matters that induce the breakage of blood spinal cord barrier (BSCB). SCI activates the expression of MMP-2/9, which are considered to accelerate the disruption of BSCB. Recent research shows that Dl-3-n-butylphthalide (NBP) exerted protective effects on blood spinal cord barrier in animals after SCI, but the underlying molecular mechanism of NBP on the BSCB undergoing SCI is unknown. Here, our research show that NBP inhibited the expression of MMP-2/9, then improved the permeability of BSCB following SCI. After the T9 level of spinal cord performed with a moderate injury, NBP was managed by intragastric administration and further performed once a day. NBP remarkably improved the permeability of BSCB and junction proteins degration, then promoted locomotion recovery. The protective effect of NBP on BSCB destruction is related to the regulation of MMP-2/9 induced by SCI. Moreover, NBP obviously inhibited the MMP-2/9 expression and junction proteins degradation in microvascular endothelial cells. In conclusion, our results indicate that MMP-2/9 are relevant to the breakdown of BSCB, NBP impairs BSCB destruction through inhibiting MMP-2/9 and promotes functional recovery subjected to SCI. NBP is likely to become a new nominee as a therapeutic to treat SCI via a transigent BSCB.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Yanjun Jin
- Nursing Department, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Shuang Mi
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Wei Xu
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Xiangdong Yang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China.
| | - Zhangfu Wang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Huang C, Zhang W, Chu F, Qian H, Wang Y, Qi F, Ye M, Zhou J, Lin Z, Dong C, Wang X, Wang Q, Jin H. Patchouli Alcohol Improves the Integrity of the Blood-Spinal Cord Barrier by Inhibiting Endoplasmic Reticulum Stress Through the Akt/CHOP/Caspase-3 Pathway Following Spinal Cord Injury. Front Cell Dev Biol 2021; 9:693533. [PMID: 34368142 PMCID: PMC8339579 DOI: 10.3389/fcell.2021.693533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) is a destructive and complex disorder of the central nervous system (CNS) for which there is no clinical treatment. Blood-spinal cord barrier (BSCB) rupture is a critical event in SCI that aggravates nerve injury. Therefore, maintaining the integrity of the BSCB may be a potential method to treat SCI. Here, we showed that patchouli alcohol (PA) exerts protective effects against SCI. We discovered that PA significantly prevented hyperpermeability of the BSCB by reducing the loss of tight junctions (TJs) and endothelial cells. PA also suppressed endoplasmic reticulum stress and apoptosis in vitro. Furthermore, in a rat model of SCI, PA effectively improved neurological deficits. Overall, these results prove that PA exerts neuroprotective effects by maintaining BSCB integrity and thus be a promising candidate for SCI treatment.
Collapse
Affiliation(s)
- Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - FeiFan Chu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Qian
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fangzhou Qi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengke Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaying Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - ChenLin Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma 2021; 38:1203-1224. [PMID: 33292072 DOI: 10.1089/neu.2020.7413] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The blood-spinal cord barrier (BSCB), a physical barrier between the blood and spinal cord parenchyma, prevents the toxins, blood cells, and pathogens from entering the spinal cord and maintains a tightly controlled chemical balance in the spinal environment, which is necessary for proper neural function. A BSCB disruption, however, plays an important role in primary and secondary injury processes related to spinal cord injury (SCI). After SCI, the structure of the BSCB is broken down, which leads directly to leakage of blood components. At the same time, the permeability of the BSCB is also increased. Repairing the disruption of the BSCB could alleviate the SCI pathology. We review the morphology and pathology of the BSCB and progression of therapeutic methods targeting BSCB in SCI.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Kai-Feng Wang
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Wei-Wei Xia
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Zhen-Qi Zhu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Chun-Ru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin-Feng Li
- Department of Spinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hai-Ying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| |
Collapse
|
17
|
Ying X, Xie Q, Yu X, Li S, Wu Q, Chen X, Yue J, Zhou K, Tu W, Jiang S. Water treadmill training protects the integrity of the blood-spinal cord barrier following SCI via the BDNF/TrkB-CREB signalling pathway. Neurochem Int 2021; 143:104945. [PMID: 33359781 DOI: 10.1016/j.neuint.2020.104945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022]
Abstract
Following spinal cord injury (SCI), destruction of the blood-spinal cord barrier (BSCB) leads to increased microvascular permeability and tissue oedema. The BSCB, formed by a dense network of tight junctions (TJs) and adhesion junctions (AJs) is considered a therapeutic target. Most studies have focused on the effect of drug therapy on the neurovascular system after SCI, ignoring the protection and functional recovery of the vascular system by exercise training. Previously, we indicated that water treadmill training (TT) has a protective effect on the BSCB after SCI, but the specific molecular mechanism of the effect of TT on BSCB is still not clear. In this study, we used a specific inhibitor of TrkB (ANA-12) to explore whether the BDNF/TrkB-CREB signalling pathway is involved in TT-mediated BSCB protection after SCI. A New York University (NYU) impactor was used to establish the SCI model. Rats in the SI (Sham + ANA-12), IM (SCI + ANA-12) and ITM (SCI + TT + ANA-12) groups were injected with ANA-12 (0.5 mg/kg) daily, and rats in TM (SCI + TT) and ITM (SCI + TT + ANA-12) groups were treated with water TT for 7 or 14 d. The degree of neurological deficit, water content, BSCB permeability, protein expression and ultrastructure of vascular endothelial cells were assessed by the Basso-Beattie-Bresnahan (BBB) motor rating scale, Evans blue (EB), Western blot (WB) experiments, immunofluorescence and transmission electron microscopy (TEM). Our results suggest that TT upregulates the BDNF/TrkB-CREB signalling pathway following SCI. The BDNF/TrkB-CREB signalling pathway is involved in the protection of the BSCB. Application of the inhibitor blocked the protective effect of TT on the BSCB. We concluded that TT ameliorated SCI-induced BSCB impairment by upregulating the BDNF/TrkB-CREB signalling pathways.
