1
|
Tiruvayipati S, Hameed DS, Ahmed N. Play the plug: How bacteria modify recognition by host receptors? Front Microbiol 2022; 13:960326. [PMID: 36312954 PMCID: PMC9615552 DOI: 10.3389/fmicb.2022.960326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The diverse microbial community that colonizes the gastrointestinal tract has remarkable effects on the host immune system and physiology resulting in homeostasis or disease. In both scenarios, the gut microbiota interacts with their host through ligand-receptor binding whereby the downstream signaling processes determine the outcome of the interaction as disease or the counteractive immune responses of the host. Despite several studies on microbe-host interactions and the mechanisms by which this intricate process happens, a comprehensive and updated inventory of known ligand-receptor interactions and their roles in disease is paramount. The ligands which originate as a result of microbial responses to the host environment contribute to either symbiotic or parasitic relationships. On the other hand, the host receptors counteract the ligand actions by mounting a neutral or an innate response. The varying degrees of polymorphic changes in the host receptors contribute to specificity of interaction with the microbial ligands. Additionally, pathogenic microbes manipulate host receptors with endogenous enzymes belonging to the effector protein family. This review focuses on the diversity and similarity in the gut microbiome-host interactions both in health and disease conditions. It thus establishes an overview that can help identify potential therapeutic targets in response to critically soaring antimicrobial resistance as juxtaposed to tardy antibiotic development research.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Infectious Diseases Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dharjath S. Hameed
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
- *Correspondence: Niyaz Ahmed, ,
| |
Collapse
|
2
|
Blanco FC, Gravisaco MJ, Bigi MM, García EA, Marquez C, McNeil M, Jackson M, Bigi F. Identifying Bacterial and Host Factors Involved in the Interaction of Mycobacterium bovis with the Bovine Innate Immune Cells. Front Immunol 2021; 12:674643. [PMID: 34335572 PMCID: PMC8319915 DOI: 10.3389/fimmu.2021.674643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis is an important animal and zoonotic disease caused by Mycobacterium bovis. The innate immune response is the first line of defense against pathogens and is also crucial for the development of an efficient adaptive immune response. In this study we used an in vitro co-culture model of antigen presenting cells (APC) and autologous lymphocytes derived from peripheral blood mononuclear cells to identify the cell populations and immune mediators that participate in the development of an efficient innate response capable of controlling the intracellular replication of M. bovis. After M. bovis infection, bovine immune cell cultures displayed upregulated levels of iNOS, IL-22 and IFN-γ and the induction of the innate immune response was dependent on the presence of differentiated APC. Among the analyzed M. bovis isolates, only a live virulent M. bovis isolate induced an efficient innate immune response, which was increased upon stimulation of cell co-cultures with the M. bovis culture supernatant. Moreover, we demonstrated that an allelic variation of the early secreted protein ESAT-6 (ESAT6 T63A) expressed in the virulent strain is involved in this increased innate immune response. These results highlight the relevance of the compounds secreted by live M. bovis as well as the variability among the assessed M. bovis strains to induce an efficient innate immune response.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
- (Consejo Nacional de Investigaciones Científicas y Tecnológicas) National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María José Gravisaco
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - María Mercedes Bigi
- (Facultad de Agronomía, Universidad de Buenos Aires) School of Agronomy, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Elizabeth Andrea García
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - Cecilia Marquez
- High Technology Analytical Centre, Laboratory, Buenos Aires, Argentina
| | - Mike McNeil
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Fabiana Bigi
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
- (Consejo Nacional de Investigaciones Científicas y Tecnológicas) National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:179-215. [PMID: 34661896 DOI: 10.1007/978-3-030-67452-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innate immunity against Mycobacterium tuberculosis is a critical early response to prevent the establishment of the infection. Despite recent advances in understanding the host-pathogen dialogue in the early stages of tuberculosis (TB), much has yet to be learnt. The nature and consequences of this dialogue ultimately determine the path of infection: namely, either early clearance of M. tuberculosis, or establishment of M. tuberculosis infection leading to active TB disease and/or latent TB infection. On the frontline in innate immunity are pattern recognition receptors (PRRs), with soluble factors (e.g. collectins and complement) and cell surface factors (e.g. Toll-like receptors and other C-type lectin receptors (Dectin 1/2, Nod-like receptors, DC-SIGN, Mincle, mannose receptor, and MCL) that play a central role in recognising M. tuberculosis and facilitating its clearance. However, in a 'double-edged sword' scenario, these factors can also be involved in enhancement of pathogenesis as well. Furthermore, innate immunity is also a critical bridge in establishing the subsequent adaptive immune response, which is also responsible for granuloma formation that cordons off M. tuberculosis infection, establishing latency and acting as a reservoir for bacterial persistence and dissemination of future disease. This chapter discusses the current understanding of pattern recognition of M. tuberculosis by innate immunity and the role this plays in the pathogenesis and protection against TB.