Collapse
Affiliation(s)
- Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Qingfeng Xie
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Xiaolan Yu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Qiaoyun Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Xiaolong Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Department of Intelligent Rehabilitation International (cross-strait) Alliance of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
18
|
Ye LX, An NC, Huang P, Li DH, Zheng ZL, Ji H, Li H, Chen DQ, Wu YQ, Xiao J, Xu K, Li XK, Zhang HY. Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury. Neural Regen Res 2021; 16:765-771. [PMID: 33063740 PMCID: PMC8067950 DOI: 10.4103/1673-5374.295347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The blood-spinal cord barrier plays a vital role in recovery after spinal cord injury. The neurovascular unit concept emphasizes the relationship between nerves and vessels in the brain, while the effect of the blood-spinal cord barrier on the neurovascular unit is rarely reported in spinal cord injury studies. Mouse models of spinal cord injury were established by heavy object impact and then immediately injected with platelet-derived growth factor (80 μg/kg) at the injury site. Our results showed that after platelet-derived growth factor administration, spinal cord injury, neuronal apoptosis, and blood-spinal cord barrier permeability were reduced, excessive astrocyte proliferation and the autophagy-related apoptosis signaling pathway were inhibited, collagen synthesis was increased, and mouse locomotor function was improved. In vitro, human umbilical vein endothelial cells were established by exposure to 200 μM H2O2. At 2 hours prior to injury, in vitro cell models were treated with 5 ng/mL platelet-derived growth factor. Our results showed that expression of blood-spinal cord barrier-related proteins, including Occludin, Claudin 5, and β-catenin, was significantly decreased and autophagy was significantly reduced. Additionally, the protective effects of platelet-derived growth factor could be reversed by intraperitoneal injection of 80 mg/kg chloroquine, an autophagy inhibitor, for 3 successive days prior to spinal cord injury. Our findings suggest that platelet-derived growth factor can promote endothelial cell repair by regulating autophagy, improve the function of the blood-spinal cord barrier, and promote the recovery of locomotor function post-spinal cord injury. Approval for animal experiments was obtained from the Animal Ethics Committee, Wenzhou Medical University, China (approval No. wydw2018-0043) in July 2018.
Collapse
Affiliation(s)
- Lu-Xia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ning-Chen An
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Peng Huang
- Department of Pharmacy, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Duo-Hui Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhi-Long Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Hao Li
- Department of Orthopedics Surgery, Lishui People's Hospital, The sixth affiliated hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan-Qing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hong-Yu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Ying X, Xie Q, Li S, Yu X, Zhou K, Yue J, Chen X, Tu W, Yang G, Jiang S. Water treadmill training attenuates blood-spinal cord barrier disruption in rats by promoting angiogenesis and inhibiting matrix metalloproteinase-2/9 expression following spinal cord injury. Fluids Barriers CNS 2020; 17:70. [PMID: 33292360 PMCID: PMC7722327 DOI: 10.1186/s12987-020-00232-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/17/2020] [Indexed: 01/05/2023] Open
Abstract
Background The permeability of the blood-spinal cord barrier (BSCB) is mainly determined by junction complexes between adjacent endothelial cells (ECs), including tight junctions (TJs) and adherens junctions (AJs), which can be severely damaged after spinal cord injury (SCI). Exercise training is a recognized method for the treatment of SCI. The destruction of the BSCB mediated by matrix metalloproteinases (MMPs) leads to inflammation, neurotoxin production, and neuronal apoptosis. The failure of new blood vessels to effectively regenerate is also an important cause of delayed recovery after SCI. For the first time, we introduced water treadmill training (TT) to help SCI rats successfully exercise and measured the effects of TT in promoting recovery after SCI and the possible mechanisms involved. Methods Sprague-Dawley (200–250 g) rats were randomly divided into the following three groups: sham operated, SCI, and SCI + TT. Animals were sacrificed at 7 or 14 days post-surgery. The degree of neurological deficit, tissue morphology and BSCB permeability were assessed by the Basso-Beattie-Bresnahan (BBB) motor function scale and appropriate staining protocols, and apoptosis, protein expression and vascular EC ultrastructure were assessed by TUNEL staining, Western blotting, immunofluorescence and transmission electron microscopy (TEM). Results Our experiments showed that TT reduced permeability of the BSCB and decreased structural tissue damage. TT significantly improved functional recovery when compared with that in the SCI group; TJ and AJ proteins expression increased significantly after TT, and training reduced apoptosis induced by SCI. TT could promote angiogenesis, and MMP-2 and MMP-9 expression was significantly inhibited by TT. Conclusions The results of this study indicate that TT promotes functional recovery for the following reasons: TT (1) protects residual BSCB structure from further damage, (2) promotes vascular regeneration, and (3) inhibits MMP-2/9 expression to mitigate BSCB damage.
Collapse
Affiliation(s)
- Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Qingfeng Xie
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Xiaolan Yu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Xiaolong Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China. .,Department of Intelligent Rehabilitation International (Cross-Strait), Alliance of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China.
| |
Collapse
|
20
|
Fang M, Yuan J, Jiang S, Hu Y, Pan S, Zhu J, Fu X, Jiang H, Lin J, Li P, Lin Z. Dl-3-n-butylphthalide attenuates hypoxic-ischemic brain injury through inhibiting endoplasmic reticulum stress-induced cell apoptosis and alleviating blood-brain barrier disruption in newborn rats. Brain Res 2020; 1747:147046. [PMID: 32763236 DOI: 10.1016/j.brainres.2020.147046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/19/2020] [Accepted: 08/01/2020] [Indexed: 12/09/2022]
Abstract
Dl-3-n-butylphthalide (NBP) has been demonstrated to exert neuroprotective effects in experimental models and human patients. This study was performed to assess the therapeutic effects and the underlying molecular mechanisms of NBP in a neonatal hypoxic-ischemic rat model. The results showed that NBP treatment significantly reduced the infarct volume, improved histological recovery, decreased neuronal cell loss, enhanced neuronal cell rehabilitation, promoted neurite growth and decreased white matter injury. In addition, NBP treatment effectively improved long-term neurobehavioral development and prognosis after HI injury. We further demonstrated an inhibitory effect of NBP on endoplasmic reticulum (ER) stress-induced apoptosis, evidenced by reduction in ER stress-related protein expressions (GRP78, XBP-1, PDI and CHOP), decrease in TUNEL-positive cells, down-regulation in pro-apoptosis protein (Bax and cleaved caspase-3), up-regulation in anti-apoptosis protein (Bcl-2). Moreover, NBP exerted a protective effect in blood-brain barrier disruption, which ameliorated brain edema and reduced the degeneration of the tight junction proteins (Occludin and Claudin-5) and adherens junction proteins (P120-Catenin, VE-Cadherin and β-Catenin). Overall, our findings demonstrated that NBP treatment attenuated HI brain injury through inhibiting ER stress-induced apoptosis and alleviating blood-brain barrier disruption in newborn rats. This work provides an effective therapeutic strategy to reduce brain damage and enhance recovery after neonatal HI brain injury.
Collapse
Affiliation(s)
- Mingchu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Junhui Yuan
- Department of Neonatology, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang 317500, China
| | - Shishuang Jiang
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yingying Hu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shulin Pan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huai Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Peijun Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Neonatology, Taizhou Maternal and Child Health Care Hospital of Wenzhou Medical University, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
21
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Patnaik R, Wiklund L, Sharma HS. Co-administration of TiO 2-nanowired dl-3-n-butylphthalide (dl-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury. PROGRESS IN BRAIN RESEARCH 2020; 258:101-155. [PMID: 33223034 DOI: 10.1016/bs.pbr.2020.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Qu M, Zhao J, Zhao Y, Sun J, Liu L, Wei L, Zhang Y. Vascular protection and regenerative effects of intranasal DL-3-N-butylphthalide treatment after ischaemic stroke in mice. Stroke Vasc Neurol 2020; 6:74-79. [PMID: 32958696 PMCID: PMC8005898 DOI: 10.1136/svn-2020-000364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate the effects of DL-3-N-butylphthalide (NBP) via intranasal delivery after ischaemic stroke in mice. Methods C57BL/6 mice were divided into three groups: sham, stroke with vehicle and stroke with NBP treatment. Ischaemic stroke was induced by permanent ligation of right middle cerebral artery with 7 min common carotid artery occlusion. NBP (100 mg/kg) or vehicle was intranasally administered at 1 hour after stroke and repeated once a day until sacrifice. Bromodeoxyuridine (BrdU) (50 mg/kg/day) was given from the third day until sacrifice. Sensorimotor function was tested during 1–21 days after stroke. Local cerebral blood flow in the ischaemic and peri-infarct regions was measured using laser Doppler flowmetry before, during and 3 days after ischaemia. Expressions of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase as well as regenerative marker BrdU in the peri-infarct region were analysed by western blotting and immunohistochemical methods. Results Compared with the vehicle group, NBP treatment significantly increased the VEGF expression in the poststroke brain. Stroke mice that received NBP showed significantly less vascular damage after stroke and more new neurons and blood vessels in the peri-infarct region at 21 days after stroke. In the adhesive removal test, the sensorimotor function of stroke mice treated with NBP performed significantly better at 1, 3 and 7 days after stroke compared with vehicle controls. Conclusion Daily intranasal NBP treatment provides protective and neurogenic/angiogenic effects in the poststroke brain, accompanied with functional improvements after a focal ischaemic stroke in mice.