Collapse
|
4
|
Naqvi KF, Endsley JJ. Myeloid C-Type Lectin Receptors in Tuberculosis and HIV Immunity: Insights Into Co-infection? Front Cell Infect Microbiol 2020; 10:263. [PMID: 32582566 PMCID: PMC7283559 DOI: 10.3389/fcimb.2020.00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
C-type lectin receptors (CLRs) are carbohydrate binding pattern recognition receptors (PRRs) which play a central role in host recognition of pathogenic microorganisms. Signaling through CLRs displayed on antigen presenting cells dictates important innate and adaptive immune responses. Several pathogens have evolved mechanisms to exploit the receptors or signaling pathways of the CLR system to gain entry or propagate in host cells. CLR responses to high priority pathogens such as Mycobacterium tuberculosis (Mtb), HIV, Ebola, and others are described and considered potential avenues for therapeutic intervention. Mtb and HIV are the leading causes of death due to infectious disease and have a synergistic relationship that further promotes aggressive disease in co-infected persons. Immune recognition through CLRs and other PRRs are important determinants of disease outcomes for both TB and HIV. Investigations of CLR responses to Mtb and HIV, to date, have primarily focused on single infection outcomes and do not account for the potential effects of co-infection. This review will focus on CLRs recognition of Mtb and HIV motifs. We will describe their respective roles in protective immunity and immune evasion or exploitation, as well as their potential as genetic determinants of disease susceptibility, and as avenues for development of therapeutic interventions. The potential convergence of CLR-driven responses of the innate and adaptive immune systems in the setting of Mtb and HIV co-infection will further be discussed relevant to disease pathogenesis and development of clinical interventions.
Collapse
Affiliation(s)
- Kubra F Naqvi
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Janice J Endsley
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Harishankar M, Selvaraj P, Bethunaickan R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front Med (Lausanne) 2018; 5:213. [PMID: 30167433 PMCID: PMC6106802 DOI: 10.3389/fmed.2018.00213] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is still remains the major threat for human health worldwide. Several case-control, candidate-gene, family studies and genome-wide association studies (GWAS) suggested the association of host genetic factors to TB susceptibility or resistance in various ethnic populations. Moreover, these factors modulate the host immune responses to tuberculosis. Studies have reported genetic markers to predict TB development in human leukocyte antigen (HLA) and non-HLA genes like killer immunoglobulin-like receptor (KIR), toll-like receptors (TLRs), cytokine/chemokines and their receptors, vitamin D receptor (VDR) and SLC11A1 etc. Highly polymorphic HLA loci may influence antigen presentation specificities by modifying peptide binding motifs. The recent meta-analysis studies revealed the association of several HLA alleles in particular class II HLA-DRB1 with TB susceptibility and valuable marker for disease development especially in Asian populations. Case-control studies have found the association of HLA-DR2 in some populations, but not in other populations, this could be due to an ethnic specific association of gene variants. Recently, GWAS conducted in case-control and family based studies in Russia, Chinese Han, Morocco, Uganda and Tanzania revealed the association of genes such as ASAP1, Alkylglycerol monooxygenase (AGMO), Forkhead BoxP1 (FOXP1), C-terminal domain phosphatase 1 (UBLCP1) and intergenic SNP rs932347C/T with TB. Whereas, SNP rs10956514A/G were not associated with TB in western Chinese Han and Tibetan population. In this review, we summarize the recent findings of genetic variants with susceptibility/resistance to TB.
Collapse
Affiliation(s)
- Murugesan Harishankar
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | - Paramasivam Selvaraj
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | | |
Collapse
|
6
|
Díaz Acosta CC, Dias AA, Rosa TLSA, Batista-Silva LR, Rosa PS, Toledo-Pinto TG, Costa FDMR, Lara FA, Rodrigues LS, Mattos KA, Sarno EN, Bozza PT, Guilhot C, de Berrêdo-Pinho M, Pessolani MCV. PGL I expression in live bacteria allows activation of a CD206/PPARγ cross-talk that may contribute to successful Mycobacterium leprae colonization of peripheral nerves. PLoS Pathog 2018; 14:e1007151. [PMID: 29979790 PMCID: PMC6056075 DOI: 10.1371/journal.ppat.1007151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 06/11/2018] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium leprae, an obligate intracellular bacillus, infects Schwann cells (SCs), leading to peripheral nerve damage, the most severe leprosy symptom. In the present study, we revisited the involvement of phenolic glycolipid I (PGL I), an abundant, private, surface M. leprae molecule, in M. leprae-SC interaction by using a recombinant strain of M. bovis BCG engineered to express this glycolipid. We demonstrate that PGL I is essential for bacterial adhesion and SC internalization. We also show that live mycobacterium-producing PGL I induces the expression of the endocytic mannose receptor (MR/CD206) in infected cells in a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent manner. Of note, blocking mannose recognition decreased bacterial entry and survival, pointing to a role for this alternative recognition pathway in bacterial pathogenesis in the nerve. Moreover, an active crosstalk between CD206 and the nuclear receptor PPARγ was detected that led to the induction of lipid droplets (LDs) formation and prostaglandin E2 (PGE2), previously described as fundamental players in bacterial pathogenesis. Finally, this pathway was shown to induce IL-8 secretion. Altogether, our study provides evidence that the entry of live M. leprae through PGL I recognition modulates the SC phenotype, favoring intracellular bacterial persistence with the concomitant secretion of inflammatory mediators that may ultimately be involved in neuroinflammation. Nerve damage is the most severe symptom of leprosy, an ancient disease that continues to be a major health problem in several countries. Nerve damage is due to the ability of Mycobacterium leprae, the etiologic agent, to invade SCs, the glial cells of the peripheral nervous system. Understanding the molecular basis of M. leprae–SC interaction is essential for the creation of new tools aiming to treat and, above all, prevent leprosy neuropathy. This study demonstrates the critical role of PGL I, an M. leprae-abundant specific cell wall lipid, in establishing infection. PGL I is not only a prerequisite in initiating bacterial adhesion to and subsequent invasion of SCs, but also for changing the repertoire of cell surface proteins to allow for the entrance of bacteria via alternative pathways. These new invasive pathways induced by PGL I involve recognition of other bacterial cell surface glycolipids that, in turn, evoke functional changes in the infected cell, including the accumulation of host cell-derived lipids, which favor bacterial survival. These pathways also promote the secretion of inflammatory mediators that may contribute to nerve damage. In an era of translational-oriented research, exploring these receptors in depth could lead to the development of attractive strategies to ensure the targeted intracellular delivery of therapeutics aiming to prevent neuropathy.