Collapse
Affiliation(s)
- Mengyao Qu
- Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China.,Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jingjie Zhao
- Chinese Traditional Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Yingying Zhao
- Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jinmei Sun
- Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Liping Liu
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Neurology, Tiantan Clinical Trial and Research Center for Stroke, Beijing, China
| | - Ling Wei
- Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yongbo Zhang
- Neurology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| |
Collapse
|
23
|
Marco-Contelles J, Zhang Y. From Seeds of Apium graveolens Linn. to a Cerebral Ischemia Medicine: The Long Journey of 3- n-Butylphthalide. J Med Chem 2020; 63:12485-12510. [PMID: 32672958 DOI: 10.1021/acs.jmedchem.0c00887] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
3-n-Butylphthalide (NBP) as well as its derivatives and analogues (NBPs), in racemic or enantiomerically pure forms, possess potent and diverse pharmacological properties and have shown a great potential therapeutic interest for many human conditions, especially for cerebral ischemia. This Perspective outlines the synthesis and therapeutic applications of NBPs.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006-Madrid, Spain
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China.,Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
24
|
Tao L, Liu X, Da W, Tao Z, Zhu Y. Pycnogenol achieves neuroprotective effects in rats with spinal cord injury by stabilizing the mitochondrial membrane potential. Neurol Res 2020; 42:597-604. [PMID: 32497471 DOI: 10.1080/01616412.2020.1773610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In this study, we aimed to verify the neuroprotective effects of pycnogenol (PYC) on spinal cord injury (SCI) and to determine the underlying mechanisms. METHODS Male Wistar rats were selected to establish a model of SCI in accordance with the Allen's protocol. The rats in the PYC group were treated with 100 mg/kg PYC by intraperitoneal injection 15 minutes after SCI. The Basso, Beattie and Bresnahan (BBB) scale was used to evaluate locomotor activity. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) production were detected by ELISA. The expression of Cleaved-caspase 3, Bcl-2, Bax and the levels of Cytochrome c (Cyt-c) were analysed by Western blot or Immunohistochemistry. Furthermore, we used the JC-1 fluorescent probe to analyse the mitochondrial membrane potential (ΔΨm). RESULTS The rats that received PYC had significantly higher BBB scores than the control lesion rats. PYC treatment resulted in reduced bleeding in spinal cord tissue and proliferation of glial cells, greater numbers of anterior horn neurons, more complete structures of residual neurons, and significant improvement in Nissl body morphology. In addition, PYC reduced MDA production and increased SOD activity. The mitochondrial membrane potential (MMP) was significantly increased in the PYC treatment group compared with the SCI group. In addition, PYC decreased the expression of Cleaved-caspase 3 and Bax and the release of Cyt-c and increased the expression of Bcl-2 in the SCI rats. CONCLUSIONS The above findings suggested that PYC can improve motor function and reduce neuronal apoptosis after SCI by stabilizing the MMP through the inhibition of oxidative stress. ABBREVIATIONS DMSO: dimethyl sulfoxide; IHC: immunological histological chemistry; MDA: malondialdehyde; PBS: phosphate buffered saline; PMSF: phenylmethanesulfonyl fluoride; PVDF: polyvinylidene difluoride; PYC: Pycnogenol; RIPA: radio immunoprecipitation assay; SCI: spinal cord injury; SOD: superoxide dismutase.
Collapse
Affiliation(s)
- Lin Tao
- Department of Orthopaedics, China Medical University First Hospital , Shenyang, Liaoning, China
| | - Xuan Liu
- Department of Orthopaedics, Affiliated Hospital of Chengdu University , Chengdu, Sichuan, China
| | - Wacili Da
- Department of Orthopaedics, China Medical University First Hospital , Shenyang, Liaoning, China
| | - Zhengbo Tao
- Department of Orthopaedics, China Medical University First Hospital , Shenyang, Liaoning, China
| | - Yue Zhu
- Department of Orthopaedics, China Medical University First Hospital , Shenyang, Liaoning, China
| |
Collapse
|
25
|
Dl-3-n-Butylphthalide promotes neovascularization and neurological recovery in a rat model of intracerebral hemorrhage. BMC Neurosci 2020; 21:24. [PMID: 32471341 PMCID: PMC7257157 DOI: 10.1186/s12868-020-00575-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Cerebral stroke occurs following ischemic and hemorrhagic lesions in the brain. Survival and recovery of stroke patients depend on the severity of the initial injury but also the therapeutic approaches applied for emergent lifesaving and continuing post-stroke management. Dl-3-n-Butylphthalide (NBP), an active compound derived from Chinese celery seeds, has shown clinical efficacy in the treatment of ischemic cerebral stroke. Results In the present study we explored the therapeutic effect of NBP in a rat model of intracerebral hemorrhage (ICH), focusing on its potential role in promoting neovascularization in the perihemorrhagic zone. ICH was induced in male Sprague-Dawley rats by unilateral injection of autologous blood into the globus pallidus, with sham-operated (Sham group), vehicle-treated (ICH) and NBP-treated (at 10 and 25 mg/kg/Bid, p.o., ICH + NBP10 and ICH + NBP25, respectively) groups examined behaviorally, macroscopically, histologically and biochemically at 1, 3, 7 and 15 days (d) post operation. Rats in the ICH + NBP10 and ICH + NBP25 groups showed reduced Longa’s motor scores relative to the ICH groups at the 3 and 7d time points, while the hematoma volume was comparable in the two NBP relative to the ICH groups as measured at 7d and 15d. In the perihemorrhagic zone, the numeric density of blood vessels immunolabeled by CD34, an angiogenic marker, was greater in the ICH + NBP10 and ICH + NBP25 than ICH groups, more so in the higher dosage group, at 1, 3, 7 and 15d. Levels of the vascular endothelial growth factor (VEGF) and angiopoietins-2 (Ang-2) proteins were elevated in the NBP groups relative to the sham and vehicle controls in immunoblotting of tissue lysates from the injection region. Conclusion These results suggest that NBP can alleviate neurological defects following experimentally induced local brain hemorrhage, which is associated with a potential role of this drug in promoting neovascularization surrounding the bleeding loci.
Collapse
|
26
|
Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:2702-2726. [PMID: 32328876 DOI: 10.1007/s12035-020-01916-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Degradomics is a proteomics sub-discipline whose goal is to identify and characterize protease-substrate repertoires. With the aim of deciphering and characterizing key signature breakdown products, degradomics emerged to define encryptic biomarker neoproteins specific to certain disease processes. Remarkable improvements in structural and analytical experimental methodologies as evident in research investigating cellular behavior in neuroscience and cancer have allowed the identification of specific degradomes, increasing our knowledge about proteases and their regulators and substrates along with their implications in health and disease. A physiologic balance between protein synthesis and degradation is sought with the activation of proteolytic enzymes such as calpains, caspases, cathepsins, and matrix metalloproteinases. Proteolysis is essential for development, growth, and regeneration; however, inappropriate and uncontrolled activation of the proteolytic system renders the diseased tissue susceptible to further neurotoxic processes. In this article, we aim to review the protease-substrate repertoires as well as emerging therapeutic interventions in spinal cord injury at the degradomic level. Several protease substrates and their breakdown products, essential for the neuronal structural integrity and functional capacity, have been characterized in neurotrauma including cytoskeletal proteins, neuronal extracellular matrix glycoproteins, cell junction proteins, and ion channels. Therefore, targeting exaggerated protease activity provides a potentially effective therapeutic approach in the management of protease-mediated neurotoxicity in reducing the extent of damage secondary to spinal cord injury.
Collapse
|
27
|
Wang JL, Ren CH, Feng J, Ou CH, Liu L. Oleanolic acid inhibits mouse spinal cord injury through suppressing inflammation and apoptosis via the blockage of p38 and JNK MAPKs. Biomed Pharmacother 2020; 123:109752. [PMID: 31924596 DOI: 10.1016/j.biopha.2019.109752] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is reported as a devastating disease, leading to tissue loss and neurologic dysfunction. However, there is no effective therapeutic strategy for SCI treatment. Oleanolic acid (OA), as a triterpenoid, has anti-oxidant, anti-inflammatory, and anti-apoptotic activities. However, its regulatory effects on SCI have little to be elucidated, as well as the underlying molecular mechanisms. In this study, we attempted to explore the role of OA in SCI progression. Behavior tests suggested that OA treatments markedly alleviated motor function in SCI mice. Evans blue contents up-regulated in spinal cords of SCI mice were significantly reduced by OA in a