Collapse
Affiliation(s)
| | - André Alves Dias
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | - Flávio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | | |
Collapse
|
7
|
Rajaram MVS, Arnett E, Azad AK, Guirado E, Ni B, Gerberick AD, He LZ, Keler T, Thomas LJ, Lafuse WP, Schlesinger LS. M. tuberculosis-Initiated Human Mannose Receptor Signaling Regulates Macrophage Recognition and Vesicle Trafficking by FcRγ-Chain, Grb2, and SHP-1. Cell Rep 2018; 21:126-140. [PMID: 28978467 DOI: 10.1016/j.celrep.2017.09.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022] Open
Abstract
Despite its prominent role as a C-type lectin (CTL) pattern recognition receptor, mannose receptor (MR, CD206)-specific signaling molecules and pathways are unknown. The MR is highly expressed on human macrophages, regulating endocytosis, phagocytosis, and immune responses and mediating Mycobacterium tuberculosis (M.tb) phagocytosis by human macrophages, thereby limiting phagosome-lysosome (P-L) fusion. We identified human MR-associated proteins using phosphorylated and non-phosphorylated MR cytoplasmic tail peptides. We found that MR binds FcRγ-chain, which is required for MR plasma membrane localization and M.tb cell association. Additionally, we discovered that MR-mediated M.tb association triggers immediate MR tyrosine residue phosphorylation and Grb2 recruitment, activating the Rac/Pak/Cdc-42 signaling cascade important for M.tb uptake. MR activation subsequently recruits SHP-1 to the M.tb-containing phagosome, where its activity limits PI(3)P generation at the phagosome and M.tb P-L fusion and promotes M.tb growth. In sum, we identify human MR signaling pathways that temporally regulate phagocytosis and P-L fusion during M.tb infection.
Collapse
Affiliation(s)
- Murugesan V S Rajaram
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| | - Eusondia Arnett
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Abul K Azad
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Evelyn Guirado
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Ni
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Abigail D Gerberick
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Li-Zhen He
- Celldex Therapeutics, Inc., Needham, MA 02723, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Needham, MA 02723, USA
| | | | - William P Lafuse
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Queval CJ, Brosch R, Simeone R. The Macrophage: A Disputed Fortress in the Battle against Mycobacterium tuberculosis. Front Microbiol 2017; 8:2284. [PMID: 29218036 PMCID: PMC5703847 DOI: 10.3389/fmicb.2017.02284] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of human tuberculosis (TB), has plagued humans for thousands of years. TB still remains a major public health problem in our era, causing more than 4,400 deaths worldwide every day and killing more people than HIV. After inhaling Mtb-contaminated aerosols, TB primo-infection starts in the terminal lung airways, where Mtb is taken up by alveolar macrophages. Although macrophages are known as professional killers for pathogens, Mtb has adopted remarkable strategies to circumvent host defenses, building suitable conditions to survive and proliferate. Within macrophages, Mtb initially resides inside phagosomes, where its survival mostly depends on its ability to take control of phagosomal processing, through inhibition of phagolysosome biogenesis and acidification processes, and by progressively getting access to the cytosol. Bacterial access to the cytosolic space is determinant for specific immune responses and cell death programs, both required for the replication and the dissemination of Mtb. Comprehension of the molecular events governing Mtb survival within macrophages is fundamental for the improvement of vaccine-based and therapeutic strategies in order to help the host to better defend itself in the battle against the fierce invader Mtb. In this mini-review, we discuss recent research exploring how Mtb conquers and transforms the macrophage into a strategic base for its survival and dissemination as well as the associated defense strategies mounted by host.
Collapse
Affiliation(s)
| | | | - Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Singh DP, Bagam P, Sahoo MK, Batra S. Immune-related gene polymorphisms in pulmonary diseases. Toxicology 2017; 383:24-39. [PMID: 28366820 PMCID: PMC5464945 DOI: 10.1016/j.tox.2017.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/12/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
Between the DNA sequences of two randomly-selected human genomes, which consist of over 3 billion base pairs and twenty five thousand genes, there exists only 0.1% variation and 99.9% sequence identity. During the last couple of decades, extensive genome-wide studies have investigated the association between single-nucleotide polymorphisms (SNPs), the most common DNA variations, and susceptibility to various diseases. Because the immune system's primary function is to defend against myriad infectious agents and diseases, the large number of people who escape serious infectious diseases underscores the tremendous success of this system at this task. In fact, out of the third of the global human population infected with Mycobacterium tuberculosis during their lifetime, only a few people develop active disease, and a heavy chain smoker may inexplicably escape all symptoms of chronic obstructive pulmonary disease (COPD), lung cancer, and other smoke-associated lung diseases. This may be attributable to the genetic makeup of the individual(s), including their SNPs, which provide some resistance to the disease. Pattern recognition receptors (PRRs), transcription factors, cytokines and chemokines all play critical roles in orchestrating immune responses and their expression/activation is directly linked to human disease tolerance. Moreover, genetic variations present in the immune-response genes of various ethnicities may explain the huge differences in individual outcomes to various diseases and following exposure to infectious agents. The current review focuses on recent advances in our understanding of pulmonary diseases and the relationship of genetic variations in immune response genes to these conditions.
Collapse
Affiliation(s)
- Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94304, United States
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States.
| |
Collapse
|
10
|
Abstract
Tuberculosis remains a major global health challenge worldwide, causing more than a million deaths annually. To determine newer methods for detecting and combating the disease, it is necessary to characterise global host responses to infection. Several high throughput omics studies have provided a rich resource including a list of several genes differentially regulated in tuberculosis. An integrated analysis of these studies is necessary to identify a unified response to the infection. Such data integration is met with several challenges owing to platform dependency, patient heterogeneity, and variability in the extent of infection, resulting in little overlap among different datasets. Network-based approaches offer newer alternatives to integrate and compare diverse data. In this study, we describe a meta-analysis of host's whole blood transcriptomic profiles that were integrated into a genome-scale protein-protein interaction network to generate response networks in active tuberculosis, and monitor their behaviour over treatment. We report the emergence of a highly active common core in disease, showing partial reversals upon treatment. The core comprises 380 genes in which STAT1, phospholipid scramblase 1 (PLSCR1), C1QB, OAS1, GBP2 and PSMB9 are prominent hubs. This network captures the interplay between several biological processes including pro-inflammatory responses, apoptosis, complement signalling, cytoskeletal rearrangement, and enhanced cytokine and chemokine signalling. The common core is specific to tuberculosis, and was validated on an independent dataset from an Indian cohort. A network-based approach thus enables the identification of common regulators that characterise the molecular response to infection, providing a platform-independent foundation to leverage maximum insights from available clinical data.
Collapse
|
11
|
Lu H, Wang J, Gao B, Chen S, Xiang G, Yang S, Gong Y, Guan L. The association between the CC chemokine ligand 5 -28C>G gene polymorphism and tuberculosis susceptibility. Saudi Med J 2016; 36:1400-7. [PMID: 26620981 PMCID: PMC4707395 DOI: 10.15537/smj.2015.12.12264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To assess the association between chemotactic chemokine (C-C motif) ligand 5 (CCL5) -28C>G polymorphism and tuberculosis (TB) risk. METHODS PubMed, Web of Science, and WanFang were searched up to April 2015 for eligible studies on CCL5 -28C>G polymorphism. Data was extracted, and pooled odd ratios (ORs) as well as 95% confidence intervals (95% CI) were calculated. RESULTS Eight case-control studies were extracted from 8 articles on the polymorphism involving 1852 TB cases and 2068 controls. The results of meta-analysis showed that significant reduced risks were found for the polymorphism with the risk of TB in Asians and Arabs as follows: OR=0.12, 95% CI=0.06-0.26, p=0.000 for mutant homozygous (GG) versus wild-type homozygous (CC) for Asian descent, OR=0.14, 95% CI=0.07-0.28, p=0.000 for GG versus CC in the Arab descent. CONCLUSION Our findings demonstrated that CCL5 gene -28C>G polymorphism might be a protective factor for the development of TB.
Collapse
Affiliation(s)
- Hongfang Lu
- Institute of Respiratory Diseases,Three Gorges University, Yichang, China. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
ABSTRACT
Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to
Mycobacterium tuberculosis
infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.
Collapse
|
13
|
Bertolini TB, de Souza AI, Gembre AF, Piñeros AR, Prado RDQ, Silva JS, Ramalho LNZ, Bonato VLD. Genetic background affects the expansion of macrophage subsets in the lungs of Mycobacterium tuberculosis-infected hosts. Immunology 2016; 148:102-13. [PMID: 26840507 DOI: 10.1111/imm.12591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022] Open
Abstract
M1 macrophages are more effective in the induction of the inflammatory response and clearance of Mycobacterium tuberculosis than M2 macrophages. Infected C57BL/6 mice generate a stronger cellular immune response compared with BALB/c mice. We hypothesized that infected C57BL/6 mice would exhibit a higher frequency and function of M1 macrophages than infected BALB/c mice. Our findings show a higher ratio of macrophages to M2 macrophages in the lungs of chronically infected C57BL/6 mice compared with BALB/c mice. However, there was no difference in the functional ability of M1 and M2 macrophages for the two strains in vitro. In vivo, a deleterious role for M2 macrophages was confirmed by M2 cell transfer, which rendered the infected C57BL/6, but not the BALB/c mice, more susceptible and resulted in mild lung inflammation compared with C57BL/6 mice that did not undergo cell transfer. M1 cell transfer induced a higher inflammatory response, although not protective, in infected BALB/c mice compared with their counterparts that did not undergo cell transfer. These findings demonstrate that an inflammation mediated by M1 macrophages may not induce bacterial tolerance because protection depends on the host genetic background, which drives the magnitude of the inflammatory response against M. tuberculosis in the pulmonary microenvironment. The contribution of our findings is that although M1 macrophage is an effector leucocyte with microbicidal machinery, its dominant role depends on the balance of M1 and M2 subsets, which is driven by the host genetic background.