dose-dependent manner, demonstrating the improved blood-spinal cord barrier. Moreover, we found that OA treatments significantly reduced the apoptotic cell death in spinal cord samples of SCI mice through decreasing the expression of cleaved Caspase-3. In addition, pro-inflammatory response in SCI mice was significantly attenuated by OA treatments. Furthermore, SCI mice exhibited higher activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways, but these effects were clearly blocked in SCI mice with OA treatments, as evidenced by the down-regulated phosphorylation of p38, c-Jun-NH 2 terminal kinase (JNK), IκB kinase α (IKKα), inhibitor of nuclear factor κB-α (IκBα) and NF-κB. The protective effects of OA against SCI were confirmed in lipopolysaccharide (LPS)-stimulated mouse neurons mainly through the suppression of apoptosis and inflammatory response, which were tightly associated with the blockage of p38 and JNK activation. Together, our data demonstrated that OA treatments could dose-dependently ameliorate spinal cord damage through impeding p38- and JNK-regulated apoptosis and inflammation, and therefore OA might be served as an effective therapeutic agent for SCI treatment.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Chang-He Ren
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Ce-Hua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| |
Collapse
|
28
|
Wu F, Xu K, Xu K, Teng C, Zhang M, Xia L, Zhang K, Liu L, Chen Z, Xiao J, Wu Y, Zhang H, Chen D. Dl-3n-butylphthalide improves traumatic brain injury recovery via inhibiting autophagy-induced blood-brain barrier disruption and cell apoptosis. J Cell Mol Med 2020; 24:1220-1232. [PMID: 31840938 PMCID: PMC6991645 DOI: 10.1111/jcmm.14691] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Blood-brain barrier (BBB) disruption and neuronal apoptosis are important pathophysiological processes after traumatic brain injury (TBI). In clinical stroke, Dl-3n-butylphthalide (Dl-NBP) has a neuroprotective effect with anti-inflammatory, anti-oxidative, anti-apoptotic and mitochondrion-protective functions. However, the effect and molecular mechanism of Dl-NBP for TBI need to be further investigated. Here, we had used an animal model of TBI and SH-SY5Y/human brain microvascular endothelial cells to explore it. We found that Dl-NBP administration exerts a neuroprotective effect in TBI/OGD and BBB disorder, which up-regulates the expression of tight junction proteins and promotes neuronal survival via inhibiting mitochondrial apoptosis. The expressions of autophagy-related proteins, including ATG7, Beclin1 and LC3II, were significantly increased after TBI/OGD, and which were reversed by Dl-NBP treatment both in vivo and in vitro. Moreover, rapamycin treatment had abolished the effect of Dl-NBP for TBI recovery. Collectively, our current studies indicate that Dl-NBP treatment improved locomotor functional recovery after TBI by inhibiting the activation of autophagy and consequently blocking the junction protein loss and neuronal apoptosis. Dl-NBP, as an anti-inflammatory and anti-oxidative drug, may act as an effective strategy for TBI recovery.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Ke Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors,Biomedical Collaborative Innovation Center of WenzhouWenzhou UniversityWenzhouChina
| | - Kebin Xu
- Department of PharmacyHwaMei Hospital, University of Chinese Academy of SciencesNingboChina
| | - Chenhuai Teng
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Man Zhang
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Leilei Xia
- Department of EmergencyWenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Medical UniversityWenzhouChina
| | - Kairui Zhang
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Lei Liu
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Zaifeng Chen
- Department of NeurosurgeryAffiliated Cixi Hospital, Wenzhou Medical UniversityNingboChina
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors,Biomedical Collaborative Innovation Center of WenzhouWenzhou UniversityWenzhouChina
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Experimental Research CentreDongyang People's HospitalWenzhou Medical UniversityJinhuaChina
| | - Daqing Chen
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
29
|
Luo R, Wangqin R, Zhu L, Bi W. Neuroprotective mechanisms of 3-n-butylphthalide in neurodegenerative diseases. Biomed Rep 2019; 11:235-240. [PMID: 31798868 PMCID: PMC6873419 DOI: 10.3892/br.2019.1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Since 3-n-butylphthalide (NBP) was approved by the China Food and Drug Administration for the treatment of acute ischemia stroke in 2002, a number of studies have investigated NBP worldwide. In recent years, NBP has also demonstrated potential as treatment of several neurodegenerative diseases, which has increased the interest in its mechanisms of protection and action. Clinical studies and studies that used cell or animal models, have directly demonstrated neuroprotective effects of NBP via the following mechanisms: i) Inhibiting the inflammatory reaction; ii) reducing mitochondrial oxidative stress; iii) regulating apoptosis and autophagy; iv) inducing resistance to endoplasmic reticulum stress; and v) decreasing abnormal protein deposition. Therefore, NBP may be a potential drug for neurodegenerative diseases, and it is particularly important to identify the mechanism of NBP as it may assist with the development of new drugs for neurodegeneration. The present review summarizes the neuroprotective mechanisms of NBP and discusses new perspectives and prospects. The aim of the current review is to provide a new summary regarding NBP and its associated mechanisms.