Collapse
Affiliation(s)
- Thais Barboza Bertolini
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre Ignacio de Souza
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Annie Rocio Piñeros
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael de Queiroz Prado
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
14
|
C-type lectin receptors in tuberculosis: what we know. Med Microbiol Immunol 2016; 205:513-535. [DOI: 10.1007/s00430-016-0470-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
|
15
|
Jaeger M, Stappers MHT, Joosten LAB, Gyssens IC, Netea MG. Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiol 2016; 10:989-1008. [PMID: 26059622 DOI: 10.2217/fmb.15.37] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cells of the innate immune system are equipped with surface and cytoplasmic receptors for microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns and as such are crucial for the activation of the immune system. Currently, five different classes of PRRs have been described: Toll-like receptors, C-type lectin receptors, nucleotide-binding oligomerization domain-like receptors, retinoic acid-inducible gene I-like receptors and absent in melanoma 2-like receptors. Following their discovery, many sequence variants in PRR genes have been uncovered and shown to be implicated in human infectious diseases. In this review, we will discuss the effect of genetic variation in PRRs and their signaling pathways on susceptibility to infectious diseases in humans.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Mark H T Stappers
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Faculty of Medicine, Research group of Immunology & Biochemistry, Hasselt University, Hasselt, Belgium
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Inge C Gyssens
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Faculty of Medicine, Research group of Immunology & Biochemistry, Hasselt University, Hasselt, Belgium
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
16
|
Stamm CE, Collins AC, Shiloh MU. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev 2015; 264:204-19. [PMID: 25703561 DOI: 10.1111/imr.12263] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the primary causative agent of human tuberculosis, has killed more people than any other bacterial pathogen in human history and remains one of the most important transmissible diseases worldwide. Because of the long-standing interaction of Mtb with humans, it is no surprise that human mucosal and innate immune cells have evolved multiple mechanisms to detect Mtb during initial contact. To that end, the cell surface of human cells is decorated with numerous pattern recognition receptors for a variety of mycobacterial ligands. Furthermore, once Mtb is ingested into professional phagocytes, other host molecules are engaged to report on the presence of an intracellular pathogen. In this review, we discuss the role of specific mycobacterial products in modulating the host's ability to detect Mtb. In addition, we describe the specific host receptors that mediate the detection of mycobacterial infection and the role of individual receptors in mycobacterial pathogenesis in humans and model organisms.
Collapse
Affiliation(s)
- Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
17
|
Xu DD, Wang C, Jiang F, Wei LL, Shi LY, Yu XM, Liu CM, Liu XH, Feng XM, Ping ZP, Jiang TT, Chen ZL, Li ZJ, Li JC. Association of the FCN2 Gene Single Nucleotide Polymorphisms with Susceptibility to Pulmonary Tuberculosis. PLoS One 2015; 10:e0138356. [PMID: 26379154 PMCID: PMC4574923 DOI: 10.1371/journal.pone.0138356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Ficolin-2 (FCN2) is an innate immune pattern recognition molecule that can activate the complement pathway, opsonophagocytosis, and elimination of the pathogens. The present study aimed to investigate the association of the FCN2 gene single nucleotide polymorphisms (SNPs) with susceptibility to pulmonary tuberculosis (TB). A total of seven SNPs in exon 8 (+6359 C>T and +6424 G>T) and in the promoter region (-986 G>A, -602 G>A, -557 A>G, -64 A>C and -4 A>G) of the FCN2 gene were genotyped using the PCR amplification and DNA sequencing methods in the healthy controls group (n = 254) and the pulmonary TB group (n = 282). The correlation between SNPs and pulmonary TB was analyzed using the logistic regression method. The results showed that there were no significant differences in the distribution of allelic frequencies of seven SNPs between the pulmonary TB group and the healthy controls group. However, the frequency of the variant homozygous genotype (P = 0.037, -557 A>G; P = 0.038, -64 A>C; P = 0.024, +6424 G>T) in the TB group was significantly lower than the control group. After adjustment for age and gender, these variant homozygous genotypes were found to be recessive models in association with pulmonary TB. In addition, -64 A>C (P = 0.047) and +6424 G>T (P = 0.03) were found to be codominant models in association with pulmonary TB. There was strong linkage disequilibrium (r2 > 0.80, P < 0.0001) between 7 SNPs except the -602 G>A site. Therefore, -557 A>G, -64 A>C and +6424 G>T SNPs of the FCN2 gene were correlated with pulmonary TB, and may be protective factors for TB. This study provides a novel idea for the prevention and control of TB transmission from a genetics perspective.
Collapse
Affiliation(s)
- Dan-Dan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chong Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feng Jiang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Li-Liang Wei
- Department of Respiratory Medicine, The Sixth Hospital of Shaoxing, Shaoxing 312000, P.R. China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Xiao-Mei Yu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Chang-Ming Liu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xue-Hong Liu
- School of Medicine, Shaoxing University, Shaoxing 312000, P.R. China
| | - Xian-Min Feng
- School of Laboratory Medicine, Jilin Medical College, Jilin 132013, P.R. China
| | - Ze-Peng Ping
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Ting Jiang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Liang Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Jie Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ji-Cheng Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
18
|
Association of the miR-146a, miR-149, miR-196a2 and miR-499 polymorphisms with susceptibility to pulmonary tuberculosis in the Chinese Uygur, Kazak and Southern Han populations. BMC Infect Dis 2015; 15:41. [PMID: 25650003 PMCID: PMC4326450 DOI: 10.1186/s12879-015-0771-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) within precursor microRNAs (miRNAs) can affect miRNAs expression, and may be involved in the pathogenesis of pulmonary tuberculosis (TB). This study aimed to investigate potential associations between the four precursor miRNA SNPs (miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 T > C) and susceptibility to pulmonary TB in the Chinese Uygur, Kazak, and Southern Han populations. Methods A case-control study was performed on Chinese Uygur (n = 662), Kazak (n = 612), and Southern Han (n = 654) populations using the PCR-PFLR method. The allele and genotype frequencies for all populations were analyzed. Linkage disequilibrium was performed, and different models of inheritance were tested. Results The allele and genotype frequencies of the miR-499 SNP were significantly different between the TB patients group and the healthy control group in the Uygur population, and were found to be codominant, dominant, recessive and additive models in association with pulmonary TB. The haplotype CTCC showed significant correlation with pulmonary TB. The allele and genotype frequencies of miR-146a and miR-196a2 SNPs were significantly different between the two groups in the Kazak population. The miR-146a SNP was found to be codominant, recessive and additive models, whereas, the miR-196a2 SNP was found to be codominant, dominant, and additive models in association with pulmonary TB. The haplotypes TCCC and CCCT showed significant correlation with pulmonary TB. Conclusions The results suggested that susceptibility to pulmonary TB may be closely related to individual differences caused by genetic factors among different ethnic groups in China. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-0771-9) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Ahmed AMM, Kadaru AGY, Omer I, Musa AM, Enan K, El Khidir IM, Williams R. Macrophages from patients with cirrhotic ascites showed function alteration of host defense receptor. J Clin Exp Hepatol 2014; 4:279-86. [PMID: 25755574 PMCID: PMC4298631 DOI: 10.1016/j.jceh.2014.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with cirrhotic ascites (PCA) are susceptible to spontaneous bacterial peritonitis (SBP) which has increased morbidity and mortality. Since some host defense aspects of peritoneal macrophages (PMф) from PCA are altered this study examined factors related to receptor-mediated phagocytosis. METHODS Twelve PCA were studied. PMɸ were isolated from ascitic fluid (AF) samples removed from these patients. Uptake of mannose receptor (MR)-specific ligand, fluorescein isothiocyanate-mannosylated-bovine serum albumin (FITC-man-BSA), by patients' PMɸ and controls, a human monocytic cell line, was measured pre- and post-IL-4 treatment. Phagocytosis of FITC-labeled yeast particles by patients' PMɸ was measured pre- and post-IL-4 treatment. Fluorescence values were obtained using a spectrofuorometer. MRC1 gene was analyzed in blood samples from PCA and controls, healthy donors, using standard polymerase chain reaction (PCR) technique. RESULTS Past SBP episode(s) were reported in 58.3% of patients. Mean AF volume analyzed per patient was 1.3L. PMɸ ratio in cell yield was 53.73% (SD 18.1). Mean uptake absorbance of patients' PMф was 0.0841 (SD 0.077) compared to 0.338 (SD 0.34) of controls, P = 0.023. Following IL-4 treatment absorbance increased to 0.297 (SD 0.28) in patients' PMф (P = 0.018 on paired sample t-test), and to 0.532 (SD 0.398 in controls (P = 0.053 on independent sample t-test). Mean phagocytosis absorbance of patients' PMф was 0.1250 (SD 0.032) before IL-4 treatment compared to 0.2300 (SD 0.104) after (P = 0.026). PCR analysis for MRC1 gene was negative in all PCA samples compared to positive results in all controls. CONCLUSION Since decreased phagocytosis and MR uptake were enhanced post-IL-4 treatment MR downregulation pre-treatment is plausible. Negative PCR results for MRC1 might suggest an anomaly, but this awaits further ellucidation. These altered host defense findings are relevant to infection pathophysiology, and their relevance to SBP susceptibility in PCA is worth verifying.
Collapse
Key Words
- AF, ascitic fluid
- FBS, foetal bovine serum
- FITC, fluorescein isothiocyanate
- IL-4, interleukin-4
- MR, mannose receptor
- MRC1 gene
- MRC1, gene encoding human MR
- PCA, patients with cirrhotic ascites
- PCR, polymerase chain reaction
- PMф, peritoneal macrophages
- RPMI and DMEM, cell culture media
- cirrhosis
- macrophage host defense
- man-BSA, mannosylated bovine serum albumin
- mannose receptor
- spontaneous bacterial peritonitis
Collapse
Affiliation(s)
- Abdel Motaal M. Ahmed
- Department of Medicine, The National University for Medical and Allied Sciences, Khartoum 11123, Sudan
- Address for correspondence: Abdel Motaal M. Ahmed, Consultant Gastroenterologist and Associate Professor, Department of Medicine, The National University for Medical and Allied Sciences, Khartoum 11123, Sudan. Tel.: +249 114624484 (mobile); fax: +249 183789554.