Collapse
Affiliation(s)
- Rixin Luo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Runqi Wangqin
- Department of Neurology, Duke University Medical Center, Durham, NC 27705, USA
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
30
|
Chen XQ, Qiu K, Liu H, He Q, Bai JH, Lu W. Application and prospects of butylphthalide for the treatment of neurologic diseases. Chin Med J (Engl) 2019; 132:1467-1477. [PMID: 31205106 PMCID: PMC6629339 DOI: 10.1097/cm9.0000000000000289] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE The 3-N-butylphthalide (NBP) comprises one of the chemical constituents of celery oil. It has a series of pharmacologic mechanisms including reconstructing microcirculation, protecting mitochondrial function, inhibiting oxidative stress, inhibiting neuronal apoptosis, etc. Based on the complex multi-targets of pharmacologic mechanisms of NBP, the clinical application of NBP is increasing and more clinical researches and animal experiments are also focused on NBP. The aim of this review was to comprehensively and systematically summarize the application of NBP on neurologic diseases and briefly summarize its application to non-neurologic diseases. Moreover, recent progress in experimental models of NBP on animals was summarized. DATA SOURCES Literature was collected from PubMed and Wangfang database until November 2018, using the search terms including "3-N-butylphthalide," "microcirculation," "mitochondria," "ischemic stroke," "Alzheimer disease," "vascular dementia," "Parkinson disease," "brain edema," "CO poisoning," "traumatic central nervous system injury," "autoimmune disease," "amyotrophic lateral sclerosis," "seizures," "diabetes," "diabetic cataract," and "atherosclerosis." STUDY SELECTION Literature was mainly derived from English articles or articles that could be obtained with English abstracts and partly derived from Chinese articles. Article type was not limited. References were also identified from the bibliographies of identified articles and the authors' files. RESULTS NBP has become an important adjunct for ischemic stroke. In vascular dementia, the clinical application of NBP to treat severe cognitive dysfunction syndrome caused by the hypoperfusion of brain tissue during cerebrovascular disease is also increasing. Evidence also suggests that NBP has a therapeutic effect for neurodegenerative diseases. Many animal experiments have found that it can also improve symptoms in other neurologic diseases such as epilepsy, cerebral edema, and decreased cognitive function caused by severe acute carbon monoxide poisoning. Moreover, NBP has therapeutic effects for diabetes, diabetes-induced cataracts, and non-neurologic diseases such as atherosclerosis. Mechanistically, NBP mainly improves microcirculation and protects mitochondria. Its broad pharmacologic effects also include inhibiting oxidative stress, nerve cell apoptosis, inflammatory responses, and anti-platelet and anti-thrombotic effects. CONCLUSIONS The varied pharmacologic mechanisms of NBP involve many complex molecular mechanisms; however, there many unknown pharmacologic effects await further study.
Collapse
Affiliation(s)
- Xi-Qian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | |
Collapse
|
31
|
Geng C, Guo Y, Qiao Y, Zhang J, Chen D, Han W, Yang M, Jiang P. UPLC-Q-TOF-MS profiling of the hippocampus reveals metabolite biomarkers for the impact of Dl-3-n-butylphthalide on the lipopolysaccharide-induced rat model of depression. Neuropsychiatr Dis Treat 2019; 15:1939-1950. [PMID: 31371967 PMCID: PMC6628600 DOI: 10.2147/ndt.s203870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE An increasing body of evidence reveals that inflammation is involved in the pathological mechanisms of depression. Our previous basic research confirmed that Dl-3-n-butylphthalide (NBP) possess anti-inflammatory properties. However, studies investigating metabolite biomarkers for the involvement of NBP in hippocampus tissue in the lipopolysaccharide (LPS)-induced rat model of depression are currently limited. Thus, the aim of this study was to identify metabolite biomarkers in the hippocampus for the impact of NBP in this model of depression. MATERIAL AND METHODS Male Sprague-Dawley rats were randomly allocated to one of the following three groups (n=6): Control, LPS-induced rat model of depression (LPS), and NBP involvement in the LPS-induced rat model of depression (LPS+NBP). Ultra-high-performance liquid chromatography-mass spectroscopy was used to determine the hippocampal metabolites. Multivariate statistical analysis was performed to identify differentially expressed hippocampal metabolites in the three groups. RESULTS Most of the identified differentially expressed metabolites were related to amino acid, lipid, energy, and oxidative stress metabolism. Additionally, metabolites were eventually connected to different pathways and metabolic networks, which may partly account for the pathophysiological process of depression. CONCLUSION The present findings provide insight into the anti-inflammatory effects of NBP, and further elucidate the pathophysiological mechanisms underlying inflammation-induced depression.