| | - Abdel Gadir Y. Kadaru
- Department of Medicine, Faculty of Medicine, University of Khartoum, Khartoum 11123, Sudan
| | - Ibtihal Omer
- Microbiology Department, Ribat University, Khartoum 11123, Sudan
| | - Ahmed M. Musa
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11123, Sudan
| | - Khalid Enan
- Molecular Biology Unit, The National Research Laboratory Centre, Khartoum 11123, Sudan
| | - Isam M. El Khidir
- Virology Department, Faculty of Medicine, University of Khartoum, Khartoum 11123, Sudan
| | - Roger Williams
- Institute of Hepatology, The Foundation for Liver Research, London, UK
| |
Collapse
|
20
|
Rajaram MVS, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol 2014; 26:471-85. [PMID: 25453226 DOI: 10.1016/j.smim.2014.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022]
Abstract
Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Ni
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Claire E Dodd
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Naderi M, Hashemi M, Pourmontaseri Z, Eskandari-Nasab E, Bahari G, Taheri M. TIRAP rs8177374 gene polymorphism increased the risk of pulmonary tuberculosis in Zahedan, southeast Iran. ASIAN PAC J TROP MED 2014; 7:451-455. [PMID: 25066393 DOI: 10.1016/s1995-7645(14)60073-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/15/2013] [Accepted: 03/15/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the possible association between Toll-interleukin 1 receptor (TIR) domain containing adaptor protein (TIRAP; also known as MAL) rs1893352 and rs8177374 (S180L) gene polymorphisms and pulmonary tuberculosis (PTB) in a sample of Iranian population. METHODS This case-control study was performed on 174 PTB and 177 healthy subjects. Tetra amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) was used to detect the polymorphisms. RESULTS Our finding showed that neither the overall Chi-square comparison of PTB and control subjects nor the logistic regression analysis indicated any association between rs1893352 polymorphism and PTB. Regarding rs8177374 polymorphism, the CT genotype as well as CT+TT increased the risk of PTB in comparison with CC genotype (OR=4.73, 95% CI=2.65-8.45, P<0.0001 and OR=6.47, 95% CI=3.68-11.38, P<0.0001, respectively). The rs8177374 T allele increased the risk of PTB in comparison with C allele (OR=4.21, 95% CI=2.43-7.26, P<0.0001). CONCLUSIONS Our finding indicates that TIRAP rs8177374 polymorphism is associated with PTB in a sample of Iranian population.
Collapse
Affiliation(s)
- Mohammad Naderi
- Research Center for Infectious Diseases and Tropical Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Pourmontaseri
- Research Center for Infectious Diseases and Tropical Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ebrahim Eskandari-Nasab
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Centre, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
22
|
Wang C, Chen ZL, Pan ZF, Wei LL, Xu DD, Jiang TT, Zhang X, Ping ZP, Li ZJ, Li JC. NOD2 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis. Int J Biol Sci 2013; 10:103-8. [PMID: 24391456 PMCID: PMC3879596 DOI: 10.7150/ijbs.7585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/11/2013] [Indexed: 01/22/2023] Open
Abstract
The association between NOD2 and tuberculosis (TB) risk has been reported widely, but the results of previous studies remained controversial and ambiguous. To assess the association between NOD2 polymorphisms and TB risk, a meta-analysis was performed. A literature search was conducted by using the PubMed, Ovid, ISI Web of Knowledge, Elsevier ScienceDirect, and Chinese National Knowledge Infrastructure (CNKI). We identified the data from all articles estimating the association between NOD2 polymorphisms and TB risk. In total, 2,215 cases and 1,491 controls in 7 case-control studies were included. In meta-analysis, we found significant association between the Arg702Trp polymorphism and TB risk (OR = 0.43, 95% CI = 0.20-0.90, P = 0.02). However, no significant association was found between the Arg587Arg (OR = 1.31, 95% CI = 0.83-2.07, P = 0.25) and Gly908Arg (OR = 0.78, 95% CI = 0.21-2.87, P = 0.71) polymorphisms and TB risk. The present meta-analysis suggested that NOD2 Arg702Trp polymorphism was likely to be a protective factor for TB. However, the Arg587Arg and Gly908Arg polymorphisms might not be the genetic risk factors for TB susceptibility.
Collapse
Affiliation(s)
- Chong Wang
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Liang Chen
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhi-Fen Pan
- 2. The First Hospital of Jiaxing, Jiaxing 314001, P.R. China
| | - Li-Liang Wei
- 3. The Sixth Hospital of Shaoxing, Shaoxing 312000, P.R. China
| | - Dan-Dan Xu
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Ting Jiang
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xing Zhang
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ze-Peng Ping
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Jie Li
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ji-Cheng Li
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
23
|
The novel human MRC1 gene polymorphisms are associated with susceptibility to pulmonary tuberculosis in Chinese Uygur and Kazak populations. Mol Biol Rep 2013; 40:5073-83. [PMID: 23653008 DOI: 10.1007/s11033-013-2610-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
The MRC1 gene, encoding the human mannose receptor (MR), is a member of the C-type lectin receptors family. MR can recognize and bind to Mycobacterium tuberculosis by the extracellular structure, and play a role in antigen-presenting and maintaining a stable internal environment. This study aimed to investigate potential associations of SNPs in exon 7 of the MRC1 gene with pulmonary tuberculosis (TB). G1186A, G1195A, T1212C, C1221G, C1303T and C1323T were genotyped using PCR and DNA sequencing in 595 Chinese Uygur and 513 Kazak subjects. In the Uygur, the frequency of allele G (P=0.031, OR=1.29, 95% CI=1.02-1.62) and AA genotype (P=0.033, OR=1.64, 95% CI=1.04-2.60) for G1186A was lower in the pulmonary TB than healthy control and were significantly correlated with pulmonary TB. After adjustment for age and gender, G1186A was found to be additive models in association with pulmonary TB (P=0.04, OR=1.27, 95% CI=1.01-1.60). By calculating linkage disequilibrium, the frequency of haplotype GGTCCT (P=0.032, OR=0.75, 95% CI=0.57-0.97) and GGTCCC (P=0.044, OR=0.57, 95% CI=0.33-0.99) was significantly associated with pulmonary TB. No association was found between other SNPs and pulmonary TB. In the Kazak, all SNPs were not associated with pulmonary TB. Our results suggest that genetic factors play an important role in susceptibility to pulmonary TB at the individual level, and provide an experimental basis to clarify the pathogenesis of pulmonary TB.
Collapse
|
24
|
Abstract
Tuberculosis (TB) is a leading cause worldwide of human mortality attributable to a single infectious agent. Recent studies targeting candidate genes and "case-control" association have revealed numerous polymorphisms implicated in host susceptibility to TB. Here, we review current progress in the understanding of causative polymorphisms in host innate immune genes associated with TB pathogenesis. We discuss genes encoding several types of proteins: macrophage receptors, such as the mannose receptor (MR, CD206), dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), Dectin-1, Toll-like receptors (TLRs), complement receptor 3 (CR3, CD11b/CD18), nucleotide oligomerization domain 1 (NOD1) and NOD2, CD14, P2X7, and the vitamin D nuclear receptor (VDR); soluble C-type lectins, such as surfactant protein-A (SP-A), SP-D, and mannose-binding lectin (MBL); phagocyte cytokines, such as tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, and IL-18; chemokines, such as IL-8, monocyte chemoattractant protein 1 (MCP-1), RANTES, and CXCL10; and other important innate immune molecules, such as inducible nitric oxide synthase (iNOS) and solute carrier protein 11A1 (SLC11A1). Polymorphisms in these genes have been variably associated with susceptibility to TB among different populations. This apparent variability is probably accounted for by evolutionary selection pressure as a result of long-term host-pathogen interactions in certain regions or populations and, in part, by lack of proper study design and limited knowledge of molecular and functional effects of the implicated genetic variants. Finally, we discuss genomic technologies that hold promise for resolving questions regarding the evolutionary paths of the human genome, functional effects of polymorphisms, and corollary impacts of adaptation on human health, ultimately leading to novel approaches to controlling TB.
Collapse
Affiliation(s)
- Abul K. Azad
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Wolfgang Sadee
- Department of Pharmacology, Program in Pharmacogenomics, The Ohio State University, Columbus, Ohio, USA
| | - Larry S. Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| |
Collapse
|
25
|
Wang C, Jiang T, Wei L, Li F, Sun X, Fan D, Liu J, Zhang X, Xu D, Chen Z, Li Z, Fu X, Li JC. Association of CTLA4 gene polymorphisms with susceptibility and pathology correlation to pulmonary tuberculosis in Southern Han Chinese. Int J Biol Sci 2012; 8:945-52. [PMID: 22811616 PMCID: PMC3399317 DOI: 10.7150/ijbs.4390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/05/2012] [Indexed: 11/05/2022] Open
Abstract
The cytotoxic T lymphocyte antigen-4 (CTLA4) gene is a key negative regulator of the T lymphocyte immune response. It has been found that CTLA4 +49A>G (rs231775), +6230G>A (rs3087243), and 11430G>A (rs11571319) polymorphisms are associated with susceptibility to many autoimmune diseases, and can down-regulate the inhibition of cellular immune response of CTLA4. Three SNPs in CTLA4 were genotyped by using the PCR and DNA sequencing methods in order to reveal the susceptibility and pathology correlation to pulmonary tuberculosis in Southern Han Chinese. We found that the frequency of CTLA4 +49AG genotype in the pulmonary tuberculosis patients (38.42%) was significantly lower than that of the healthy controls (49.77%), (P(cor)=0.038, OR 0.653, 95% CI 0.436-0.978). But, no associations were found between the other 2 SNPs (+6230G>A, 11430G>A) and tuberculosis (P>0.05). Haplotype analysis showed that the frequency of haplotype AGG in the healthy controls group (6.9%) was significantly higher than the pulmonary tuberculosis patients group (1.4%), (global P=0.005, P(cor)=0.0002, OR 0.183, 95% CI 0.072-0.468). In addition, haplotype GGA was found to be significantly related to tuberculosis with double lung lesion rather than single lung lesion (P(cor)=0.042). This study is the first to report that genetic variants in the CTLA4 gene can be associated with pulmonary tuberculosis in Southern Han Chinese, and CTLA4 +49AG genotype as well as haplotype AGG may reduce the risk of being infected with pulmonary tuberculosis. The GGA haplotype was related to tuberculosis with double lung lesion, which provides a new experimental basis to clarify the pathogenesis of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Chong Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|