Collapse
Affiliation(s)
- Chunmei Geng
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Yujin Guo
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Yi Qiao
- Department of Public Health, Jining Medical University, Jining, People's Republic of China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dan Chen
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Wenxiu Han
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Mengqi Yang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
32
|
Sahib S, Niu F, Sharma A, Feng L, Tian ZR, Muresanu DF, Nozari A, Sharma HS. Potentiation of spinal cord conduction and neuroprotection following nanodelivery of DL-3-n-butylphthalide in titanium implanted nanomaterial in a focal spinal cord injury induced functional outcome, blood-spinal cord barrier breakdown and edema formation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:153-188. [DOI: 10.1016/bs.irn.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Niu X, Jiang X, Xu G, Zheng G, Tang Z, Yin N, Li X, Yang Y, Lv P. DL‐3‐
n
‐butylphthalide alleviates vascular cognitive impairment by regulating endoplasmic reticulum stress and the Shh/Ptch1 signaling‐pathway in rats. J Cell Physiol 2018; 234:12604-12614. [PMID: 30306574 DOI: 10.1002/jcp.27332] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao‐Li Niu
- Department of Neurology Hebei Medical University Shijiazhuang China
- Department of Neurology Hebei General Hospital Shijiazhuang China
| | - Xin Jiang
- Department of Neurology Hebei General Hospital Shijiazhuang China
| | - Guo‐Dong Xu
- Department of Neurology Hebei General Hospital Shijiazhuang China
| | - Gui‐Min Zheng
- Department of Neurology Hebei General Hospital Shijiazhuang China
| | - Zhi‐Peng Tang
- Department of Neurology Hebei General Hospital Shijiazhuang China
| | - Nan Yin
- Department of Neurology Hebei General Hospital Shijiazhuang China
| | - Xiu‐Qin Li
- Department of Neurology Hebei General Hospital Shijiazhuang China
| | - Yan‐Yan Yang
- Department of Neurology Hebei General Hospital Shijiazhuang China
| | - Pei‐Yuan Lv
- Department of Neurology Hebei Medical University Shijiazhuang China
- Department of Neurology Hebei General Hospital Shijiazhuang China
| |
Collapse
|
34
|
Wang H, Wu Y, Han W, Li J, Xu K, Li Z, Wang Q, Xu K, Liu Y, Xie L, Wu J, He H, Xu H, Xiao J. Hydrogen Sulfide Ameliorates Blood-Spinal Cord Barrier Disruption and Improves Functional Recovery by Inhibiting Endoplasmic Reticulum Stress-Dependent Autophagy. Front Pharmacol 2018; 9:858. [PMID: 30210332 PMCID: PMC6121111 DOI: 10.3389/fphar.2018.00858] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) induces the disruption of blood-spinal cord barrier (BSCB), which elicits neurological deficits by triggering secondary injuries. Hydrogen sulfide (H2S) is a gaseous mediator that has been reported to have neuroprotective effect in the central nervous system. However, the relationship between H2S and BSCB disruption during SCI remains unknown. Therefore, it is interesting to evaluate whether the administration of NaHS, a H2S donor, can protect BSCB integrity against SCI and investigate the potential mechanisms underlying it. In present study, we found that SCI markedly activated endoplasmic reticulum (ER) stress and autophagy in a rat model of complete crushing injury to the spinal cord at T9 level. NaHS treatment prevented the loss of tight junction (TJ) and adherens junction (AJ) proteins both in vivo and in vitro. However, the protective effect of NaHS on BSCB restoration was significantly reduced by an ER stress activator (tunicamycin, TM) and an autophagy activator (rapamycin, Rapa). Moreover, SCI-induced autophagy was remarkably blocked by the ER stress inhibitor (4-phenylbutyric acid, 4-PBA). But the autophagy inhibitor (3-Methyladenine, 3-MA) only inhibited autophagy without obvious effects on ER stress. Finally, we had revealed that NaHS significantly alleviated BSCB permeability and improved functional recovery after SCI, and these effects were markedly reversed by TM and Rapa. In conclusion, our present study has demonstrated that NaHS treatment is beneficial for SCI recovery, indicating that H2S treatment is a potential therapeutic strategy for promoting SCI recovery.
Collapse
Affiliation(s)
- Haoli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Wen Han
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kebin Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhengmao Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiang Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huacheng He
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Dou HC, Chen JY, Ran TF, Jiang WM. Panax quinquefolius saponin inhibits endoplasmic reticulum stress-mediated apoptosis and neurite injury and improves functional recovery in a rat spinal cord injury model. Biomed Pharmacother 2018; 102:212-220. [PMID: 29558718 DOI: 10.1016/j.biopha.2018.03.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
The treatment goal in spinal cord injury (SCI) is to repair neurites and suppress cell apoptosis. Panax quinquefolius saponin (PQS) is the major active ingredient of American ginseng and has been demonstrated to have anti-inflammatory and anti-apoptotic roles in various diseases. However, the potential effect of PQS on the pathological process of acute SCI remains unknown. This work tested the effects of PQS on acute SCI and clarified its potential mechanisms. PQS treatment ameliorated the damage to spinal tissue and improved the functional recovery after SCI. PQS treatment inhibited endoplasmic reticulum (ER) stress and the associated apoptosis after acute SCI. PQS further abolished the triglyceride (TG)-induced ER stress and associated apoptosis in neuronal cultures. PQS appears to inhibit the ER-stress-induced neurite injury in PC12 cells. Our results suggest that PQS is a novel therapeutic agent for acute central nervous system injury.
Collapse
Affiliation(s)
- Hai-Cheng Dou
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Jun-Yu Chen
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Tang-Fei Ran
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Wei-Min Jiang
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China.
| |
Collapse
|